高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

马尾松优良种源高效组培育苗技术体系构建

王胤 姚瑞玲

王胤, 姚瑞玲. 马尾松优良种源高效组培育苗技术体系构建[J]. 北京林业大学学报, 2020, 42(6): 43-51. doi: 10.12171/j.1000-1522.20190396
引用本文: 王胤, 姚瑞玲. 马尾松优良种源高效组培育苗技术体系构建[J]. 北京林业大学学报, 2020, 42(6): 43-51. doi: 10.12171/j.1000-1522.20190396
Wang Yin, Yao Ruiling. Establishment of an effective protocol for cultivation of tissue cultured seedlings in Pinus massoniana superior provenance[J]. Journal of Beijing Forestry University, 2020, 42(6): 43-51. doi: 10.12171/j.1000-1522.20190396
Citation: Wang Yin, Yao Ruiling. Establishment of an effective protocol for cultivation of tissue cultured seedlings in Pinus massoniana superior provenance[J]. Journal of Beijing Forestry University, 2020, 42(6): 43-51. doi: 10.12171/j.1000-1522.20190396

马尾松优良种源高效组培育苗技术体系构建

doi: 10.12171/j.1000-1522.20190396
基金项目: 国家自然科学基金项目(31960311、31360178),广西科技计划项目(桂科AD17195078、2017GXNSFAA198037、2018GXNSFDA281020、桂科AA17204087-1),广西林业科技项目(桂林科字[2016]第13号)
详细信息
    作者简介:

    王胤。主要研究方向:马尾松育种与栽培。Email:yinvvang@163.com 地址:530002 广西南宁市西乡塘区邕武路23号广西林科院

    责任作者:

    姚瑞玲,博士,研究员。主要研究方向:林木生理代谢调控。Email:jullyudi@163.com 地址:同上

  • 中图分类号: S722.8

Establishment of an effective protocol for cultivation of tissue cultured seedlings in Pinus massoniana superior provenance

  • 摘要: 目的马尾松是我国南方生态建设和造林用材的主要树种,受种苗良种化限制,人工林生产力水平整体不高,产业发展缓慢。因此,构建高效马尾松优良种质繁育技术体系对推动良种推广利用,加快产业发展,提升行业竞争力很有必要。方法以马尾松骨干育种资源桐棉种源为研究对象,未成熟球果合子胚为外植体,通过体胚发生技术获取成熟胚状体作为本试验供试材料,针对马尾松体胚萌发率低、芽苗活性差、生根成苗困难等技术瓶颈,系统分析了活性炭(AC)、基本培养基、植物激素对体胚萌发及萌发体胚芽苗复壮与不定根诱导的影响。结果(1)AC能显著提升成熟胚状体萌发培养效果,但过高浓度AC会导致培养效果减弱,其中以0.83 mol/L AC效果最佳。在附加AC基础上,利用高N、低NH4+/NO3比,K、Ca量适中的1/2MMS基本培养基能进一步提升萌发效果,萌发率可达94.1%。(2)0.42 mol/L AC能有效促进萌发体胚芽苗伸长,在4 μmol/L TDZ作用下,腋芽诱导效果好,有效芽增殖系数5.6/35 d,芽高9.2 cm/50 d。(3)经1.2 μmol/L NAA + 2 μmol/L PBZ处理60 d,单芽生根率达94.3%、根条数6.4,移栽3个月后成活率为95.8%。结论本研究首次通过体胚发生与器官发生途径相结合的技术构建了高效组培繁育体系,可用于马尾松优良种质的快速繁殖以及遗传转化方面的研究,为马尾松良种产业化以及进一步开展基因工程分子育种方面的研究奠定了坚实基础。

     

  • 图  1  桐棉松体胚发生途径植株再生

    A.体胚诱导;B. 体胚增殖;C. 成熟培养;D. 诱导阶段胚性细胞显微观察;E. 增殖阶段胚性细胞显微观察;F. 成熟培养胚性细胞显微观察;G. 形成优势、成熟胚的胚性细胞团;H. 成熟体细胞胚;I. 体胚萌发培养;J. 生长中的萌发体胚;K. 再生体萌苗;L. 体胚苗移栽。标尺: 2 cm(A), 1cm(B, I−L), 0.5 cm(C), 2 mm(G, H), 500 μm(D, E), 200 μm(F). A, induction of somatic embryos; B, proliferation of somatic embryos; C, maturation culture; D, microscopic observation on induced somatic embryos; E, microscopic observation on proliferated somatic embryos; F, microscopic observation on somatic embryos during mature culture; G, embryogenic cells with dominative and mature somatic embryos; H, mature somatic embryos; I, germination of somatic embryos; J, growth of germinated somatic embryos; K, regenerated somatic seedlings; L, transplanting of somatic seedlings. Scale bars: 2 cm (A), 1cm (B, I−L), 0.5 cm (C), 2 mm (G, H), 500 μm (D, E), 200 μm (F).

    Figure  1.  Plant regeneration via somatic embryogenesis in Pinus massoniana ‘Tongmiansong’

    图  2  通过芽苗复壮与不定根诱导的桐棉松萌发体胚离体植株再生

    A.切除胚根的萌发体胚;B. 切根处理后的萌发体胚复壮培养;C. 复壮的体胚苗;D. 复壮体胚苗腋芽诱导;E. 形成丛生芽的复壮体胚苗;F. 复壮体胚苗的大量增殖与扩繁;G. 形成发达根系的生根苗;F. 生根苗苗圃移栽;I. 移栽3个月后成活的生根苗。标尺: 10 cm(F), 5 cm(I), 2 cm(H), 1cm(A−E, G). A, germinated somatic embryos with radicle cutting; B, reinvigoration of germinated somatic embryos after radicle cutting; C, reinvigorated shoots originated from somatic embryos; D, induction of axillary buds for reinvigorated shoots originated from somatic embryos; E, clustered shoots from reinvigorated shoots originated from somatic embryos; F, massive proliferation of reinvigorated shoots originated from somatic embryos; G, rooted shoots with robust root system; H, transplanting of rooted shoot in the nursery; I, survival seedlings after 3-month transplanting. Scale bars: 10 cm (F), 5 cm (I), 2 cm (H), 1 cm (A−E, G).

    Figure  2.  In vitro regeneration of plants originated from germinated somatic embryos of Pinus massoniana ‘Tongmiansong’ through shoot reinvigoration and adventitious root induction

    图  3  活性炭对桐棉松体胚萌发的影响

    不同小写字母表示不同AC浓度处理间差异显著(P < 0.05)。Different lowercase letters indicate significant differences among varied AC concentration treatments at P < 0.05 level.

    Figure  3.  Effects of active charcoal on germination of somatic embryos in Pinus massoniana ‘Tongmiansong’

    图  4  活性炭对桐棉松萌发体胚芽苗生长的影响

    不同小写字母表示不同AC浓度处理间差异显著(P < 0.05)。Different lowercase letters indicate significant differences among varied AC concentration treatments at P < 0.05 level.

    Figure  4.  Effects of active charcoal on growth of shoots from germinated somatic embryos in Pinus massoniana ‘Tongmiansong’

    表  1  基本培养基对桐棉松体胚萌发的影响

    Table  1.   Effects of basal media on germination of somatic embryos in Pinus massoniana ‘Tongmiansong’

    基本培养基 Basal media萌发率 Germination rate/%萌发芽苗生长情况 Growth of shoots from germinated somatic embryos
    1/2LP 68.5 ± 2.1b 叶片颜色深绿,顶芽形成缓慢,有褐化现象
    Leaves are dark green, the formation of top shoots is slow, and the browning of shoots is occasionally observed
    1/2DCR 10.7 ± 2.2e 生长缓慢,叶片颜色发黄,褐化严重
    Growth of shoots is slow, their leaves are yellow, and the browning of shoots is serious
    1/2GD 37.7 ± 2.6d 叶片短小、颜色发黄,顶芽形成困难,褐化现象明显
    Leaves are short and yellow, the formation of top shoots is difficult, and the browning of shoots is obvious
    1/2MS 42.4 ± 3.2c 叶片呈浅绿色,形成顶芽水渍化现象明显
    Leaves are light green, and the formed top shoots are easy to be water-soaking
    1/2MMS 94.1 ± 2.8a 叶片颜色翠绿,顶芽形成快、生长健壮,无褐化、玻璃化现象
    Leaves are green, the formation of top shoots is efficient, and the shoots are robust without browning and vitrification
    注:同一列中不同小写字母表示不同基本培养基间差异显著(P < 0.05)。Note: different lowercase letters from the same column indicate significant differences among varied basal media at P < 0.05 level.
    下载: 导出CSV

    表  2  细胞分裂素对桐棉松萌发体胚芽苗增殖和生长的影响

    Table  2.   Effects of cytokinins on proliferation and growth of shoots originated from germinated somatic embryos in Pinus massoniana ‘Tongmiansong’

    激素浓度
    Hormone concentration/
    (µmol·L− 1
    有效芽增殖系数
    Proliferation coefficient of effective shoots
    丛芽高度
    Height of clustered shoots/cm
    芽生长情况
    Shoot growth
    6-BATDZ6-BATDZ6-BATDZ
    0 0dA 0eA 未形成丛芽,针叶短小、颜色深绿,茎节间短,植株矮小
    Cluster shoots are not found, leaves are short and dark green, internodes of shoots are short, and the whole plant is dwarf
    2 0.9 ± 0.2cA 1.1 ± 0.5dA 4.8 ± 0.4bB 8.1 ± 0.8bA 多呈单芽,大部分芽节间短、针叶密且呈深绿色
    Most of shoots are single, their internodes are short, and leaves are compact and dark green
    丛生芽少,针叶细长,叶片为浅绿色
    Cluster shoots are rare, leaves are tenuous and light green
    4 2.9 ± 0.7bB 5.6 ± 0.7aA 7.8 ± 0.8aB 9.2 ± 0.8aA 丛芽多,芽苗节间长,叶片颜色翠绿,生长健壮
    Plenty of cluster shoots are observed, with long internodes, green leaves, and they grow well
    丛芽多,针叶长,叶片颜色翠绿,茎节间长,生长健壮
    Plenty of cluster shoots are investigated, with long and green leaves, long internodes, and the whole shoots are thriving
    6 4.1 ± 0.5aA 3.3 ± 1.0bA 5.0 ± 0.8bB 6.7 ± 0.9cA 短簇状丛生芽较多,茎节间短,叶片颜色发黄,有褐化现象
    Short cluster shoots are usually found, with short internodes, yellow leaves, and the browning of shoots is observed
    丛芽多,顶稍针叶较短,有部分叶片颜色发黄
    Cluster shoots are sufficient, leaves of top shoots are short, and part of leaves are yellow
    8 2.5 ± 0.8bA 2.1 ± 0.7cA 3.6 ± 0.8cA 3.7 ± 0.4dA 丛芽呈短簇状,叶子卷曲,短小,褐化、玻璃化现象明显
    Cluster shoots are short and small, leaves are cured and short, and the vitrification of shoots is remarkable
    丛芽矮小,叶片颜色发黄,有玻璃化现象
    Cluster shoots are shorts, leaves are yellow, and the vitrification of shoots is occasionally found
    注:同一列中不同小写字母表示不同激素浓度处理间差异显著,同一行中不同大写字母表示两种激素处理间差异显著(P < 0.05)。Notes: different lowercase letters from the same column indicate significant differences among varied hormone concentration treatments, while different capital letters from the same row indicate significant differences between two hormone treatments at P < 0.05 level.
    下载: 导出CSV

    表  3  生长调节剂对桐棉松萌发体胚复壮芽苗生根能力的影响

    Table  3.   Effects of plant growth regulators on rooting capacity of reinvigorated shoots originated fromgerminated somatic embryos in Pinus massoniana ‘Tongmiansong’

    激素处理
    Hormone treatment
    生根率
    Rooting rate/%
    生根时间
    Rooting time/d
    根条数
    Number of roots
    根长
    Root length/cm
    成活率
    Survival rate/%
    对照 Control 0c
    NAA 87.7 ± 4.5b 28.7 ± 2.1a 2.3 ± 0.4d 0.6 ± 0.2b 50.3 ± 3.6d
    NAA + IAA 91.4 ± 2.7ab 20.8 ± 1.5c 4.2 ± 0.7b 2.1 ± 0.4a 83.4 ± 3.2b
    NAA + IBA 90.5 ± 2.2ab 24.0 ± 2.3b 3.5 ± 0.8c 2.7 ± 0.4a 70.8 ± 4.6c
    NAA + PBZ 94.3 ± 3.8a 18.6 ± 1.2c 6.4 ± 0.7a 2.3 ± 0.6a 95.8 ± 2.4a
    注:同一列中不同小写字母表示不同激素处理间差异显著(P < 0.05)。Note: different lowercase letters from the same column indicate significant differences among varied hormone treatments at P < 0.05 level.
    下载: 导出CSV
  • [1] 黄健秋, 卫志明. 松属树种的组织培养和原生质体培养[J]. 植物学通报, 1994, 11(1):34−42.

    Huang J Q, Wei Z M. Tissue and protoplast culture of Pinus species[J]. Chinese Bulletin of Botany, 1994, 11(1): 34−42.
    [2] 丁贵杰, 周志春, 王章荣, 等. 马尾松纸浆用材林培育与利用[M]. 北京: 中国林业出版社, 2006: 1–10.

    Ding G J, Zhou Z C, Wang Z R, et al. Cultivation and utilization of pulpwood stand for Pinus massoniana[M]. Beijing: China Forestry Publishing House, 2006: 1–10.
    [3] 杨章旗, 刘达峰. 马尾松: 广西优良用材树种[J]. 广西林业, 2011, 29(8):41−42. doi: 10.3969/j.issn.1004-0390.2011.08.020

    Yang Z Q, Liu D F. Pinus massoniana: superior timber tree species of Guangxi[J]. Guangxi Forestry, 2011, 29(8): 41−42. doi: 10.3969/j.issn.1004-0390.2011.08.020
    [4] 杨模华, 张冬林, 李志辉, 等. 马尾松幼胚体细胞胚胎发生研究[J]. 植物生理学报, 2011, 47(9):904−912.

    Yang M H, Zhang D L, Li Z H, et al. Somatic embryogenesis with immature embryos of masson pine (Pinus massoniana Lamb.)[J]. Plant Physiology Journal, 2011, 47(9): 904−912.
    [5] 季孔庶, 王章荣, 陈天华, 等. 马尾松扦插繁殖年龄效应及继代扦插复壮效果[J]. 浙江林学院学报, 1996, 16(4):341−345.

    Ji K S, Wang Z R, Chen T H, et al. Cyclophysis and effect of rejuvenation with continued cuttage in Pinus massoniana cutting propagation[J]. Journal of Zhejiang Forestry College, 1996, 16(4): 341−345.
    [6] Klimaszewska K, Hargreaves C, Lelu-Walter M, et al. Advances in conifer somatic embryogenesis since year 2000[M]//Germanà M A, Lambardi M. In vitro embryogenesis in higher plants, methods in molecular biology. New York: Springer Science Business Media, 2016: 131–166.
    [7] Pullman G S, Zeng X, Copeland-Lamp B, et al. Conifer somatic embryogenesis: improvements by supplementation of medium with oxidation-reduction agents[J]. Tree Physiology, 2015, 35(2): 209−224. doi: 10.1093/treephys/tpu117
    [8] Thomas T D. The role of activated charcoal in plant tissue culture[J]. Biotechnology Advances, 2008, 26(6): 618−631. doi: 10.1016/j.biotechadv.2008.08.003
    [9] De Diego N, Montalbán I A, Fernández E, et al. In vitro regeneration of Pinus pinaster adult trees[J]. Canadian Journal of Forestry Research, 2008, 38(10): 2607−2615. doi: 10.1139/X08-102
    [10] Pan J J, Van Staden J. The use of activated charcoal in in vitro culture: a review[J]. Plant Growth Regulation, 1998, 26(3): 155−163. doi: 10.1023/A:1006119015972
    [11] Yao R L, Wang Y. An effective protocol for regenerating mature Pinus massoniana L. trees by tissue culture[J]. Research Journal of Biotechnology, 2016, 11(12): 75−80.
    [12] 黄健秋, 卫志明, 许智宏. 马尾松成熟合子胚的体细胞胚胎发生和植株再生[J]. 植物学报, 1995, 37(4):289−294, 338.

    Huang J Q, Wei Z M, Xu Z H. Somatic embryogenesis and plantlet regeneration from callus of of mature zygotic embryos of masson pine[J]. Acta Botanica Sinica, 1995, 37(4): 289−294, 338.
    [13] 李校雨, 吕成群, 黄宝灵, 等. 马尾松组培苗不定根诱导及不定根解剖观察[J]. 西北林学院学报, 2009, 24(3):80−84.

    Li X Y, Lü C Q, Huang B L, et al. Adventitious roots’ induction of Pinus massoniana shoots in test tubes and anatomical observation[J]. Journal of Northwest Forestry College, 2009, 24(3): 80−84.
    [14] 伊书亮, 张冬林, 杨模华, 等. 外植体采集时期与冷藏处理对马尾松愈伤组织诱导的影响[J]. 广西林业科学, 2013, 42(1):8−13. doi: 10.3969/j.issn.1006-1126.2013.01.002

    Yin S L, Zhang D L, Yang M H, et al. Effects of explant collecting time and storage duration on callus induction of Pinus massoniana[J]. Guangxi Forestry Science, 2013, 42(1): 8−13. doi: 10.3969/j.issn.1006-1126.2013.01.002
    [15] Wang Y, Yao R L. Plantlet regeneration of adult Pinus massoniana Lamb. trees using explants collected in March and thidiazuron in culture medium[J]. Journal of Forestry Research, 2017, 28(6): 1169−1175. doi: 10.1007/s11676-017-0412-9
    [16] Aitken-Christie J, Singh A P, Davies H. Multiplication of meristematic tissue: a new tissue culture system for radiata pine[M]//Hanover J W, Keathley D E. Genetic manipulation of woody plants. New York: Plenum, 1988: 413–432.
    [17] Gupta P K, Durzan D J. Shoot multiplication from mature trees of Douglas-fir (Pseudotsuga menziesii) and sugar pine (Pinus lambertiana)[J]. Plant Cell Reports, 1985, 4(4): 177−179. doi: 10.1007/BF00269282
    [18] Gresshoff P M, Doy C H. Development and differentiation of haploid Lycopersicon esculentum (tomato)[J]. Planta, 1972, 107(2): 161−170. doi: 10.1007/BF00387721
    [19] Murashige T, Skoog F. A revised medium for rapid growth and bioassays with tobacco tissue cultures[J]. Physiologia Plantarum, 1962, 15(3): 473−497. doi: 10.1111/j.1399-3054.1962.tb08052.x
    [20] Wang Y, Yao R L. Increased endogenous indole-3-acetic acid:abscisic acid ratio is a reliable marker of Pinus massoniana rejuvenation[J]. Biotechnic & Histochemistry, 2019, 94(7): 546−553.
    [21] Van Winkle S C, Pullman G S. The combined impact of pH and activated carbon on the elemental composition of a liquid conifer embryogenic tissue initiation medium[J]. Plant Cell Reports, 2003, 22(5): 303−311. doi: 10.1007/s00299-003-0686-6
    [22] 李国树, 徐成东, 王波, 等. 植物组织培养节能降耗研究进展[J]. 植物学研究, 2014, 3(3):105−110. doi: 10.12677/BR.2014.33015

    Li G S, Xu C D, Wang B, et al. Research progress on plant tissue culture system of saving energy and reducing consumption[J]. Botanical Research, 2014, 3(3): 105−110. doi: 10.12677/BR.2014.33015
    [23] 曾嬿冰, 周运超, 张伟, 等. 马尾松优良种源对N肥的响应[J]. 贵州林业科技, 2016, 44(1):1−8.

    Zeng Y B, Zhou Y C, Zhang W, et al. Response of superior provenance of Pinus massoniana to N fertilize[J]. Guizhou Forestry Science and Technology, 2016, 44(1): 1−8.
    [24] 潘瑞炽. 植物生理学[M]. 7版. 北京: 高等教育出版社, 2012.

    Pan R Z. Plant physiology[M]. 7th ed. Beijing: Higher Education Press, 2012.
    [25] 刘忠新, 刘莉梅. 浅议植物生长所必须的营养元素与其生理功能[J]. 现代农业研究, 2007, 13(12):8. doi: 10.3969/j.issn.1674-0653.2007.12.007

    Liu Z X, Liu L M. Discussion on vital nutrient elements for plant growth and their physiological function[J]. Modern Agriculture Research, 2007, 13(12): 8. doi: 10.3969/j.issn.1674-0653.2007.12.007
    [26] Yolande P, Patrick D, Ludovic L, et al. Endogenous cytokinins as biochemical markers of rubber-tree (Hevea brasiliensis) clone rejuvenation[J]. Plant Cell, Tissue and Organ Culture, 1997, 47(3): 239−245. doi: 10.1007/BF02318978
    [27] 曾少玲, 方良全, 吉文, 等. 桉树组织培养中的玻璃化现象及克服措施[J]. 桉树科技, 2002, 25(1):30−31. doi: 10.3969/j.issn.1674-3172.2002.01.006

    Zeng S L, Fang L Q, Ji W, et al. Vitrification and its countermeasures during tissue culture of eucalypts[J]. Eucalypt Science & Technology, 2002, 25(1): 30−31. doi: 10.3969/j.issn.1674-3172.2002.01.006
    [28] 段娜, 贾玉奎, 徐军, 等. 植物内源激素研究进展[J]. 中国农学通报, 2015, 31(2):159−165. doi: 10.11924/j.issn.1000-6850.2014-2335

    Duan N, Jia Y K, Xu J, et al. Research progress on plant endogenous hormones[J]. Chinese Agricultural Science Bulletin, 2015, 31(2): 159−165. doi: 10.11924/j.issn.1000-6850.2014-2335
    [29] 姚瑞玲, 王胤, 吴幼媚. 马尾松组培生根关键因子分析[J]. 广西植物, 2016, 36(11):1288−1294.

    Yao R L, Wang Y, Wu Y M. Analysis for key factors affecting rooting in Pinus massoniana by tissue culture[J]. Guihaia, 2016, 36(11): 1288−1294.
    [30] Watson G. Effect of transplanting and paclobutrazol on root growth of ‘Green Column’ black maple and ‘Summit’ green ash[J]. Journal of Environmental Horticulture, 2004, 22(4): 209−212.
    [31] Kamran M, Wennan S, Ahmad I, et al. Application of paclobutrazol affect maize grain yield by regulating root morphological and physiological characteristics under a semi-arid region[J]. Scientific Reports, 2018, 8(1): 4818−4832. doi: 10.1038/s41598-018-23166-z
    [32] Fu X, Harberd N P. Auxin promotes Arabidopsis root growth by modulating gibberellin response[J]. Nature, 2003, 421: 740−743. doi: 10.1038/nature01387
    [33] 钮世辉, 李伟, 陈晓阳. 赤霉素对根尖径向生长的调节作用研究[J]. 北京林业大学学报, 2013, 35(3):71−76.

    Niu S H, Li W, Chen X Y. Negative regulation of gibberellin on root tip diameter[J]. Journal of Beijing Forestry University, 2013, 35(3): 71−76.
    [34] Mauriat M, Petterle A, Bellini C, et al. Gibberellins inhibit adventitious rooting in hybrid aspen and Arabidopsis by affecting auxin transport[J]. Plant Journal, 2014, 78(3): 372−384. doi: 10.1111/tpj.12478
    [35] Vaičiukynė M, Žiauka J, Žūkienė R, et al. Abscisic acid promotes root system development in birch tissue culture: a comparison to aspen culture and conventional rooting-related growth regulators[J]. Physiologia Plantarum, 2019, 165(1): 114−122. doi: 10.1111/ppl.12860
    [36] Takáč T, Obert B, Rolčík J, et al. Improvement of adventitious root formation in flax using hydrogen peroxide[J]. New Biotechnology, 2016, 33(5): 728−734. doi: 10.1016/j.nbt.2016.02.008
    [37] Cano A, Sánchez-García A B, Albacete A, et al. Enhanced conjugation of auxin by GH3 enzymes leads to poor adventitious rooting in carnation stem cuttings[J]. Frontiers in Plant Science, 2018, 9(4): 1−17.
  • 加载中
图(4) / 表(3)
计量
  • 文章访问数:  1009
  • HTML全文浏览量:  312
  • PDF下载量:  49
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-10-18
  • 修回日期:  2019-11-20
  • 网络出版日期:  2020-05-29
  • 刊出日期:  2020-07-01

目录

    /

    返回文章
    返回