高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

北京油松人工林遗传结构变异及与山西山系种群差异分析

贺快快 武文斌 张子杰 胡现铬 韩方旭 钮世辉 李悦

贺快快, 武文斌, 张子杰, 胡现铬, 韩方旭, 钮世辉, 李悦. 北京油松人工林遗传结构变异及与山西山系种群差异分析[J]. 北京林业大学学报, 2020, 42(6): 33-42. doi: 10.12171/j.1000-1522.20190399
引用本文: 贺快快, 武文斌, 张子杰, 胡现铬, 韩方旭, 钮世辉, 李悦. 北京油松人工林遗传结构变异及与山西山系种群差异分析[J]. 北京林业大学学报, 2020, 42(6): 33-42. doi: 10.12171/j.1000-1522.20190399
He Kuaikuai, Wu Wenbin, Zhang Zijie, Hu Xiange, Han Fangxu, Niu Shihui, Li Yue. Genetic structure variation of Pinus tabuliformis plantations in Beijing and the differences with Shanxi mountain populations[J]. Journal of Beijing Forestry University, 2020, 42(6): 33-42. doi: 10.12171/j.1000-1522.20190399
Citation: He Kuaikuai, Wu Wenbin, Zhang Zijie, Hu Xiange, Han Fangxu, Niu Shihui, Li Yue. Genetic structure variation of Pinus tabuliformis plantations in Beijing and the differences with Shanxi mountain populations[J]. Journal of Beijing Forestry University, 2020, 42(6): 33-42. doi: 10.12171/j.1000-1522.20190399

北京油松人工林遗传结构变异及与山西山系种群差异分析

doi: 10.12171/j.1000-1522.20190399
基金项目: 国家重点研究计划(2017YFD0600500),油松速生用材树种高效培育技术研究重大专项(201707-202012)
详细信息
    作者简介:

    贺快快。主要研究方向:森林群体遗传学与针叶树遗传改良。Email:kuaihe1993@163.com 地址:100083北京市海淀区清华东路35号北京林业大学生物科学与技术学院

    责任作者:

    李悦,博士,教授。主要研究方向:森林群体遗传学与针叶树遗传改良。Email:liyue@bjfu.edu.cn 地址:同上

  • 中图分类号: S791.254;S722.5

Genetic structure variation of Pinus tabuliformis plantations in Beijing and the differences with Shanxi mountain populations

  • 摘要: 目的本研究旨在揭示与阐明北京主要油松人工林种群的遗传多样性、遗传结构与亲缘关系,引种地对种群遗传结构及生长的影响,尝试追溯其可能的种源,为北京地区油松人工林培育与种质遗传管理提供参考。方法试验采用7对多态性高且扩增稳定的核基因组EST-SSR引物,以北京地区20世纪营造的油松人工林8个种群和皇家园林的古油松3个种群及山西省五大山系的油松种群为试验对象,分析种群遗传多样性、遗传结构和种群间的遗传距离等。结果结果表明:3类种群中,北京人工林种群间遗传结构差异最大(FST = 0.066),山西五山系群体间遗传结构差异次之(FST = 0.033),古油松种群遗传结构差异最小(FST = 0.023);北京油松人工林和古油松种群均偏离Hardy-Weinberg平衡,且呈现杂合子过剩状态,其中古油松种群杂合子过剩更多;在遗传距离0.020处北京人工林、古油松和山西五山系共16个油松种群聚为3类,各种群之间的遗传距离较近,遗传差异较小,相似程度较高;EST-SSR位点J10、J20、J42和J50在北京人工林、古油松和山西五山系中位点扩增频率差别大可用于未知种源的油松种群种源溯源。结论北京油松人工林种群较古油松种群有更丰富的遗传多样性和更大的遗传结构差异;外来种质在引入地胁迫生境下的适合度差异导致部分植株被淘汰,因此保留下来的种群遗传结构发生一定程度的改变;试验为后续北京地区油松人工林的评价、培育和种质种源管理打下了基础。

     

  • 图  1  7对引物分析北京油松种群和山西油松种群的Nei’s遗传距离UPGMA聚类图

    Figure  1.  UPGMA clustering map of Nei’s genetic distancefor Beijing and Shanxi P. tabuliformis populations analysed by 7 pairs of primers

    表  1  供试油松种群基本情况

    Table  1.   General information of sampling stands of Pinus tabuliformis

    项目
    Item
    种群
    Population
    经度
    Longitude
    纬度
    Latitude
    海拔
    Altitude/m
    树龄/a
    Stand age/year
    年均高
    Annual average height/cm
    样本数
    Sample plant number
    北京人
    工林
    Beijing plantation
    JF116°28′ E39°54′ N4506914.49336
    JLS115°59′ E39°54′ N7514324.41936
    MFS116°01′ E40°03′ N1804527.33330
    MY116°49′ E40°29′ N754515.77836
    XS116°05′ E40°03′ N1456412.96935
    SSL116°16′ E40°15′ N1703021.66730
    BDL115°56′ E40°22′ N6764517.11133
    SHY116°32′ E40°40′ N6005920.33936
    古油松 Ancient P. tabuliformisGS1116°10′ E39°59′ N135 > 10031
    GS2116°14′ E40°17′ N180 > 200102
    GS3116°04′ E39°52′ N300 > 200 18
    山西五
    山系
    Five mountain populations in Shanxi Province
    GCS112°01′ E38°36′ N1 6502124.76252
    GDS111°42′ E37°29′ N1 6552140.47666
    THS113°31′ E37°39′ N1 4122127.14332
    TYS112°04′ E37°37′ N1 4962133.33320
    ZTS112°01′ E35°44′ N1 5192132.38118
    注:JF. 鹫峰林场; JLS. 九龙山林场; MFS. 妙峰山林场; MY. 密云水库; XS. 西山林场; SSL. 十三陵林场; BDL. 八达岭林场; SHY. 石湖峪林场; GS1. 以香山公园为中心的皇家园林; GS2. 明十三陵; GS3. 妙峰山; GCS. 管涔山; GDS. 关帝山; THS. 太行山; TYS. 太岳山; ZTS. 中条山. GS1, GS2, GS3树龄过大,暂不考虑胸径与树高的关系。下同。Notes: JF, Jiufeng Forest Farm; JLS, Jiulongshan Forest Farm; MFS, Miaofengshan Forest Farm; MY, Miyun Reservoir; XS, Xishan Forest Farm; SSL, Shisanling Forest Farm; BDL, Badaling Forest Farm; SHY, Shihuyu Forest Farm; GS1, royal garden centered by Xiangshan Park; GS2, Ming Shisanling Tombs; GS3, Miaofengshan Mountain; GCS, Guancenshan Mountain; GDS, Guandishan Mountain; THS, Taihangshan Mountain; TYS, Taiyuanshan Mountain; ZTS, Zhongtiaoshan Mountain. Since GS1, GS2, and GS3 are too old, the relationship between DBH and tree height is not considered. The same below.
    下载: 导出CSV

    表  2  油松PCR检测SSR引物

    Table  2.   SSR primers for PCR detection of P. tabuliformis

    引物名称
    Primer name
    前引物序列
    Former primer sequence (5′→3′)
    后引物序列
    Back primer sequence (5′→3′)
    荧光修饰
    Fluorescent modification
    片段长度
    Fragment length/bp
    J9GTTTGCAGTGAAAGCATGAAAGGCACCAATTCCTTCTCAAATTCHEX244 ~ 253
    J10GTCGACACTCCAGGGTAGATTCATATCATCAGCTAATTGTGCGGTAMRA254 ~ 257
    J20CACCTCCGTAGTTTGATGTTCCCGATGTATCGTGTACACAGCCTFAM150 ~ 170
    J29AGTCCGAATGTCTTCTTTCTGCTATGGAACGAATCAGAGATGACGFAM182 ~ 200
    J42AACCTGTCATCCAGTTCCTGTTTTGTCAAATTCCAATTCAGCACTAMRA251 ~ 269
    J48GAAGAGGAAGACGAAATGGATGCTTTACATTTACCGCCTCTGCTROX262 ~ 268
    J50TCATCCATTTCAATAGCACGACGTAGCTGCTTGGCCTGATTATCHEX235 ~ 244
    注:引自参考文献[16]。Note: cited from reference [16].
    下载: 导出CSV

    表  3  16个油松种群各位点等位标记频率

    Table  3.   Allele frequency of each locus in the 16 populations of P. tabuliformis

    引物 Primer等位标记 Allele marker北京人工林
    Beijing plantation
    古油松
    Ancient P. tabuliformis
    山西五山系
    Five mountain populations
    in Shanxi Province
    JFJLSMFSMYXSSSLBDLSHYGS1GS2GS3GCSGDSTHSTYSZTS
    J9A0.2810.3750.2670.2350.2420.0140.1060.0430.1330.1890.2220.1440.2420.2190.1500.167
    B0.7190.6250.7330.7650.7580.9870.8940.9570.8670.8110.7780.8560.7580.7810.8500.833
    J10A0.9410.9850.9810.9560.9820.8650.8790.9170.9830.9950.9720.6920.6770.6090.6750.750
    B0.0590.0150.0190.0440.0180.1350.1210.0830.0170.0050.0280.3080.3230.3910.3250.250
    J20A0.0150.0190.1060.0560.0280.0160.0350.0260.0400.0740.0480.0790.094
    B0.6320.7860.9040.6970.8520.7780.6880.8890.9310.8710.9410.8900.7870.7740.8420.594
    C0.3530.2140.0770.1670.0930.1530.2970.1110.0350.1030.0590.0700.1310.1290.0790.313
    D0.0300.0420.0080.048
    J29A0.0150.0150.2060.0630.0240.0140.0100.015
    B1.0000.8811.0000.9701.0000.9410.6770.9060.8570.8921.0000.9330.8790.9840.9500.944
    C0.0950.0150.1180.0310.1190.0810.0480.0990.0500.056
    D0.0240.0440.0140.0100.0080.016
    J42A0.1670.5000.0170.3290.0140.2100.0140.0500.0150.0280.0100.016
    B0.0460.0170.0140.0160.0690.0320.0140.0500.0690.0560.0390.0480.1770.0250.028
    C0.0150.0170.0430.0470.2640.2100.3060.3830.1570.2500.2060.3180.4030.2250.222
    D0.7730.5000.9480.6140.9380.6530.5480.6670.5170.7600.6670.7450.6350.4030.7500.750
    J48A0.2060.2080.1000.1770.1320.1760.1970.1940.2420.1420.2220.2000.2690.3130.2900.028
    B0.7210.7360.8000.6910.7650.7570.7270.7220.7100.7840.7220.7500.7230.6880.6840.972
    C0.0740.0560.1000.1320.1030.0680.0760.0830.0480.0740.0560.0500.0080.026
    J50A0.2210.1570.2320.1770.2060.2160.2420.2500.1830.3140.3610.1250.1560.1880.1750.167
    B0.7790.8430.7680.8240.7500.7430.7580.7220.8170.6860.6390.8750.8280.7970.8250.833
    C0.0290.0080.016
    D0.0150.0410.0280.008
    合计Total2317161720182119191919162022191716
    注:各等位SSR标记排序按照扩增产物片段从小到大的顺序;山西省五山系油松地理种群的各位点多样性数据来源于武文斌试验原始数据[13]。Notes: each allelic SSR markers are sorted according to the order of amplification product fragments from small to large; the diversity data of the geographical distribution of P. tabuliformis in Shanxi Province are derived from the original data of professor Wu Wenbin[13].
    下载: 导出CSV

    表  4  16个油松种群遗传多样性

    Table  4.   Genetic diversity of 16 P. tabuliformis populations

    项目 Item 种群 PopulationNaNeIHoHeD
    北京人工林
    Beijing plantation
    JF 2.429 1.513 0.503 0.367 0.310 0.184
    JLS 2.286 1.536 0.503 0.417 0.323 0.291
    MFS 2.429 1.297 0.354 0.237 0.204 0.162
    MY 2.857 1.569 0.562 0.343 0.327 0.049
    XS 2.571 1.341 0.406 0.210 0.227 − 0.075
    SSL 3.000 1.479 0.528 0.210 0.294 − 0.286
    BDL 2.714 1.732 0.661 0.271 0.397 − 0.317
    SHY 2.857 1.437 0.482 0.414 0.278 0.489
    极值比
    Extremum ratio
    1.312 1.335 1.867 1.985 1.946
    古油松
    Ancient P. tabuliformis
    GS1 2.857 1.487 0.496 0.239 0.285 − 0.161
    GS2 2.857 1.423 0.488 0.310 0.277 0.119
    GS3 2.286 1.467 0.449 0.303 0.227 0.094
    极值比
    Extremum ratio
    1.249 1.044 1.104 1.297 1.028
    山西五山系
    Five mountain populations in Shanxi Province
    GCS 2.857 1.439 0.504 0.302 0.291 0.038
    GDS 3.143 1.608 0.608 0.315 0.370 − 0.149
    THS 2.714 1.731 0.617 0.400 0.382 0.047
    TYS 2.429 1.494 0.517 0.428 0.321 0.333
    ZTS 2.286 1.479 0.479 0.311 0.297 0.047
    极值比
    Extremum ratio
    1.374 1.202 1.288 1.417 1.312
    注:Na. 观测等位标记数;Ne. 有效等位标记数;I. Shannon’s信息指数;Ho. 观测杂合度;He. 期望杂合度;D. Hardy-Weinberg平衡偏离指数;极值比:在同一大类地理种群中某一参数值的最大值与最小值的比值。Notes: Na, number of observed alleles; Ne, effective alleles; I, Shannon’s information index; Ho, observed heterozygosity; He, expected heterozygosity; D, Hardy-Weinberg balance deviation index; extremum ratio: ratio of the maximum value to the minimum value of a parameter value in the same large geographic population.
    下载: 导出CSV

    表  5  16个油松种群中的F统计量

    Table  5.   F-statistics in 16 P. tabuliformis populations

    参数
    Parameter
    J9J10J20J29J42J48J50平均值 Mean北京人工林 Beijing plantation古油松
    Ancient P. tabuliformis
    山西五山系
    Five mountain populations
    in Shanxi Province
    FIS − 0.282 − 0.360 0.217 0.228 − 0.057 − 0.193 0.016 − 0.076 − 0.071 − 0.102 − 0.068
    FIT − 0.217 − 0.155 0.266 0.287 0.068 − 0.162 0.005 − 0.001 − 0.001 − 0.077 − 0.033
    FST 0.051 0.151 0.062 0.078 0.119 0.026 0.021 0.070 0.066 0.023 0.033
    Nm 4.657 1.402 3.763 2.973 1.860 9.328 11.593 3.314 3.552 10.806 7.311
    注:FIS. 群体内的固定指数;FIT. 总群体的固定指数;FST. 群体间遗传分化系数;Nm. 基因流。Notes: FIS, fixed index in population; FIT, fixed index of total population; FST, coefficient of genetic differentiation among populations ; Nm, gene flow.
    下载: 导出CSV

    表  6  北京11个油松种群和山西五山系油松种群的遗传一致度和Nei’s遗传距离

    Table  6.   Genetic identity and genetic distance of 11 P. tabuliformis populations in Beijing and P. tabuliformis populations in five mountain populations in Shanxi Province

    种群 PopulationJFJLSMFSMYXSSSLBDLSHYGS1GS2GS3GCSGDSTHSTYSZTS
    JF0.9710.9810.9880.9830.9670.9660.9620.9500.9770.9690.9600.9580.9310.9600.970
    JLS0.0300.9510.9860.9490.9320.9560.9350.9460.9520.9480.9320.9340.9110.9270.927
    MFS0.0190.0510.9750.9990.9690.9500.9730.9610.9910.9830.9710.9590.9220.9670.962
    MY0.0120.0140.0260.9760.9690.9720.9670.9660.9760.9700.9620.9580.9360.9590.958
    XS0.0170.0530.0010.0240.9740.9530.9760.9640.9920.9830.9730.9620.9260.9700.964
    SSL0.0340.0700.0320.0310.0270.9780.9960.9830.9840.9810.9840.9780.9650.9830.976
    BDL0.0340.0460.0510.0280.0480.0220.9790.9730.9720.9610.9620.9630.9420.9590.964
    SHY0.0390.0670.0280.0330.0240.0040.0210.9910.9890.9890.9820.9760.9590.9800.964
    GS10.0590.0550.0400.0350.0370.0170.0280.0090.9820.9850.9720.9740.9600.9700.948
    GS20.0230.0490.0090.0250.0080.0160.0290.0110.0180.9940.9730.9680.9390.9700.965
    GS30.0320.0530.0180.0300.0170.0190.0400.0120.0160.0060.9700.9690.9530.9710.951
    GCS0.0410.0700.0290.0390.0270.0160.0390.0190.0280.0270.0300.9940.9750.9980.976
    GDS0.0430.0690.0410.0430.0390.0220.0380.0250.0270.0330.0320.0060.9870.9950.976
    THS0.0720.0930.0810.0660.0770.0360.0600.0420.0410.0630.0490.0250.0130.9780.953
    TYS0.0410.0760.0330.0420.0300.0180.0420.0200.0310.0300.0300.0020.0050.0220.972
    ZTS0.0300.0760.0390.0430.0360.0250.0370.0360.0530.0360.0500.0250.0240.0480.029
    注:对角线以上为遗传相似度,对角线以下为遗传距离。Notes: above diagonal represents Nei’s genetic identity, below diagonal represents genetic distance.
    下载: 导出CSV
  • [1] White T L, Adams W T, Neale D B. Forest genetics[M]. Cambridge: CABI Publishing, 2007.
    [2] Wilkinson D M. Is local provenance important in habitat creation?[J]. Journal of Applied Ecology, 2001, 38(6): 1371−1373.
    [3] Hugron S, Bussières J, Rochefort L. Tree plantations within the context of ecological restoration of peatlands: a practical guide[M]. Québec: Université Laval, 2013.
    [4] 徐化成. 油松[M]. 北京: 中国林业出版社, 1993.

    Xu H C. Chinese pine[M]. Beijing: China Forestry Publishing House, 1993.
    [5] 毛爱华, 李建祥, 张超英, 等. 19年生侧柏种源变异及选择研究[J]. 北京林业大学学报, 2010, 32(1):63−68.

    Mao A H, Li J X, Zhang C Y, et al. Geographic variation and provenance selection of Platycladus orientalis in a 19-year-old testing plantation[J]. Journal of Beijing Forestry University, 2010, 32(1): 63−68.
    [6] 徐化成, 孙肇凤, 郭广荣, 等. 油松天然林的地理分布和种源区的划分[J]. 林业科学, 1981, 17(3):258−270.

    Xu H C, Sun Z F, Guo G R, et al. Geographic distribution of Pinus tabuliformis Carr. and classification of provenance regions[J]. Scientia Silvae Sinicae, 1981, 17(3): 258−270.
    [7] 徐化成, 郭广荣, 冯林, 等. 油松天然林的生长与地理-气候因素的关系[J]. 北京林学院学报, 1981, 3(4):9−13.

    Xu H C, Guo G R, Feng L, et al. The relativity between natural Pinus tabuliformis forest growth and geographical climatic factors[J]. Journal of Beijing Forestry University, 1981, 3(4): 9−13.
    [8] 云希和. 油松在北京平地栽植问题的初步探讨[J]. 园艺学报, 1965, 4(4):230−232.

    Yun X H. Preliminary discussion on the cultivation of Pinus tabuliformis in Beijing[J]. Journal of Horticulture, 1965, 4(4): 230−232.
    [9] 史宇, 余新晓, 张佳音, 等. 北京山区油松人工林单木材积生长量BP神经网络模型[J]. 东北林业大学学报, 2010, 38(2):20−22. doi: 10.3969/j.issn.1000-5382.2010.02.008

    Shi Y, Yu X X, Zhang J Y, et al. BP neural network model for volume growth of single trees in Pinus tabulaeformis plantations in Beijing mountain area[J]. Journal of Northeast Forestry University, 2010, 38(2): 20−22. doi: 10.3969/j.issn.1000-5382.2010.02.008
    [10] 《北京市林业志》编委会. 北京林业志[M]. 北京: 中国林业出版社, 1993.

    Editorial Board of Beijing Forestry Journal. Beijing forestry annals[M]. Beijing: China Forestry Publishing House, 1993.
    [11] 张新波, 李悦, 袁虎威, 等. 山西油松天然林分21年子代生长性状遗传变异研究[J]. 北京林业大学学报, 2014, 36(3):104−109.

    Zhang X B, Li Y, Yuan H W, et al. Genetic variations of growth traits in a 21-year-old stand progeny of Shanxi natural Pinus tabuliformis forests[J]. Journal of Beijing Forestry University, 2014, 36(3): 104−109.
    [12] 富裕华, 饶九欢, 周学仁, 等. 山西油松种群特点和亲子代性状的变异[J]. 山西农业科学, 1995, 23(3):40−45.

    Fu Y H, Rao J H, Zhou X R, et al. The characteristics of species colony and character variation of parents and filial generation of Pinus tabulaemis in Shanxi provindce[J]. Shanxi Agricultural Sciences, 1995, 23(3): 40−45.
    [13] 武文斌, 贺快快, 狄皓, 等. 基于SSR标记的山西省油松山脉地理种群遗传结构与地理系统[J]. 北京林业大学学报, 2018, 40(10):51−59.

    Wu W B, He K K, Di H, et al. Genetic structure and geographic system of geographical population of Pinus tabuliformis mountain range based on SSR in Shanxi Province of northern China[J]. Journal of Beijing Forestry University, 2018, 40(10): 51−59.
    [14] 张新波, 刘海荣, 毕理智, 等. 21年生油松种源性状变异和选择的研究[J]. 山西林业科技, 2013, 42(1):20−23, 39. doi: 10.3969/j.issn.1007-726X.2013.01.007

    Zhang X B, Liu H R, Bi L Z, et al. Variation and choice of provenance trait of 21 year Pinus tabuliformis[J]. Shanxi Forestry Science and Technology, 2013, 42(1): 20−23, 39. doi: 10.3969/j.issn.1007-726X.2013.01.007
    [15] 王春玲, 王久丽. 北京市古树名木管理系统介绍[J]. 中国花卉园艺, 2008(4):16−17.

    Wang C L, Wang J L. Introduction of Beijing ancient and famous tree management system[J]. Chinese Flower Gardening, 2008(4): 16−17.
    [16] 程祥, 张梅, 毛建丰, 等. 有限种群油松种子园的遗传多样性与交配系统[J]. 北京林业大学学报, 2016, 38(9):8−15.

    Cheng X, Zhang M, Mao J F, et al. Gene diversity and mating system of Pinus tabuliformis in finite population seed orchard[J]. Journal of Beijing Forestry University, 2016, 38(9): 8−15.
    [17] Wright S. Evolution and the genetics of population: variability within and among natural populations[M]. Chicago: University of Chicago Press, 1978.
    [18] Vendramin G G, Fady B, Gonzalez-Martinez S C, et al. Genetically depauperate but widespread: the case of an emblematic Mediterranean pine[J]. Evolution, 2008, 62(3): 680−688. doi: 10.1111/j.1558-5646.2007.00294.x
    [19] 滑留帅, 陈宏, 杨晓冰, 等. 固原本地黄牛及其利杂群体PIT-1基因多态性与育肥性状的关系[J]. 西北农林科技大学学报(自然科学版), 2007, 35(12):1−5.

    Hua L S, Chen H, Yang X B, et al. Association of polymorphism of Pit-1 gene with fattening traits in Guyuan local cattle and crossbreed of Limousin× local cattle[J]. Journal of Northwest A&F University (Natural Science Edition), 2007, 35(12): 1−5.
    [20] Valente C, Alvarez L, Marques P I, et al. Genes from the TAS1R and TAS2R families of taste receptors: looking for signatures of their adaptive role in human evolution[J]. Genome Biology & Evolution, 2018, 10(4): 1139−1152.
    [21] Bulmer M G. The maintenance of the genetic variability of polygenic characters by heterozygous advantage[J]. Genetical Research, 1973, 22(1): 9−12. doi: 10.1017/S0016672300012799
    [22] Amandine D, Anne V, Magali F, et al. Progressive ataxia of Charolais cattle highlights a role of KIF1C in sustainable myelination[J/OL]. PLoS Genetics, 2018, 14(8): e1007550 [2019−09−30]. https://doi.org/10.1371/journal.pgen.1007550.
    [23] 许玉兰, 蔡年辉, 白青松, 等. 基于微卫星分子标记的云南松及其近缘种遗传关系分析[J]. 西南林业大学学报, 2017, 37(1):1−9. doi: 10.11929/j.issn.2095-1914.2017.01.001

    Xu Y L, Cai N H, Bai Q S, et al. Genetic relationship of Pinus yunnanensis with related pine species based on microsatellite molecular markers[J]. Journal of Southwest Forestry University, 2017, 37(1): 1−9. doi: 10.11929/j.issn.2095-1914.2017.01.001
    [24] Li J J, Xiong C, He X, et al. Using SSR-HRM to identify closely related species in herbal medicine products: A case study on licorice[J/OL]. Frontiers in Pharmacology, 2018, 9: 407 [2019−09−10]. http://www.frontiersin.org/articles/10.3389/fphar.2018.00407/full.
    [25] 徐化成, 唐季林. 油松种子发芽的生态学及其与种源的关系[J]. 林业科学, 1989, 25(6):492−501.

    Xu H C, Tang J L. Seed germination ecology of Pinus tabulaeformis in relation to their provenances[J]. Scientia Silvae Sinicae, 1989, 25(6): 492−501.
    [26] 李明, 王树香, 高宝嘉. 油松天然次生林居群遗传多样性及与产地地理气候因子的关联分析[J]. 生态学报, 2013, 33(12):3602−3610. doi: 10.5846/stxb201211271680

    Li M, Wang S X, Gao B J, et al. Analysis of genetic diversity of Chinese pine (Pinus tabuliformis) natural secondary forest population and correlation with their habitat ecological factors[J]. Acta Ecologica Sinica, 2013, 33(12): 3602−3610. doi: 10.5846/stxb201211271680
    [27] 隋宏大. 树高测量综合技术比较研究[D]. 北京: 北京林业大学, 2009.

    Sui H D. Comparative study on comprehensive technologies of tree height measurement[D]. Beijing: Beijing Forestry University, 2009.
    [28] 袁虎威, 梁胜发, 符学军, 等. 山西油松第二代种子园亲本选择与配置设计[J]. 北京林业大学学报, 2016, 38(3):47−54.

    Yuan H W, Liang S F, Fu X J, et al. Parental selection and deployment design in the second-generation seed orchard of Chinese pine in Shanxi Province[J]. Journal of Beijing Forestry University, 2016, 38(3): 47−54.
    [29] Latta R G, Linhart Y B, Fleck D, et al. Direct and indirect estimates of seed versus pollen movement within a population of ponderosa pine[J]. Evolution, 1998, 52(1): 61−67. doi: 10.1111/j.1558-5646.1998.tb05138.x
    [30] Chen K M, Abbott R J, Milne R I, et al. Phylogeography of Pinus tabulaeformis Carr. (Pinaceae), a dominant species of coniferous forest in northern China[J]. Molecular Ecology, 2008, 17(19): 4276−4288. doi: 10.1111/j.1365-294X.2008.03911.x
    [31] Xia H H, Wang B, Pan J, et al. Combining mitochondrial and nuclear genome analyses to disst the effects of colonization, environment, and geography on population structure in Pinus tabuliformis[J]. Evolutionary Applications, 2018, 10(11): 1931−1945.
  • 加载中
图(1) / 表(6)
计量
  • 文章访问数:  1748
  • HTML全文浏览量:  1373
  • PDF下载量:  48
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-10-18
  • 修回日期:  2020-03-01
  • 网络出版日期:  2020-06-03
  • 刊出日期:  2020-07-01

目录

    /

    返回文章
    返回