Morphology, distribution, dynamic characteristics of poplar roots and its water uptake habits
-
摘要: 根系是连接植物与土壤的纽带,也是植物吸收水养资源的器官,在树木生理生活中发挥着至关重要的作用。杨树在我国北方被广泛栽植,其木材产量占我国总木材产量的30%。因此,了解杨树根系的各种特点有助于深入认识其生存和生长机制,以及在各种环境下的生态适应策略,从而为杨树林地高效经营管理技术的优化、林分质量和产量的双提升提供理论基础。本文基于已有研究,对杨树根系形态、分布、动态特征以及吸水特性等内容及部分研究方法进行了综述。首先,本文总结了已有研究中采用的各种根系分级方法,指出其各自的不足与可取之处,并提出更适合杨树根系分级的方法。其次,对现有研究中发现的各种杨树根系构型、形态、分布以及生长动态等特征进行了归纳总结,探讨了各种特征产生的原因以及对杨树根系吸收效率产生的影响。然后,总结了杨树根系在各种条件下的吸水特性与机制,并在最后提出了现有杨树根系研究的不足以及今后的发展方向。Abstract: Root is the link between plants and soil, and also the organ for plants to absorb water and nutrients. It plays a vital role in the physiological activities of plants. Poplar is widely planted in plain of North China, and the wood output accounts for almost 30% of the total wood output in China. Therefore, understanding the characteristics of poplar root is conducive to the in-depth understanding of its survival and growth mechanism, ecological adaptation strategies in various environments, so as to provide a theoretical basis for the optimization of efficient management technology of poplar plantation and the improvement of forest quality and forest yield. In this paper, based on the existing studies, the contents of poplar root morphology, distribution, dynamic characteristics, water absorption characteristics and some research methods are reviewed. Firstly, various root classification methods used in previous studies were discussed, then their shortcomings and merits and more suitable methods for poplar root classification were pointed out. Secondly, the various architecture, morphology, distribution and growth dynamics of poplar root found in existing studies were summarized, and the causes of various characteristics and their effects on the absorption efficiency of poplar root were discussed. Finally, the water absorption characteristics and mechanism of poplar root under various conditions were summarized, the deficiencies of existing research on poplar root and the future research direction were also put forward.
-
Keywords:
- fine root /
- coarse root /
- root distribution /
- root dynamics /
- poplar
-
-
图 1 典型杨树根型
a.法国莱茵河附近较粗质地土壤上杨树的主根型根系系统(引自文献[46]);b.中国山东高唐粉壤土立地上三倍体毛白杨的水平根型根系系统;c.中国北京顺义砂土立地上欧美108杨的水平根型根系系统。a, the root-root system of poplar on the coarse soil near the Rhine River in France (cited from Ref. [46]); b, the horizontal root system of (P. tomentsoa × P. bolleana) × P. tomentosa on the silt soil in Gaotang County, Shandong Province, eastern China; c, the horizontal root system of P. × euramericana ‘Guariento’ on the sandy soil in Shunyi District, Beijing, northern China.
Figure 1. Typical types of poplar root system
图 2 三倍体毛白杨侧根的构型和生长路径
a.水平侧根;b.斜生侧根;c.垂直侧根(引自文献[53])。图中灰色虚线代表地面,棕色圆柱代表根桩,黑色曲线代表根系,数字代表根系上黑点标记位置处的深度。 a, horizontal lateral roots; b, oblique lateral roots; c, vertical lateral roots (cited from Ref. [53]). The grey dotted line represents the soil surface and the brown cylinder represents the stump. The black curve represents the roots, and the numbers indicate the depths of roots where marked by black dots.
Figure 2. Architecture and growth path of the lateral roots of (P. tomentsoa × P. bolleana) × P. tomentosa
图 4 不同地区不同杨树品种水平侧根分布的俯视图
a. 栽植于新西兰北帕默斯顿附近山地上的杂交杨,株行距为8 m × 8 m(引自文献[48]);b. 栽植于印度希萨尔平地上的美洲黑杨,株行距2 m × 2 m(引自Puri[9]);c. 栽植于中国山东高唐平地上的三倍体毛白杨,株行距2 m × 4 m(引自文献[53]);d. 栽植于中国北京顺义平地上的欧美108杨,株行距4 m × 6 m + 12 m(宽窄行栽植模式)(笔者团队数据)。 a, P. trichocarpa × P. deltoides, planted on the mountainous area near Palmerston, New Zealand, with a planting spacing of 8 m × 8 m (cited from Ref. [51]); b, P. deltoides, planted on flat site in Hisar, India, with a planting spacing of 2 m × 2 m (cited from Ref. [34]); c, (P. tomentsoa × P. bolleana) × P. tomentosa, planted on flat site in Gaotang County, Shandong Province, China, with a planting spacing of 2 m × 4 m (cited from Ref. [56]); d, P. × euramericana ‘Guariento’, planted on flat site in the Shunyi District, Beijing, China, with a planting spacing of 4 m × 6 m + 12 m (wide and narrow row planting scheme) (our unpublished data).
Figure 4. Plan view of the horizontal lateral root distribution of different poplar species in different regions
-
[1] Dickmann D I, Kuzovkina J. Poplars and willows of the world, with emphasis on silviculturally important species[Z]. Poplars and Willows—Trees for Society and the Environment, 2014: 8–91.
[2] 方升佐. 中国杨树人工林培育技术研究进展[J]. 应用生态学报, 2008, 19(10):2308−2316. Fang S Z. Silviculture of poplar plantation in China[J]. Chinese Journal of Applied Ecology, 2008, 19(10): 2308−2316.
[3] Stanturf J A, Van Oosten C. Operational poplar and willow culture[Z]. Poplars and Willows—Trees for Society and the Environment, 2014: 200–257.
[4] 焦玉海, 丁贤生, 刘小虎. 确保把最优质最有潜力林分纳入战略储备[N]. 中国绿色时报, 2014–07–01(A01). Jiao Y H, Ding X S, Liu X H. Ensure that the best and most promising stands are included in the strategic reserve[N]. China Green Times, 2014–07–01(A01).
[5] Hogg E H, Barr A G, Black T A. A simple soil moisture index for representing multi-year drought impacts on aspen productivity in the western Canadian interior[J]. Agricultural and Forest Meteorology, 2013, 178: 173−182.
[6] Xi B Y, Bloomberg M, Watt M S, et al. Modeling growth response to soil water availability simulated by HYDRUS for a mature triploid Populus tomentosa plantation located on the North China Plain[J]. Agricultural Water Management, 2016, 176: 243−254. doi: 10.1016/j.agwat.2016.06.017
[7] Xi B Y, Di N, Wang Y, et al. Modeling stand water use response to soil water availability and groundwater level for a mature Populus tomentosa plantation located on the North China Plain[J]. Forest Ecology and Management, 2017, 391: 63−74. doi: 10.1016/j.foreco.2017.02.016
[8] Jackson R B, Mooney H A, Schulze E D. A global budget for fine root biomass, surface area, and nutrient contents[J]. Ecology, 1997, 94(14): 7362−7366.
[9] Puri S, Singh V, Bhushan B, et al. Biomass production and distribution of roots in three stands of Populus deltoides[J]. Forest Ecology and Management, 1994, 65: 135−147. doi: 10.1016/0378-1127(94)90165-1
[10] Atkinson D, Dawson L A. Root growth: methods of measurement[M]//Smith K A Soil and environmental analysis. Boca Raton: CRC Press, 2000: 440–502.
[11] 成向荣, 黄明斌, 邵明安. 沙地小叶杨和柠条细根分布与土壤水分消耗的关系[J]. 中国水土保持科学, 2008, 6(5):77−83. doi: 10.3969/j.issn.1672-3007.2008.05.015 Cheng X R, Huang M B, Shao M A. Relationship between fine roots distribution and soil water consumption of Populus simonii and Caragana Korshinkii plantation on sandy land[J]. Science of Soil and Water Conservation, 2008, 6(5): 77−83. doi: 10.3969/j.issn.1672-3007.2008.05.015
[12] Zhu Y H, Ren L L, Skaggs T H, et al. Simulation of Populus euphratica root uptake of groundwater in an arid woodland of the Ejina Basin, China[J]. Hydrological Processes, 2009, 23(17): 2460−2469. doi: 10.1002/hyp.7353
[13] Fitter A. Characteristics and functions of root systems[M]//Eshel A, Beeckman T. Plant roots. Boca Raton: CRC Press, 2002: 49–78.
[14] Pregitzer K S, Deforest J L, Burton A J, et al. Fine root architecture of nine north American trees[J]. Ecological Monographs, 2002, 72(2): 293−309. doi: 10.1890/0012-9615(2002)072[0293:FRAONN]2.0.CO;2
[15] 卫星, 刘颖, 陈海波. 黄波罗不同根序的解剖结构及其功能异质性[J]. 植物生态学报, 2008, 32(6):1238−1247. doi: 10.3773/j.issn.1005-264x.2008.06.004 Wei X, Liu Y, Chen H B. Anatomical and functional heterogeneity among different root orders of Phellodendron amurense[J]. Journal of Plant Ecology, 2008, 32(6): 1238−1247. doi: 10.3773/j.issn.1005-264x.2008.06.004
[16] 杨丽君. 杨树幼龄林细根构型对施肥的响应[D]. 雅安: 四川农业大学, 2013. Yang L J. Effect of fertilization on fine root architecture of the plantation of Populus × euramericana cv. ‘74/76’[D]. Yaan: Sichuan Agricultural University, 2013.
[17] Pregitzer K S, Hendrick R L, Fogel R. The demography of fine roots in response to patches of water and nitrogen[J]. New Phytologist, 1993, 125(3): 575−580. doi: 10.1111/j.1469-8137.1993.tb03905.x
[18] Wells C E, Eissenstat D M. Marked differences in survivorship among apple roots of different diameters[J]. Ecology, 2001, 82(3): 882−892. doi: 10.1890/0012-9658(2001)082[0882:MDISAA]2.0.CO;2
[19] Tierney G L, Fahey T J. Fine root turnover in a northern hardwood forest: a direct comparison of the radiocarbon and minirhizotron methods[J]. Canadian Journal of Forest Research, 2002, 32(9): 1692−1697. doi: 10.1139/x02-123
[20] 王向荣, 王政权, 韩有志, 等. 水曲柳和落叶松不同根序之间细根直径的变异研究[J]. 植物生态学报, 2005, 29(6):871−877. doi: 10.3321/j.issn:1005-264X.2005.06.001 Wang X R, Wang Z Q, Han Y Z, et al. Variations of fine root diameter with root order in Manchurian ash and Dahurian larch plantations[J]. Chinese Journal of Plant Ecology, 2005, 29(6): 871−877. doi: 10.3321/j.issn:1005-264X.2005.06.001
[21] Block R M A, Van Rees K C J, Knight J D. A review of fine root dynamics in Populus plantations[J]. Agroforestry Systems, 2006, 67(1): 73−84. doi: 10.1007/s10457-005-2002-7
[22] Mulia R, Dupraz C. Unusual fine root distributions of two deciduous tree species in southern France: what consequences for modelling of tree root dynamics?[J]. Plant and Soil, 2006, 281(1–2): 71−85.
[23] Domenicano S, Coll L, Messier C, et al. Nitrogen forms affect root structure and water uptake in the hybrid poplar[J]. New Forest, 2011, 42(3): 347−362. doi: 10.1007/s11056-011-9256-x
[24] Snyder K A, Williams D G. Root allocation and water uptake patterns in riparian tree saplings: response to irrigation and defoliation[J]. Forest Ecology and Management, 2007, 246(2–3): 222−231.
[25] Al Afas N, Marron N, Zavalloni C, et al. Growth and production of a short-rotation coppice culture of poplar (IV): fine root characteristics of five poplar clones[J]. Biomass and Bioenergy, 2008, 32(6): 494−502. doi: 10.1016/j.biombioe.2007.11.007
[26] 王文全, 贾渝彬, 胥丽敏, 等. 毛白杨根系分布的研究[J]. 河北农业大学学报, 1997, 20(1):24−29. Wang W Q, Jia Y B, Xu L M, et al. Study on the root distribution of Populus tomentosa[J]. Journal of Agricultural University of Hebei, 1997, 20(1): 24−29.
[27] 张宇清, 齐实. 梯田埂坎杨树的根系分布研究[J]. 西北林学院学报, 2002, 17(2):6−9. doi: 10.3969/j.issn.1001-7461.2002.02.003 Zhang Y Q, Qi S. Root distribution of poplar on terrace ridge[J]. Journal of Northwest Forestry University, 2002, 17(2): 6−9. doi: 10.3969/j.issn.1001-7461.2002.02.003
[28] 马秀玲, 陆光明, 徐祝龄. 农林复合系统中林带和作物的根系分布特征[J]. 中国农业大学学报, 1997, 2(1):109−116. Ma X L, Lu G M, Xu Z L. Distribution characteristic of the root system of forest belt and crop within the composite system of agriculture and forestry[J]. Journal of China Agriculture University, 1997, 2(1): 109−116.
[29] Coleman M. Spatial and temporal patterns of root distribution in developing stands of four woody crop species grown with drip irrigation and fertilization[J]. Plant and Soil, 2007, 299(1−2): 195−213.
[30] Imada S, Yamanaka N, Tamai S. Water table depth affects Populus alba fine root growth and whole plant biomass[J]. Functional Ecology, 2008, 22(6): 1018−1026. doi: 10.1111/j.1365-2435.2008.01454.x
[31] Pregitzer K S, Dickmann D I, Hendrick R, et al. Whole-tree carbon and nitrogen partitioning in young hybrid poplars[J]. Tree Physiology, 1990, 7(1−4): 79−93.
[32] Heilman P E, Ekuan G, Fogle D B. First-order root development from cuttings of Populus trichocarpa × P. deltoides hybrids[J]. Tree Physiology, 1994, 14(7−9): 911−920.
[33] Friend A L, Scarascia-Mugnozza G, Isebrands J G, et al. Quantification of two-year-old hybrid poplar root systems: morphology, biomass, and 14C distribution[J]. Tree Physiology, 1991, 8(2): 109−119. doi: 10.1093/treephys/8.2.109
[34] Tufekcioglu A, Raich J W, Isenhart T M, et al. Fine root dynamics, coarse root biomass, root distribution and soil respiration in a multispecies riparian buffer in Central Iowa, USA[J]. Agroforestry System, 1999, 44(2−3): 163−174.
[35] Hibbs D, Withrow-Robinson B, Brown D, et al. Hybrid poplar in the Willamette Valley[J]. Western Journal of Applied Forestry, 2003, 18(4): 281−285. doi: 10.1093/wjaf/18.4.281
[36] Zalesny J A, Zalesny R S, Coyle D R, et al. Clonal variation in morphology of Populus root systems following irrigation with landfill leachate or water during 2 years of establishment[J]. BioEnergy Research, 2009, 2(3): 134−143. doi: 10.1007/s12155-009-9037-y
[37] McIvor I R, Douglas G B, Benavides R. Coarse root growth of Veronese poplar trees varies with position on an erodible slope in New Zealand[J]. Agroforestry Systems, 2009, 76(1): 251−264. doi: 10.1007/s10457-009-9209-y
[38] Guo D L, Xia M X, Wei X, et al. Anatomical traits associated with absorption and mycorrhizal colonization are linked to root branch order in twenty-three Chinese temperate tree species[J]. New Phytologist, 2008, 180(3): 673−683. doi: 10.1111/j.1469-8137.2008.02573.x
[39] 许坛, 王华田, 朱婉芮, 等. 连作杨树细根根序形态及解剖结构[J]. 林业科学, 2015, 51(1):119−126. Xu T, Wang H T, Zhu W R, et al. Morphological and anatomical traits of poplar fine roots in successive rotation plantations[J]. Scientia Silvae Sinicae, 2015, 51(1): 119−126.
[40] Fitter A H. Morphometric analysis of root systems: application of the technique and influence of soil fertility on root system development in two herbaceous species[J]. Plant, Cell and Environment, 1982, 5(4): 313−322.
[41] Cannon W A. A tentative classification of root systems[J]. Ecology, 1949, 30(4): 542−548. doi: 10.2307/1932458
[42] Weaver J E. Summary and interpretation of underground development in natural grassland communities[J]. Ecological Monographs, 1958, 28(1): 55−78. doi: 10.2307/1942275
[43] Köstler J N, Bruckner E, Bibelriether H. The root systems of forest trees[M]. Hamburg: Parey, 1968: 284.
[44] 向师庆, 赵相华. 北京主要造林树种的根系研究[J]. 北京林业学院学报, 1981, 2(2):19−32. Xiang S Q, Zhao X H. Study on root system of main afforestation tree species in Beijing[J]. Journal of Beijing Forestry University, 1981, 2(2): 19−32.
[45] Zanetti C, Vennetier M, Mériaux P, et al. Plasticity of tree root system structure in contrasting soil materials and environmental conditions[J]. Plant and Soil, 2015, 387(1−2): 21−35.
[46] Day M W. The root system of Aspen[J]. American Midland Naturalist, 1944, 32(2): 502−509. doi: 10.2307/2421314
[47] Mclvor I R, Douglas G B, Hurst S E, et al. Structural root growth of young Veronese poplars on erodible slopes in the southern North Island, New Zealand[J]. Agroforestry Systems, 2008, 72(1): 75−86.
[48] 席本野. 毛白杨人工林灌溉管理理论及高效地下滴灌关键技术研究[D]. 北京: 北京林业大学, 2013. Xi B Y. Research on theories of irrigation management and key techniques of high efficient subsurface drip irrigation in Populus tomentosa[D]. Beijing: Beijing Forestry University, 2013.
[49] Gifford G F. Aspen root studies on three sites in northern Utah[J]. American Midland Naturalist, 1966, 75(1): 132−141. doi: 10.2307/2423485
[50] 赵建诚, 曹帮华, 吴丽云, 等. 杨树无性系根系特征及地上与地下部分相关性研究[J]. 山东大学学报(理学版), 2013, 48(11):7−13. Zhao J C, Cao B H, Wu L Y, et al. Studies on roots characteristics and correlations between the aerial and underground parts of Populus clones[J]. Journal of Shandong University (Natural Science), 2013, 48(11): 7−13.
[51] 王文全, 王世绩, 刘雅荣, 等. 粉煤灰复田立地上杨, 柳, 榆, 刺槐根系的分布和生长特点[J]. 林业科学, 1994, 30(1):25−33. doi: 10.3321/j.issn:1001-7488.1994.01.006 Wang W Q, Wang S J, Liu Y R, et al. Distribution and growth characteristics of the root systems of poplar, willow, elm and locust on site of renewed land by fine ash of coal[J]. Scientia Silvae Sinicae, 1994, 30(1): 25−33. doi: 10.3321/j.issn:1001-7488.1994.01.006
[52] Di N, Liu Y, Mead D J, et al. Root system characteristics of plantation-grown Populus tomentosa adapted to seasonal fluctuation in the groundwater table[J]. Trees, 2017, 32(1): 137−149.
[53] Pregitzer K S, Friend A L. The structure and function of Populus root system[M]// Stettler R F. Biology of Populus and its implications for management and conservation. Ottawa: NRC Research Press, 1996: 331–354.
[54] 韦艳葵, 贾黎明, 王玲, 等. 地下滴灌条件下杨树速生丰产林林木根系生长特性[J]. 北京林业大学学报, 2007, 29(2):98−105. doi: 10.3321/j.issn:1000-1522.2007.01.017 Wei Y K, Jia L M, Wang L, et al. Characteristics of root growth in fast-growing and high-yield poplar plantations under subsurface drip irrigation[J]. Journal of Beijing Forestry University, 2007, 29(2): 98−105. doi: 10.3321/j.issn:1000-1522.2007.01.017
[55] 胡海波, 万福绪, 张金池. 徐淮平原农田防护林带杨树根系特征研究[J]. 南京林业大学学报(自然科学版), 1996, 20(1):12−16. Hu H B, Wan F X, Zhang J C. Study on root distribution characteristic of shelter belt for farmland in Xuhuai Plain Area[J]. Journal of Nanjing Forestry University (Natural Science), 1996, 20(1): 12−16.
[56] 于立忠, 丁国泉, 史建伟, 等. 施肥对日本落叶松人工林细根直径, 根长和比根长的影响[J]. 应用生态学报, 2007, 18(5):957−962. doi: 10.3321/j.issn:1001-9332.2007.05.003 Yu L Z, Ding G Q, Shi J W, et al. Effects of fertilization on fine root diameter root length and specific root length in Larix kaempferi plantation[J]. Chinese Journal of Applied Ecology, 2007, 18(5): 957−962. doi: 10.3321/j.issn:1001-9332.2007.05.003
[57] Eissenstat D M. Costs and benefits of constructing roots of small diameter[J]. Journal of Plant Nutrition, 1992, 15(6−7): 763−782.
[58] Roumet C, Urcelay C, Sandra D. Suites of root traits differ between annual and perennial species growing in the field[J]. New Phytologist, 2006, 170(2): 357−368. doi: 10.1111/j.1469-8137.2006.01667.x
[59] Ma Z Q, Guo D L, Xu X L, et al. Evolutionary history resolves global organization of root functional roots[J]. Nature, 2018, 555: 94−97. doi: 10.1038/nature25783
[60] Kramer-Walter K R, Laughlin D C. Root nutrient concentration and biomass allocation are more plastic than morphological traits in response to nutrient limitation[J]. Plant and Soil, 2017, 416(1–2): 539−550.
[61] Dickmann D I, Nguyen P V, Pregitzer K S. Effects of irrigation and coppicing on above-ground growth, physiology, and fine-root dynamics of two field-grown hybrid poplar clones[J]. Forest Ecology and Management, 1996, 80(1−3): 163−174.
[62] 闫小莉, 戴腾飞, 邢长山, 等. 水肥耦合对欧美108杨幼林表土层细根形态及分布的影响[J]. 生态学报, 2015, 35(11):207−216. Yan X L, Dai T F, Xing C S, et al. Coupling effect of water and nitrogen on the morphology and distribution of fine root in surface soil layer of young Populus × euramericana plantation[J]. Acta Ecologica Sinica, 2015, 35(11): 207−216.
[63] 闫小莉, 戴腾飞, 贾黎明, 等. 欧美108杨细根形态及垂直分布对水氮耦合措施的响应[J]. 植物生态学报, 2015, 39(8):825−837. doi: 10.17521/cjpe.2015.0079 Yan X L, Dai T F, Jia L M, et al. Responses of the fine root morphology and vertical distribution of Populus × euramericana ‘Guariento’ to the coupled effect of water and nitrogen[J]. Chinese Journal of Plant Ecology, 2015, 39(8): 825−837. doi: 10.17521/cjpe.2015.0079
[64] 燕辉, 苏印泉, 朱昱燕, 等. 秦岭北坡杨树人工林细根分布与土壤特性的关系[J]. 南京林业大学学报(自然科学版), 2009, 33(2):85−89. doi: 10.3969/j.issn.1000-2006.2009.02.021 Yan H, Su Y Q, Zhu Y Y, et al. Distribution characters of fine root of poplar plantation and its relation to properties of soil in the northern slope of Qinling Mountain[J]. Journal of Nanjing Forestry University (Natural Science), 2009, 33(2): 85−89. doi: 10.3969/j.issn.1000-2006.2009.02.021
[65] 燕辉, 刘广全, 李红生, 等. 青杨人工林根系生物量, 表面积和根长密度变化[J]. 应用生态学报, 2010, 21(11):2763−2768. Yan H, Liu G Q, Li H S, et al. Changes of root biomass, root surface area, and root length density in a Populus cathayana plantation[J]. Chinese Journal of Applied Ecology, 2010, 21(11): 2763−2768.
[66] Yan X L, Jia L M, Dai P F. Fine root morphology and growth in response to nitrogen addition through drip fertigation in a Populus × euramericana “Guariento” plantation over multiple years[J]. Annals of Forest Science, 2019, 76(1): 13. doi: 10.1007/s13595-019-0798-y
[67] 邹松言, 李豆豆, 汪金松, 等. 毛白杨幼林根系对梯度土壤水分的响应[J]. 林业科学, 2019, 55(10):125−138. Zou S Y, Li D D, Wang J S, et al. Response of fine root to soil moisture of different gradients in young Populus tomentosa plantation[J]. Scientia Silvae Sinicae, 2019, 55(10): 125−138.
[68] 陈丽英, 杜克兵, 姜法祥, 等. 淹水胁迫对2种杨树初生根细胞结构的影响[J]. 林业科学, 2015, 51(3):163−169. Chen L Y, Du K B, Jiang F X, et al. Influences of waterlogging stress on cell structure of primary roots of two poplar species[J]. Scientia Silvae Sinicae, 2015, 51(3): 163−169.
[69] 李盼盼, 王延平, 王华田, 等. 黄河冲积平原杨树人工林细根空间分布特征[J]. 山东农业大学学报(自然科学版), 2013, 44(1):61−65. Li P P, Wang Y P, Wang H T, et al. Fine roots distribution patter of Populus deltoites plantations in Yellow River Fluvial Plain[J]. Journal of Shandong Agricultural University (Natural Science), 2013, 44(1): 61−65.
[70] 王延平, 许坛, 朱婉芮, 等. 杨树人工林细根数量和形态特征的季节动态及代际差异[J]. 应用生态学报, 2016, 27(2):395−402. Wang Y P, Xu T, Zhu W R, et al. Seasonal dynamics of quantitative and morphological traits of differences between successive rotation plantations[J]. Chinese Journal of Applied Ecology, 2016, 27(2): 395−402.
[71] Pregitzer K S, King J S, Burton A J, et al. Responses of tree fine roots to temperature[J]. New Phytologist, 2000, 147(1): 105−115. doi: 10.1046/j.1469-8137.2000.00689.x
[72] Liu L P, Gan Y T, Bueckerta R, et al. Rooting systems of oilseed and pulse crops (II.): vertical distribution patterns across the soil profile[J]. Field Crops Research, 2011, 122(3): 248−255. doi: 10.1016/j.fcr.2011.04.003
[73] 郭京衡, 曾凡江, 李尝君, 等. 塔克拉玛干沙漠南缘三种防护林植物根系构型及其生态适应策略[J]. 植物生态学报, 2014, 38(1):36−44. Guo J H, Zeng F J, Li C J, et al. Root architecture and ecological adaptation strategies in three shelterbelt plant species in the southern Taklimakan Desert[J]. Chinese Journal of Plant Ecology, 2014, 38(1): 36−44.
[74] 邸楠, 席本野, 王烨, 等. 宽窄行栽植下三倍体毛白杨根系生物量分布及其对土壤养分因子的响应[J]. 植物生态学报, 2013, 37(10):961−971. Di N, Xi B Y, Wang Y, et al. Root biomass distribution of triploid Populus tomentosa under wide- and narrow -row spacing planting schemes and its responses to soil nutrients[J]. Chinese Journal of Plant Ecology, 2013, 37(10): 961−971.
[75] 傅建平, 兰再平, 孙尚伟, 等. 地面滴灌对107杨人工林根系分布的影响[J]. 林业科学研究, 2013, 26(6):766−772. Fu J P, Lan Z P, Sun S W, et al. A study on distribution of root system of Populus × euramericana cv. ‘74/76’ plantation with ground drip irrigation[J]. Forest Research, 2013, 26(6): 766−772.
[76] 黄晶晶, 井家林, 曹德昌, 等. 不同林龄胡杨克隆繁殖根系分布特征及其构型[J]. 生态学报, 2013, 33(14):4331−4342. Huang J J, Jing J L, Cao D C, et al. Cloning root system distribution and architecture of different forest age Populus euphratica in Ejina Oasis[J]. Acta Ecologica Sinica, 2013, 33(14): 4331−4342.
[77] Jackson R B, Canadell J, Ehleringer J R, et al. A global analysis of root distributions for terrestrial biomes[J]. Oecologia, 1996, 108(3): 389−411. doi: 10.1007/BF00333714
[78] Douglas G B, McIvor I R, Potter J F, et al. Root distribution of poplar at varying densities on pastoral hill country[J]. Plant and Soil, 2010, 333(1–2): 147−161.
[79] Coleman M D, Dickson R E, Isebrands J G. Contrasting fine-root production, survival and soil CO2 efflux in pine and poplar plantations[J]. Plant and Soil, 2000, 225(1): 129−139.
[80] Steele S J, Gower S T, Vogel J G, et al. Root mass, net primary production and turnover in aspen, jack pine and black spruce forests in Saskatchewan and Manitoba, Canada[J]. Tree Physiology, 1997, 17(8–9): 577−587.
[81] Ruess R W, Van Cleve K, Yarie J, et al. Contributions of fine root production and turnover to the carbon and nitrogen cycling in taiga forests of the Alaskan interior[J]. Canadian Journal of Forest Research, 1996, 26(8): 1326−1336. doi: 10.1139/x26-148
[82] 朱强根, 张焕朝, 方升佐, 等. 苏北杨树人工林细根分布及其季节动态[J]. 林业科技开发, 2008, 22(3):45−48. doi: 10.3969/j.issn.1000-8101.2008.03.014 Zhu Q G, Zhang H C, Fang S Z, et al. Distribution and seasonal changes of fine roots in poplar plantations in the northern areas of Jiangsu Province China[J]. China Forestry Science and Technology, 2008, 22(3): 45−48. doi: 10.3969/j.issn.1000-8101.2008.03.014
[83] Lukac M, Calfapietra C, Godbold D L. Production, turnover and mycorrhizal colonization of root systems of three Populus species grown under elevated CO2 (POPFACE)[J]. Global Change Biology, 2003, 9(6): 838−848. doi: 10.1046/j.1365-2486.2003.00582.x
[84] Berhongaray G, Janssens I A, King J S, et al. Fine root biomass and turnover of two fast-growing poplar genotypes in a short-rotation coppice culture[J]. Plant and Soil, 2013, 373(1−2): 269−283.
[85] 宋曰钦, 翟明普, 贾黎明, 等. 不同年龄三倍体毛白杨纸浆林生长期间细根变化规律[J]. 生态学杂志, 2010, 29(9):1696−1702. Song Y Q, Zhai M P, Jia L M, et al. Fine root dynamics of different aged triploid Populus tomentosa pulp forests during growth period[J]. Chinese Journal of Ecology, 2010, 29(9): 1696−1702.
[86] Coleman M D, Aubrey D P. Stand development and other intrinsic factors largely control fine–root dynamics with only subtle modifications from resource availability[J]. Tree Physiology, 2018, 38(12): 1805−1819. doi: 10.1093/treephys/tpy033
[87] 朱婉芮, 汪其同, 刘梦玲, 等. 连作杨树人工林细根寿命的代际差异及其影响因素[J]. 生态学报, 2018, 38(1):226−235. Zhu W R, Wang Q T, Liu M L, et al. The difference in fine root lifespan between successive rotations of poplar plantation and the dominant causal factors[J]. Acta Ecologica Sinica, 2018, 38(1): 226−235.
[88] 席本野, 贾黎明, 刘寅, 等. 宽窄行栽植模式下三倍体毛白杨吸水根系的空间分布与模拟[J]. 浙江林学院学报, 2010, 27(2):259−265. Xi B Y, Jia L M, Liu Y, et al. Spatial distribution and simulation for fine roots of triploid Populus tomentosa with wide and narrow row spacing[J]. Journal of Zhejiang A&F University, 2010, 27(2): 259−265.
[89] Youri R, Mathieu J. Reviews and syntheses: isotopic approaches to quantify root water uptake: a review and comparison of methods[J]. Biogeosciences, 2017, 14(8): 2199−2224. doi: 10.5194/bg-14-2199-2017
[90] Allen S J, Hall R L, Rosier P T W. Transpiration by two poplar varieties grown as coppice for biomass production[J]. Tree Physiology, 1999, 19(8): 493−501. doi: 10.1093/treephys/19.8.493
[91] Zhang H P, Morison J I L, Simmonds L P. Transpiration and water relations of poplar trees growing close to the water table[J]. Tree Physiology, 1999, 19(9): 563−573. doi: 10.1093/treephys/19.9.563
[92] Cox G, Fischer D, Hart S C, et al. Nonresponse of native cottonwood trees to water additions during summer drought[J]. Western North American Naturalist, 2005, 65(2): 175−185.
[93] Wilske B, Lu N, Wei L, et al. Poplar plantation has the potential to alter the water balance in semiarid Inner Mongolia[J]. Journal of Environmental Management, 2009, 90(8): 2762−2770. doi: 10.1016/j.jenvman.2009.03.004
[94] Si J H, Feng Q, Cao S K, et al. Water use sources of desert riparian Populus euphratica forests[J]. Environmental Monitoring and Assessment, 2014, 186(9): 5469−5477. doi: 10.1007/s10661-014-3796-4
[95] 高琛, 杨新兵, 鲁绍伟, 等. 北京沙地杨树人工林生态系统水分利用策略[J]. 东北林业大学学报, 2014, 42(1):80−85. doi: 10.3969/j.issn.1000-5382.2014.01.018 Gao C, Yang X B, Lu S W, et al. Strategies on water utilization of poplar plantation ecosystem in Beijing sandy area[J]. Journal of Northeast Forestry University, 2014, 42(1): 80−85. doi: 10.3969/j.issn.1000-5382.2014.01.018
[96] 苗博, 孟平, 张劲松, 等. 基于稳定同位素和热扩散技术的张北杨树水分关系差异[J]. 应用生态学报, 2017, 28(7):2111−2118. Miao B, Meng P, Zhang J S, et al. Difference of water relationships of poplar trees in Zhangbei County, Hebei, China based on stable isotope and thermal dissipation method[J]. Chinese Journal of Applied Ecology, 2017, 28(7): 2111−2118.
[97] 郭辉, 赵英, 蔡东旭, 等. 基于氢氧同位素示踪法探测新疆地区防护林和棉花体系水分来源与竞争[J]. 生态学报, 2019, 39(18):6642−6650. Guo H, Zhao Y, Cai D X, et al. Application of hydrogen and oxygen isotopes to study the source of water and competition in shelter-forest-cotton systems in the Xinjiang Oasis[J]. Acta Ecology Sinca, 2019, 39(18): 6642−6650.
[98] Liu Z Q, Jia G D, Yu X X. Variation of water uptake in degradation agroforestry shelterbelts on the North China Plain[J/OL]. Agriculture, Ecosystems and Environment, 2020, 287: 106697 [2019−10−08]. https://doi.org/10.1016/j.agee.2019.106697.
[99] Rood S B, Braatne J H, Hughes F M R. Ecophysiology of riparian cottonwoods: stream flow dependency, water relations and restoration[J]. Tree Physiology, 2003, 23(16): 1113−1124. doi: 10.1093/treephys/23.16.1113
[100] Nagler P, Jetton A, Fleming J, et al. Evapotranspiration in a cottonwood (Populus fremontii) restoration plantation estimated by sap flow and remote sensing methods[J]. Agricultural and Forest Meteorology, 2007, 144(1–2): 95−110.
[101] 陈亚宁, 李卫红, 周洪华, 等. 黑河下游荒漠河岸林植物水分传输观测试验研究[J]. 北京师范大学学报(自然科学版), 2016, 52(3):271−276. Chen Y N, Li W H, Zhou H H, et al. Field experiment on water transport in desert riparian forests downstream of the Heihe River[J]. Journal of Beijing Normal University (Natural Science), 2016, 52(3): 271−276.
[102] Chen Y P, Chen Y N, Xu C C, et al. The effects of groundwater depth on water uptake of Populus euphratica and Tamarix ramosissima in the hyperarid region of Northwestern China[J]. Environmental Science and Pollution Research, 2016, 23(17): 17404−17412. doi: 10.1007/s11356-016-6914-8
[103] Fan Y, Miguez-Macho G, Jobbágy E G, et al. Hydrologic regulation of plant rooting depth[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(40): 10572−10577. doi: 10.1073/pnas.1712381114
[104] Hayes F A, Stoeckler J H. Possibilities of shelterbelt planting in the plains regions[M]. Washington: Department of Agriculture, Forest Service., 1935: 111–155.
[105] Pierret A, Maeght J L, Clément C, et al. Understanding deep roots and their functions in ecosystems: an advocacy for more unconventional research[J]. Annals of Botany, 2016, 118(4): 621−635. doi: 10.1093/aob/mcw130
[106] 席本野, 邸楠, 曹治国, 等. 树木吸收利用深层土壤水的特征与机制: 对人工林培育的启示[J]. 植物生态学报, 2018, 42(9):5−25. Xi B Y, Di N, Cao Z G, et al. Characteristics and underlying mechanisms of plant deep soil water uptake and utilization: Implication for the cultivation of plantation trees[J]. Chinese Journal of Plant Ecology, 2018, 42(9): 5−25.
-
期刊类型引用(6)
1. 冯林艳,周火艳,赵晓迪. 乌兰布和沙漠两种植物的分布格局及其变化. 南京林业大学学报(自然科学版). 2024(01): 155-160 . 百度学术
2. 曾红,徐永艳,邵琳亚,闻永慧,夏小丽,汪琼. 4种植物叶片浸提液成分分析及其对珊瑚樱种子萌发的影响. 西南林业大学学报(自然科学). 2023(04): 39-46 . 百度学术
3. 马光宗,徐高峰,杨韶松,杨云海,张付斗,温丽娜,陶琼,申时才,叶敏. 甘薯提取物对3种杂草种子萌发和幼苗生长的化感作用. 西南农业学报. 2022(06): 1295-1302 . 百度学术
4. 路文杰,佛芒芒,肖毅,王永新,杜利霞,钟华,赵祥,董宽虎. 草地植物凋落物浸提液对根际微生物碳源利用的影响. 中国草地学报. 2021(06): 35-42 . 百度学术
5. 张林媚,刘姝玲,郭彩云. 立地条件对榆林沙区樟子松嫁接红松生长的影响. 林业科技通讯. 2021(11): 32-37 . 百度学术
6. 王方琳,尉秋实,柴成武,王理德,张德魁,王昱淇,王飞,胡小柯. 沙蒿(Artemisia desertorum)浸提液对自身种子萌发与幼苗生长的化感作用. 中国沙漠. 2021(06): 21-28 . 百度学术
其他类型引用(3)