高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

关于林木育种策略的思考

康向阳

引用本文:
Citation:

关于林木育种策略的思考

    作者简介: 康向阳,教授,博士生导师。主要研究方向:林木细胞遗传与细胞工程育种。Email:kangxy@bjfu.edu.cn 地址:100083 北京市海淀区清华东路35号北京林业大学生物科学与技术学院.

Thoughts on tree breeding strategies

  • 摘要: 我国人工林培育水平较低,其原因与林木育种领域投入的人力和财力不足、对育种策略的重视和执行力不够等原因有关,导致树种遗传改良最基本的育种循环难以维持,无法支撑树种遗传改良水平持续提升和人工林生产力的提高。本文综合分析国内外林木育种发展经验以及理论和技术成果,提出林木育种策略制定和执行需重视的几点问题:品种具有地域性和时间性以及经济属性,生态价值则属于种植改良品种所产生的附属效益,要制定科学、具体且有一定市场竞争优势的育种目标和育种周期;在此基础上强化树种基本群体、选择群体和育种群体建设与管理,采用科学的试验设计及分析方法保证准确而高效地开展遗传测定和选择,持续推进高轮次育种群体构建,并合理采用促进开花结实、相关选择或分子标记辅助选择等技术加快交配和选择进程,不断提高基本群体和选择群体遗传品质,甚至实现强优势远缘杂交品种的生产应用。对于能够无性繁殖的树种,可在一定的遗传改良阶段施加理化诱变、染色体加倍处理,进一步增加有益变异积累和利用。而对于已应用于生产却仍有不足的优良品种,可以采用遗传转化和基因编辑等分子育种进一步优化等。其中交配、遗传测定和选择是育种循环的核心以及进一步实施其他育种技术的基础,需要给予足够的重视和持续的坚持。
  • 图 1  依靠种子繁殖的两个树种的育种循环及其应用模式图

    Figure 1.  Model diagram about breeding cycle of two tree species propagated by seeds and its application

    图 2  依靠无性繁殖的两个树种的育种循环及其应用模式图

    Figure 2.  Model diagram about breeding cycle of two tree species propagated by clonal propagation

  • [1] 陈晓阳, 沈熙环. 林木育种学[M]. 北京: 高等教育出版社, 2006.Chen X Y, Shen X H. Tree breeding[M]. Beijing: Higher Education Press, 2006.
    [2] 朱之悌. 毛白杨遗传改良[M]. 北京: 中国林业出版社, 2006.Zhu Z T. Genetic improvement of Populus tomentosa Carr.[M]. Beijing: China Forestry Publishing House, 2006.
    [3] White T L, Adams W T, Neale D B. Forest genetics[M]. Cambridge: Published by CABI, 2007.
    [4] MartinT A, Johnsen K H, White T L. Ideotype development in southern pines: rationale and strategies for overcoming scale-related obstacles[J]. Forest Science, 2001, 47(1): 21−28.
    [5] Zobel B, Talbert J. Applied forest tree improvement[M]. New York: Wiley, 1984.
    [6] Borralho N M G, Dutkowski G W. Comparison of rolling front and discrete generation breeding strategies for trees[J]. Canadian Journal of Forest Research, 2011, 28(7): 987−993.
    [7] White T L, Hodge G R, Powell G L. An advanced-generation tree improvement plan for slash pine in the southeastern United States[J]. Silvae Genetica, 1993, 42(6): 359−371.
    [8] McKeand E, Beineke F. Sublining for half-sib breeding populations of forest trees[J]. Silvae Genetica, 1980, 29(1): 14−17.
    [9] Jayawickrama K J S, Carson M J. A breeding strategy for the new zealand radiata pine breeding cooperative[J]. Silvae Genetica, 2000, 49: 82−90.
    [10] Barnes R L, Bengtson G W. Effects of fertilization, irrigation, and cover cropping on flowering and on nitrogen and soluble sugar composition of slash pine[J]. Forest Science, 1968, 14(2): 172−180.
    [11] Bramlett D L. Genetic gain from mass controlled pollination and top working[J]. Journal of Forestry, 1997, 95(3): 15−19.
    [12] McKeand S E, Raley F. Interstock effect on strobilus initiation in top grafted loblolly pine[J]. Forest Genetics, 2000, 7(3): 179−182.
    [13] Ho R H. Gibberellin A4/7 enhances seed-cone production in field-grown Black spruce[J]. Canadian Journal of Forest Research, 1988, 18(1): 139−142. doi: 10.1139/x88-022
    [14] Ho R H. Promotion of cone production on white spruce grafts by Gibberellin A4/7 application[J]. Forest Ecology and Management, 1988, 23(1): 39−46. doi: 10.1016/0378-1127(88)90012-6
    [15] Almqvist C, Ekberg I. Interstock and GA 4/7 effects on flowering after top grafting in Pinus sylvestris[J]. Forest Science, 2002, 8(4): 279−284.
    [16] 康向阳. 关于林木无性系育种策略的思考[J]. 北京林业大学学报, 2019, 41(7):1−9.Kang X Y. Thinking about clonal breeding strategy of forest trees[J]. Journal of Beijing Forestry University, 2019, 41(7): 1−9.
    [17] Leite S M M, Bonine C A, Mori E S, et al. Genetic variability in a breeding population of Eucalyptus urophylla S.T. Blake[J]. Silvae Genetica, 2002, 51(5): 253−256.
    [18] 董虹妤, 刘青华, 周志春, 等. 马尾松子代生长杂种优势与亲本配合力、遗传距离的相关性[J]. 林业科学, 2017, 53(2):65−75.Dong H, Liu Q, Zhou Z, et al. Correlation between Heterosis in the growth of progeny and combining ability and genetic distance of the parents for Pinus massoniana[J]. Scientia Silvae Sinicae, 2017, 53(2): 65−75.
    [19] El-Kassaby Y A, Lindgren D. Increasing the efficiency of breeding without breeding through phenotypic pre-selection in open pollinated progenies[C]//Joint meeting of the South. For. tree improve. conf. and the Western for. genetics association, Galveston, Texas. 2007: 12−19.
    [20] Wang X, Torimaru T, Lindgren D, et al. Marker-based parentage analysis facilitates low input ‘breeding without breeding ’ strategies for forest trees[J]. Tree Genetics & Genomes, 2010, 6(2): 227−235.
    [21] Baruca A A, Jakše J, Bandelj D. Paternity analysis of the olive variety ‘Istrska Belica’ and identification of pollen donors by microsatellite markers[J]. The Scientific World Journal, 2014: 1−6.
    [22] El-Kassaby Y A, Cappa E P, Liewlaksaneeyanawin C, et al. Breeding without breeding: is a complete pedigree necessary for efficient breeding?[J/OL]. PLoS One, 2011, 6(10): e25737 [2019−10−25]. https://doi.org/10.1371/journal.pone.0025737.
    [23] Han Z Q, Gao P, Geng X N, et al. Identification of the male parent of superior half-sib Populus tomentosa individuals based on SSR markers[J]. Molecular Breeding, 2017, 37(12): 155. doi: 10.1007/s11032-017-0754-1
    [24] 袁虎威, 王晓飞, 杜清平, 等. 基于BWB的油松初级种子园混合子代优树选择与配置设计[J]. 北京林业大学学报, 2017, 39(11):28−34.Yuan H W, Wang X F, Du Q P, et al. BWB-assisted plus tree selection and deployment design for bulked progenies of the first-cycle Chinese pine seed orchard[J]. Journal of Beijing Forestry University, 2017, 39(11): 28−34.
    [25] Meuwissen T, Goddard M. Accurate prediction of genetic values for complex traits by whole- genome resequencing[J]. Genetics, 2010, 185(2): 623−631. doi: 10.1534/genetics.110.116590
    [26] Zhao Y S, Zeng J, Fernando R, et al. Genomic prediction of hybrid wheat performance[J]. Crop Science, 2013, 53(3): 802−810. doi: 10.2135/cropsci2012.08.0463
    [27] Wolc A, Kranis A, Arango J, et al. Implementation of genomic selection in the poultry industry[J]. Animal Frontiers, 2016, 6(1): 23−31. doi: 10.2527/af.2016-0004
    [28] Grattapaglia D, Silva-Junior O B, Resende R T, et al. Quantitative genetics and genomics converge to accelerate forest tree breeding[J]. Frontiers in Plant Science, 2018, 9: 1693. doi: 10.3389/fpls.2018.00010
    [29] Fillatti J J, Sellmer I, McGown B, et al. Agrobacterium mediated transformation and regeneration of Populus[J]. Molecular and General Genetics, 1987, 206(2): 192−199. doi: 10.1007/BF00333574
    [30] 田颖川, 李太元, 莽克强, 等. 抗虫转基因欧洲黑杨的培育[J]. 生物工程学报, 1993, 9(4):291−297. doi: 10.3321/j.issn:1000-3061.1993.04.017Tian Y C, Li T Y, Mang K Q, et al. Insect tolerance transgenic Populus nigra plants transformed with Bacillus thuringiensis toxin gene[J]. Chinese Journal of Biotechnology, 1993, 9(4): 291−297. doi: 10.3321/j.issn:1000-3061.1993.04.017
    [31] 苏晓华, 张冰玉, 黄秦军.杨树基因工程育种[M]. 北京: 科学出版社, 2009.Su X H, Zhang B Y, Huang Q J. Poplar genetic engineering breeding[M]. Beijing: Science Press, 2009.
    [32] Lambeth C C, Buijtenen J P, Van Duke S D, et al. Early selection is effective in 20-year-old genetic test of loblolly pine[J]. Silvae Genetica, 1983, 32(5/6): 210−215.
    [33] Foster G S. Trends in genetic parameters with stand development and their influence on early selection for volume growth in lobolly pine[J]. Silvae Genetica, 1986, 32(4): 944−959.
    [34] Muranty H, Jorge V, Bastien C, et al. Potential for marker-assisted selection for forest tree breeding: lessons from 20 years of MAS in crops[J]. Tree Genetics & Genomes, 2014, 10(6): 1491−1510.
    [35] Devey M, Delfino-Mix A, Donaldson D, et al. Efficient mapping of a gene for resistance to white pine blister rust in sugar pine[J]. Proceedings of the National Academy of Sciences of the United States of America, 1995, 92(6): 2066−2070. doi: 10.1073/pnas.92.6.2066
    [36] Jin J Q, Yao M Z, Ma C L, et al. Association mapping of caffeine content with TCS1 in tea plant and its related species[J]. Plant Physiology & Biochemistry, 2016, 105: 251−259.
    [37] Sun C, Lai M, Zhang S G, et al. Age-related trends in genetic parameters for wood properties in Larix kaempferi clones and implications for early selection[J]. Frontiers of Agricultural Science and Engineering, 2017, 4(4): 482−492. doi: 10.15302/J-FASE-2017184
    [38] Strauss S, Lande R, Namkoong G. Limitations of molecular-marker-aided selection in forest tree breeding[J]. Canadian Journal of Forest Research, 1992, 22(7): 1050−1061. doi: 10.1139/x92-140
    [39] Gupta P K, Rustgi S, Kulwal P L. Linkage disequilibrium and association studies in higher plants: present status and future prospects[J]. Plant Molecular Biology, 2005, 57: 461−485. doi: 10.1007/s11103-005-0257-z
    [40] 朱之悌. 全国毛白杨优树资源收集、保存和利用的研究[J]. 北京林业大学学报, 1992, 14(增刊3):1−25.Zhu Z T. Collection, conservation and utilization of plus tree resources of Populus tomentosa in China[J]. Journal of Beijing Forestry University, 1992, 14(Sup