Abstract:
Objective Studying the influence of architecture and vegetation on the site microclimate under the summer thermal environment can provide a basis for the design and planning of dense architectural landscape and surrounding green spaces.
Method This paper takes three representative buildings of Nanjing Agricultural University as an example, combined with the field measurement and Envi-met simulation, and introduces the consistency index, root mean square error, and average absolute deviation as quantitative evaluation indicators to verify the accuracy of software simulation; selecting 06:00−18:00 time period data, combined with a variety of analysis methods such as mean comparison, correlation test, general linear model, etc., to explore the impact of buildings and vegetation on microclimate.
Result Vegetation and architecture had an impact on the microclimate, and there was a certain interaction between the above two. In the absence of vegetation, the building orientation had a significant effect on the microclimate. The cooling and humidification effects of the north and west sides of the building were relatively good; the closer the distance of vegetation to the building was, the better the cooling and humidification effect of sample point was; without the influence of architecture, the vegetation had a significant impact on the microclimate, which was manifested by cooling and humidification, making the environment more comfortable. When considering the effects of architecture and vegetation on temperature, there was no significant interaction between each factor of architecture and vegetation; when considering the effects of architecture and vegetation on humidity, there was a significant interaction between each factor of architecture and vegetation; when comprehensively considering the effects of architecture and vegetation on PMV, there was a significant interaction between the relative position of sample points as well as building and the tree coverage. Under the joint action of architecture and vegetation, there was a significant correlation between the relative orientation of sample point and architecture and site humidity as well as PMV; there was a significant correlation between three-dimensional green amount of vegetation and PMV.
Conclusion Based on the more comfortable microclimate conditions on the north and west sides of architecture, the green space is more suitable as a place for staying and resting. When developing the functions of the east and south sides of the building, appropriate vegetation should be planted to improve the environmental comfort; the micro-climate comfort in the enclosed space formed by the external contour of the building and the terrain and vegetation was higher. Vegetation coverage can effectively improve the microclimate: as the amount of green increases, the thermal comfort of the sample area improves, and different types of plant communities show a significant cooling and humidifying effect compared with the non-greening ground.