高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

中国东北温带3种木质藤本植物细根解剖和形态性状研究

王元敏 王燕 王思远 高国强 谷加存

王元敏, 王燕, 王思远, 高国强, 谷加存. 中国东北温带3种木质藤本植物细根解剖和形态性状研究[J]. 北京林业大学学报, 2020, 42(5): 42-49. doi: 10.12171/j.1000-1522.20190419
引用本文: 王元敏, 王燕, 王思远, 高国强, 谷加存. 中国东北温带3种木质藤本植物细根解剖和形态性状研究[J]. 北京林业大学学报, 2020, 42(5): 42-49. doi: 10.12171/j.1000-1522.20190419
Wang Yuanmin, Wang Yan, Wang Siyuan, Gao Guoqiang, Gu Jiacun. Fine root anatomical and morphological traits of three temperate liana species in northeastern China[J]. Journal of Beijing Forestry University, 2020, 42(5): 42-49. doi: 10.12171/j.1000-1522.20190419
Citation: Wang Yuanmin, Wang Yan, Wang Siyuan, Gao Guoqiang, Gu Jiacun. Fine root anatomical and morphological traits of three temperate liana species in northeastern China[J]. Journal of Beijing Forestry University, 2020, 42(5): 42-49. doi: 10.12171/j.1000-1522.20190419

中国东北温带3种木质藤本植物细根解剖和形态性状研究

doi: 10.12171/j.1000-1522.20190419
基金项目: 国家自然科学基金项目(31870608、31100470),中央高校基本科研业务费专项(2572018BA11)
详细信息
    作者简介:

    王元敏。主要研究方向:根系生理生态学。Email:yzzz17@163.com 地址:150040 黑龙江省哈尔滨市香坊区和兴路26号东北林业大学林学院

    责任作者:

    谷加存,副教授。主要研究方向:森林培育学。Email:gjcnefu@163.com 地址:同上

  • 中图分类号: S718.3;Q944.54

Fine root anatomical and morphological traits of three temperate liana species in northeastern China

  • 摘要: 目的  研究温带木质藤本植物细根的功能性状及其潜在吸收能力。 方法  选取中国东北温带3种代表性木质藤本植物,即缠绕类藤本狗枣猕猴桃和北五味子、卷须攀援类藤本山葡萄为材料,研究了1 ~ 5级细根的解剖、形态、分支结构和吸收根组成。 结果  随着根序的增加,狗枣猕猴桃和北五味子的皮层厚度有增加趋势,而山葡萄则呈降低趋势。3种藤本植物的中柱直径均随根序增加而显著增粗,但是皮层厚度与中柱直径比值显著下降。皮层的存留状态显示,所有树种吸收根的比例均随根序增加而明显下降,1级根是典型的吸收根。从1级根至5级根,3种藤本植物比根长显著降低,直径显著增粗,组织密度增加,但是分支比仅在山葡萄中呈现单调的降低趋势。树种对各根系性状有显著的影响,但是与根序的影响存在交互作用。与其他2个缠绕类藤本植物相比,卷须攀援类藤本山葡萄中柱直径较大,皮层厚度与中柱直径比值较低,而2、3级根的分支比明显更高。与本地区其他类群植物相比,3种藤本植物1级根的平均直径较粗、比根长较低,而平均组织密度介于草本蕨类和其他木本植物之间。 结论  细根解剖和形态性状在3种藤本植物间存在明显差异,但是这些性状随根序变化的规律与其他木本植物较一致。与本地区其他类群植物相比,藤本植物1级根形态特征表现出了较为独立的特点。

     

  • 图  1  3种藤本植物1 ~ 5级根典型解剖构造

    Figure  1.  Typical anatomical structure of the grade 1−5roots in three liana species

    图  2  3种藤本植物1 ~ 5级细根皮层厚度、中柱直径及二者比值的变化

    大写字母表示不同树种间差异显著;小写字母表示不同根序间差异显著。下同。Capital letters represent significant differences among different tree species; lowercase letters represent significant differences among varied root orders. The same below

    Figure  2.  Variations of cortex thickness, stele diameter and their ratios in the grade 1−5 roots in three liana species

    图  3  3种藤本植物1 ~ 5级细根直径、比根长、组织密度和分支比的变化

    Figure  3.  Variations of the diameter, specific root length, tissue density and branching ratio in grade 1−5 roots in three liana species

    表  1  3种藤本植物1 ~ 5级根吸收根的比例

    Table  1.   Proportion of absorptive fine roots of grade 1−5 in three liana species %

    树种 Tree species1级根 Grade 1 root2级根 Grade 2 root3级根 Grade 3 root4级根 Grade 4 root5级根 Grade 5 root
    狗枣猕猴桃 Actinidia kolomikta 100 96.43 91.80 45.45 2.94
    北五味子 Schisandra chinensis 100 97.22 34.55 6.82 0
    山葡萄 Vitis amurensis 100 86.76 7.55 0 0
    下载: 导出CSV

    表  2  树种和根序对细根形态、解剖以及分支比的双因素方差分析

    Table  2.   Two-way (species and root order) factorial ANOVA of tree spscies and root order on root morphological, anatomical characteristics and branching ratios

    变异来源
    Source of
    variation
    自由度
    df
    皮层厚度
    Cortex thickness
    中柱直径
    Stele diameter
    皮层厚度/中柱直径
    Cortex thickness/
    stele diameter
    根直径
    Root diameter
    比根长
    Specific root length
    组织密度
    Tissue density
    自由度
    df
    分支比
    Branching ratio
    树种 Tree species 2 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 0.001 2 < 0.001
    根序 Root order 4 0.057 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 3 < 0.001
    树种 × 根序
    Tree species × root order
    7 < 0.001 < 0.001 < 0.001 0.004 < 0.001 < 0.001 5 0.001
    注:粗体字表示影响显著;山葡萄、北五味子的4、5级根的大部分皮层组织解体,故只对前3级根的皮层厚度、皮层厚度/中柱直径进行了统计分析。Notes: values in bold type indicate significant effects. Only the cortical thickness and cortex thickness/stele diameter of the first three grade roots are analyzed by ANOVA due to most cortex tissue disorganizes in grade 4 and grade 5 roots in Schisandra chinensis and Vitis amurensis.
    下载: 导出CSV

    表  3  帽儿山地区木质藤本植物与其他植物类群1级根形态特征比较

    Table  3.   Comparison in grade 1 root morphological characteristics between lianas and other plant taxa in Maoershan Region of northeastern China

    生活型
    Life form
    样本量
    Sample size
    平均根直径
    Average root diameter/μm
    根直径范围
    Rang of root diameter/μm
    平均比根长
    Average specific root length/(m·g− 1)
    比根长范围
    Rang of specific root length/(m·g− 1)
    平均组织密度
    Average tissue density/(g·cm− 3)
    组织密度范围
    Rang of tissue density/(g·cm− 3)
    文献来源
    Literature source
    木质藤本
    Woody liana
    3 274.34 ± 20.55 234.30 ~ 327.20 91.52 ± 19.94 42.79 ~ 153.35 0.20 ± 0.02 0.14 ~ 0.31 本研究
    This study
    阔叶树
    Broadleaf tree
    20 240 170 ~ 500 102.9 32.71 ~ 203.83 师伟等, 2008
    Shi Wei, etc, 2008
    阔叶树和针叶树
    Broadleaf tree and coniferous tree
    23 243 168 ~ 520 99.83 33.7 ~ 203.82 0.27 0.14 ~ 0.41 Gu et al, 2014
    草本蕨类
    Herbaceous fern
    9 187 ~ 468 85 ~ 260 0.04 ~ 0.12 Dong et al, 2015
    注:“−”表示数据未给出。Note: “−” means data are not available.
    下载: 导出CSV
  • [1] 刘奇, 吴怀栋, 谭运洪, 等. 西双版纳热带季雨林木质藤本多样性及其攀援方式[J]. 林业科学, 2017, 53(8):1−8. doi: 10.11707/j.1001-7488.20170801

    Liu Q, Wu H D, Tan Y H, et al. Liana diversity and its climbing situation on trees in Xishuangbanna tropical seasonal rainforest[J]. Scientia Silvae Sinicae, 2017, 53(8): 1−8. doi: 10.11707/j.1001-7488.20170801
    [2] Leicht-Young S A, Pavlovic N B, Frohnapple K J, et al. Liana habitat and host preferences in northern temperate forests[J]. Forest Ecology and Management, 2010, 260(9): 1467−1477. doi: 10.1016/j.foreco.2010.07.045
    [3] Pérez-Salicrup D R, Schnitzer S, Putz F E. Community ecology and management of lianas[J]. Forest Ecology and Management, 2004, 190(1): 1−2. doi: 10.1016/j.foreco.2003.10.001
    [4] Schnitzer S A, Bongers F. The ecology of lianas and their role in forests[J]. Trends in Ecology & Evolution, 2002, 17(5): 223−230.
    [5] 胡亮. 东亚温带藤本植物多样性及其格局[J]. 生物多样性, 2011, 19(5):567−573. doi: 10.3724/SP.J.1003.2011.07064

    Hu L. Distribution and diversity of climbing plants in temperate East Asia[J]. Biodiversity Science, 2011, 19(5): 567−573. doi: 10.3724/SP.J.1003.2011.07064
    [6] Allen B P, Sharitz R R, Goebel P C. Are lianas increasing in importance in temperate floodplain forests in the southeastern United States?[J]. Forest Ecology and Management, 2007, 242(1): 17−23. doi: 10.1016/j.foreco.2007.01.027
    [7] Ladwig L M, Meiner S J. Liana host preference and implications for deciduous forest regeneration[J]. Journal of the Torrey Botanical Society, 2010, 137(1): 103−112. doi: 10.3159/09-RA-041.1
    [8] Allen B P, Sharitz R R, Goebel P C. Twelve years post-hurricane liana dynamics in an old-growth southeastern floodplain forest[J]. Forest Ecology and Management, 2005, 218(1−3): 259−269. doi: 10.1016/j.foreco.2005.08.021
    [9] Vivek P, Parthasarathy N. Contrasting leaf-trait strategies in dominant liana and tree species of Indian tropical dry evergreen forest[J]. Flora, 2018, 249: 143−149. doi: 10.1016/j.flora.2018.11.002
    [10] 丁凌子, 陈亚军, 张教林. 热带雨林木质藤本植物叶片性状及其关联[J]. 植物科学学报, 2014, 32(4):362−370.

    Ding L Z, Chen Y J, Zhang J L. Leaf traits and their associations among liana species in tropical rainforest[J]. Plant Science Journal, 2014, 32(4): 362−370.
    [11] Freschet G T, Valverde-Barrantes O J, Tucker C M, et al. Climate, soil and plant functional types as drivers of global fine-root trait variation[J]. Journal of Ecology, 2017, 105(5): 1182−1196. doi: 10.1111/1365-2745.12769
    [12] Ma Z Q, Guo D L, Xu X L, et al. Evolutionary history resolves global organization of root functional traits[J]. Nature, 2018, 555: 94−97. doi: 10.1038/nature25783
    [13] Collins C G, Wright S J, Wurzburger N. Root and leaf traits reflect distinct resource acquisition strategies in tropical lianas and trees[J]. Oecologia, 2016, 180(4): 1037−1047. doi: 10.1007/s00442-015-3410-7
    [14] Pregitzer K S, Deforest J L, Burton A J, et al. Fine root architecture of nine north American trees[J]. Ecological Monographs, 2002, 72(2): 293−309. doi: 10.1890/0012-9615(2002)072[0293:FRAONN]2.0.CO;2
    [15] 纪春艳, 崔大练, 马玉心. 东北地区野生藤本植物区系分析[J]. 中国林副特产, 2007(1):59−63. doi: 10.3969/j.issn.1001-6902.2007.01.029

    Ji C Y, Cui D L, Ma Y X. Biotic zonation of the wild climber plants in northeast China[J]. Forest By-product and Speciality in China, 2007(1): 59−63. doi: 10.3969/j.issn.1001-6902.2007.01.029
    [16] 王向荣, 王政权, 韩有志, 等. 水曲柳和落叶松不同根序之间细根直径的变异研究[J]. 植物生态学报, 2005, 29(6):871−877. doi: 10.3321/j.issn:1005-264X.2005.06.001

    Wang X R, Wang Z Q, Han Y Z, et al. Variations of fine root diameter with root order in Manchurian ash and Dahurian larch plantations[J]. Acta Phytoecologica Sinica, 2005, 29(6): 871−877. doi: 10.3321/j.issn:1005-264X.2005.06.001
    [17] 卫星, 刘颖, 陈海波. 黄波罗不同根序的解剖结构及其功能异质性[J]. 植物生态学报, 2008, 32(6):1238−1247. doi: 10.3773/j.issn.1005-264x.2008.06.004

    Wei X, Liu Y, Chen H B. Anatomical and functional heterogeneity among different root orders of Phellodendron amurense[J]. Acta Phytoecologica Sinica, 2008, 32(6): 1238−1247. doi: 10.3773/j.issn.1005-264x.2008.06.004
    [18] Gu J C, Xu Y, Dong X Y, et al. Root diameter variations explained by anatomy and phylogeny of 50 tropical and temperate tree species[J]. Tree Physiology, 2014, 34(4): 415−425. doi: 10.1093/treephys/tpu019
    [19] Bardgett R D, Mommer L, De Vries F T. Going underground: root traits as drivers of ecosystem processes[J]. Trends in Ecology & Evolution, 2014, 29(12): 692−699.
    [20] 刘晓娟, 马克平. 植物功能性状研究进展[J]. 中国科学: 生命科学, 2015, 45(4):325−339. doi: 10.1360/N052014-00244

    Liu X J, Ma K P. Plant functional traits concepts, applications and future directions[J]. Scientia Sinica Vitae, 2015, 45(4): 325−339. doi: 10.1360/N052014-00244
    [21] Guo D L, Xia M X, Wei X, et al. Anatomical traits associated with absorption and mycorrhizal colonization are linked to root branch order in twenty-three Chinese temperate tree species[J]. New Phytologist, 2008, 180(3): 673−683. doi: 10.1111/j.1469-8137.2008.02573.x
    [22] Dong X Y, Wang H F, Gu J C, et al. Root morphology, histology and chemistry of nine fern species (Pteridophyta) in a temperate forest[J]. Plant and Soil, 2015, 393(1−2): 215−227. doi: 10.1007/s11104-015-2484-7
    [23] Long Y Q, Kong D L, Chen Z X, et al. Variation of the linkage of root function with root branch order[J/OL]. PLoS One, 2013, 8(2): e57153 (2013−02−25) [2017−04−18]. https//doi.org/10.1371/journal.pone.0057153.
    [24] Kong D L, Wang J J, Zeng H, et al. The nutrient absorption-transportation hypothesis: optimizing structural traits in absorptive roots[J]. New Phytologist, 2017, 213(4): 1569−1572. doi: 10.1111/nph.14344
    [25] 师伟, 王政权, 郭大立, 等. 帽儿山天然次生林20个阔叶树种细根形态[J]. 植物生态学报, 2008, 32(6):1217−1226. doi: 10.3773/j.issn.1005-264x.2008.06.002

    Shi W, Wang Z Q, Guo D L, et al. Fine root morphology of twenty hardwood species in Maoershan natural secondary forest in northeastern China[J]. Acta Phytoecologica Sinica, 2008, 32(6): 1217−1226. doi: 10.3773/j.issn.1005-264x.2008.06.002
    [26] Wang Z Q, Guo D L, Wang X R, et al. Fine root architecture, morphology, and biomass of different branch orders of two Chinese temperate tree species[J]. Plant and Soil, 2006, 288(1−2): 155−171. doi: 10.1007/s11104-006-9101-8
    [27] 常文静, 郭大立. 中国温带、亚热带和热带森林45个常见树种细根直径变异[J]. 植物生态学报, 2008, 32(6):1248−1257. doi: 10.3773/j.issn.1005-264x.2008.06.005

    Chang W J, Guo D L. Variation in root diameter among 45 common tree species in temperate, subtropical and tropical forests in China[J]. Acta Phytoecologica Sinica, 2008, 32(6): 1248−1257. doi: 10.3773/j.issn.1005-264x.2008.06.005
    [28] Kou L, Guo D L, Yang H, et al. Growth, morphological traits and mycorrhizal colonization of fine roots respond differently to nitrogen addition in a slash pine plantation in subtropical China[J]. Plant and Soil, 2015, 391(1−2): 207−218. doi: 10.1007/s11104-015-2420-x
    [29] 廖乐平. 亚热带木兰科、樟科10个树种细根形态与功能特性研究及其亲缘关系分析[D]. 长沙: 中南林业科技大学, 2016.

    Liao L P. Fine root morphology and functional characteristics of 10 species of Magnoliaceae and Camphoraceae in subtropics and their relationship analysis[D]. Changsha: Central South University of Forestry and Technology, 2016.
    [30] 许旸, 谷加存, 董雪云, 等. 海南岛4个热带阔叶树种前5级细根的形态、解剖结构和组织碳氮含量[J]. 植物生态学报, 2011, 35(9):955−964.

    Xu Y, Gu J C, Dong X Y, et al. Fine root morphology, anatomy and tissue nitrogen and carbon contents of the first five orders in four tropical hardwood species in Hainan Island, China[J]. Acta Phytoecologica Sinica, 2011, 35(9): 955−964.
    [31] Woods C L, Dewalt S J, Cardelús C L, et al. Fertilization influences the nutrient acquisition strategy of a nomadic vine in a lowland tropical forest understory[J]. Plant and Soil, 2018, 431(1−2): 389−399. doi: 10.1007/s11104-018-3772-9
  • 加载中
图(3) / 表(3)
计量
  • 文章访问数:  1038
  • HTML全文浏览量:  354
  • PDF下载量:  39
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-11-06
  • 修回日期:  2020-03-29
  • 网络出版日期:  2020-05-15
  • 刊出日期:  2020-07-01

目录

    /

    返回文章
    返回