Influence of soil macropore structure on saturated hydraulic conductivity
-
摘要:
目的 探究土壤不同孔径大孔隙结构特征及数量对土壤饱和导水率的影响,为研究区域土壤水分—溶质迁移规律、水土流失治理与土壤污染防治提供理论参考。 方法 以京郊密云水库五座山林场水源涵养林为研究点,基于工业CT扫描技术,对土柱中土壤大孔隙三维空间结构重建后,探究不同孔径大孔隙结构特征参数密度及数量密度对土壤饱和导水率的影响。 结果 (1)除当量孔径大于4.30 mm以外的大孔隙,当量孔径越大,其数量密度越小,结构特征参数密度越小;(2)6个样地3个土层内当量孔径为0.31 ~ 2.30 mm的大孔隙占所有孔隙的比例均高于95%;(3)样地1、2、5和6中饱和导水率最大的均在0 ~ 10 cm土层,且除样地6外,均随深度增大而减小,样地4的饱和导水率随深度增大而增大;(4)除当量孔径大于4.30 mm的大孔隙体积密度外,5个径级所有其他的大孔隙特征值密度均与饱和导水率呈显著正相关。 结论 (1)在0 ~ 30 cm土层内,大部分样地的饱和导水率随土层深度增加而减小,但也会出现随深度增加而增大的情况;(2)林地土壤的大孔隙当量孔径主要集中在0.31 ~ 2.30 mm,其占有率高达95%;(3)当量孔径越小的大孔隙,除大孔隙体积和表面积外的大孔隙结构特征参数密度越大;(4)除当量孔径 > 4.30 mm的大孔隙体积密度以外的大孔隙特征参数与饱和导水率均呈显著正相关,大孔隙数量对饱和导水率的影响要显著大于大孔隙结构参数。 Abstract:Objective This paper aims to explore the influence of structure and quantity of macropores with different diameter classes on the saturated hydraulic conductivity of soil, and to provide a theoretical reference for the study of soil water solute transport law, soil erosion control and soil pollution control in this area. Method The study was carried out on water conservation forest in Wuzuoshan Forest Farm of Miyun Reservoir in Beijing suburb. Based on the industrial CT scanning technology, the three-dimensional spatial structure of soil macropores in the soil column was reconstructed to explore the influence of structural parameter density and quantity density of macropores with different diameter classes on the soil saturated hydraulic conductivity. Result (1) Excepting for equivalent diameter large than 4.30 mm, the larger the equivalent diameter of macropores was, the smaller the quantity density and structural parameter density of macropores were. (2) In three soil layers of six sample plots, the proportion of macropores with an equivalent diameter of 0.31−2.30 mm to all macropores was higher than 95%. (3) The maximum saturated hydraulic conductivity of sample plot 1, 2, 5 and 6 was in 0−10 cm soil layer, and it decreased with the increase of soil depth, but except for sample plot 6. The saturated hydraulic conductivity of sample plot 4 increased with the soil depth increasing. (4) Except for the volume density of macropores with an equivalent diameter greater than 4.30 mm, all the other eigenvalue densities of macropores had a significantly positive correlation with the saturated hydraulic conductivity. Conclusion (1) In the 0−30 cm soil layer, the saturated hydraulic conductivity of most sample plots decreases with the soil depth increasing, but it possibly increases with the soil depth increasing. (2) The equivalent diameter of macropores in the soil of forest is mainly concentrated in 0.31−2.30 mm, and its occupancy rate is more than 95%. (3) When equivalent diameter of macropores is smaller, the density of characteristic parameter of macropore structure is greater except for the volume and surface area of macropores. (4) There is a significantly positive correlation between the characteristic parameter of macropores and the saturated hydraulic conductivity except for the volume density of macropores with equivalent diameter greater than 4.30 mm. The influence of macropore number on saturated hydraulic conductivity is significantly greater than structure parameters of macropores. -
图 1 大孔隙数量密度分布
d0.31、 d1.31、 d2.31、 d3.31和 d4.30分别代表孔径为0.31 ~ 1.30 mm、1.31 ~ 2.30 mm、2.31 ~ 3.30 mm、3.31 ~ 4.30 mm 和 > 4.30 mm的大孔隙。横坐标中第1个数字代表样地编号,第2个数字代表土层深度,例如:1−2,1代表样地1,2代表土层10 ~ 20 cm,以下类同。 d0.31, d1.31, d2.31, d3.31 and d4.30 represent macropores with equivalent diameter of 0.31−1.30 mm, 1.31−2.30 mm, 2.31−3.30 mm, 3.31−4.30 mm and large than 4.30 mm, respectively. The first number in the abscissa represents sample plot No., and the second number represents soil layer depth, for example, 1−2, 1 represents the sample plot 1, 2 represents the soil layer of 10−20 cm, the following is similar as this.
Figure 1. Quantity density distribution of macropores
表 1 样地基本情况
Table 1. Basic situation of sample plots
样地
Sample plot经纬度
Longitude and
latitude样方大小
Sample plot
size (m × m)海拔
Altitude/m林地类型
Forest land type平均树高
Average tree
height/m郁闭度
Canopy
density/%平均胸径
Mean DBH/cm样地1 Sample plot 1 40°30′43″N,116°49′51″E 20 × 20 225 人工林 Plantation 11.91 90 22.84 样地2 Sample plot 2 40°30′27″N,116°49′14″E 20 × 20 227 人工林 Plantation 10.29 90 25.63 样地3 Sample plot 3 40°30′10″N,116°48′46″E 20 × 20 225 人工林 Plantation 12.63 85 16.58 样地4 Sample plot 4 40°30′27″N 116°49′02″E 20 × 20 219 人工林 Plantation 8.64 80 28.34 样地5 Sample plot 5 40°30′34″N,116°49′31″E 20 × 20 218 人工林 Plantation 7.54 80 16.73 样地6 Sample plot 6 40°30′50″N,116°50′16″E 20 × 20 217 人工林 Plantation 11.24 85 24.46 表 2 大孔隙特征参数与饱和导水率相关性检验
Table 2. Correlation test between characteristic parameters of macropores and saturated hydraulic conductivity
项目
Item饱和导水率 Saturated hydraulic conductivity d0.31 d1.31 d2.31 d3.31 d4.30 数量密度 Quantity density 0.671 (0.002**) 0.745 (0.000**) 0.773 (0.000**) 0.791 (0.000**) 0.814 (0.000**) 长度密度 Length density 0.673 (0.002**) 0.782 (0.000**) 0.799 (0.000**) 0.762 (0.000**) 0.627 (0.005**) 体积密度 Volume density 0.712 (0.001**) 0.803 (0.000**) 0.804 (0.000**) 0.775 (0.000**) 0.294 (0.237) 表面积密度 Surface area density 0.696 (0.001**) 0.772 (0.000**) 0.778 (0.000**) 0.789 (0.000**) 0.748 (0.000**) 迂曲度密度 Tortuosity density 0.663 (0.003**) 0.776 (0.000**) 0.800 (0.000**) 0.770 (0.000**) 0.765 (0.000**) 倾斜角度密度 Tilt angle density 0.659 (0.003**) 0.716 (0.001**) 0.745 (0.000**) 0.783 (0.000**) 0.802 (0.000**) 注:** 表示在 0.01 级别(双尾)相关性显著。*表示 在 0.05 级别(双尾)相关性显著。Notes: ** means the correlation is significant at 0.01 level (double tail), * means the correlation is significant at 0.05 level (double tail). -
[1] 牛健植, 余新晓, 张志强. 优先流研究现状及发展趋势[J]. 生态学报, 2006, 26(1):233−245.Niu J Z, Yu X X, Zhang Z Q. The present and future research on preferential flow[J]. Acta Ecologica Sinica, 2006, 26(1): 233−245. [2] Baratelli F, Cattaneo L, Giudici M, et al. Solute transport in geological porous media: estimation of dispersion coefficients[J]. Procedia-Social and Behavioral Sciences, 2010, 2(6): 7605−7606. [3] Allaire S E, van Bochove E, Denault J, et al. Preferential pathways of phosphorus movement from agricultural land to water bodies in the Canadian Great Lakes Basin: a predictive tool[J]. Canadian Journal of Soil Science, 2017, 91(3): 361−374. [4] Dusek J, Vogel T. Modeling subsurface hillslope runoff dominated by preferential flow: one- vs. two-dimensional approximation[J]. Vadose Zone Journal, 2014, 13(6): 859−879. [5] Gao Z X, Xu X X, Yu M Z, et al. Impact of land use types on soil macropores in the loess region[J]. Chinese Journal of Applied Ecology, 2014, 25(6): 1578−1584. [6] 李伟莉. 长白山森林土壤大孔隙分布及其对水分运动的影响[D]. 沈阳: 中国科学院沈阳应用生态研究所, 2007.Li W L. Distribution of macropores in forest soil of Changbai Mountain and its influence on water movement[D]. Shenyang: Shenyang Institute of Applied Ecology, Chinese Academy of Sciences, 2007. [7] Hao Z C, Feng J. Recent advances in water and solute movement in macro-porous soil[J]. Journal of Irrigation and Drainage, 2002, 21(1): 67−71. [8] Annemieke I G, Jirka S, Jarvis N, et al. Two-dimensional modelling of preferential water flow and pesticide transport from a tile-drained field[J]. Journal of Hydrology, 2006, 329: 647−660. [9] Beven K, Germann P. Macropores and water flow in soils[J]. Water Resources Research, 1982, 18(5): 1311−1325. [10] Lamande M, Labouriau R, Holmstrup M, et al. Density of macropores as related to soil and earthworm community parameters in cultivated grasslands[J]. Geoderma, 2011, 162: 319−326. [11] Luo L, Lin H, Halleck P. Quantifying soil structure and preferential flow in intact soil using X-ray computed tomography[J]. Soil Science Society of America Journal, 2008, 72(4): 1058−1069. [12] Singh P, Kanwar R S, Thompson M L. Measurement and characterization of macropores by using AUTOCAD and automatic image analysis[J]. Journal of Environmental Quality, 1991, 20(1): 289−294. [13] Warner G S, Nieber J L, Moore I D, et al. Characterizing macropores in soil by computed tomography[J]. Soil Science Society of America Journal, 1989, 53(3): 653−660. [14] 石辉, 陈凤琴, 刘世荣. 岷江上游森林土壤大孔隙特征及其对水分出流速率的影响[J]. 生态学报, 2005, 25(3):507−512. doi: 10.3321/j.issn:1000-0933.2005.03.018.Shi H, Chen F Q, Liu S R. Macropores properties of forest soil and its influence on water effluent in the upper reaches of Minjiang River[J]. Acta Ecologica Sinica, 2005, 25(3): 507−512. doi: 10.3321/j.issn:1000-0933.2005.03.018. [15] 吴华山, 陈效民, 陈集. 利用 CT 扫描技术对太湖地区主要水稻土中大孔隙的研究[J]. 水土保持学报, 2007, 21(2):175−178. doi: 10.3321/j.issn:1009-2242.2007.02.044.Wu H S, Chen X M, Chen J. Study on macropore in main paddy soils in Tai-Lake region with CT[J]. Journal of Soil and Water Conservation, 2007, 21(2): 175−178. doi: 10.3321/j.issn:1009-2242.2007.02.044. [16] Hu X, Li Z C, Li X Y, et al. Quantification of soil macropores under alpine vegetation using computed tomography in the Qinghai Lake Watershed, NE Qinghai-Tibet Plateau[J]. Geoderma, 2016, 264: 244−251. [17] Saravanathiiban D S, Kutay M E, Khire M V. Effect of macropore tortuosity and morphology on preferential flow through saturated soil: a Lattice Boltzmann study[J]. Computers & Geotechnics, 2014, 59(6): 44−53. [18] 董辉, 罗潇, 李智飞. 堆积碎石土细观孔隙空间特征对其渗透特性的定量影响[J]. 中南大学学报(自然科学版), 2017(48):1367−1375.Dong H, Luo X, Li Z F. Quantitative influence of meso-porosity space features of aggregate gravel soil on its permeability characteristics[J]. Journal of Central South University (Science and Technology), 2017(48): 1367−1375. [19] Meng C, Niu J, Yin Z, et al. Characteristics of rock fragments in different forest stony soil and its relationship with macropore characteristics in mountain area, northern China[J]. Journal of Mountain Science, 2018, 15(3):519−531. [20] 李成茂. 密云水库集水区可持续发展评价及其调控对策研究[D]. 北京: 北京林业大学, 2003.Li C M. Studies on sustainable development and discussion on its countermeasures in Miyun Reservoir Watershed[D]. Beijing: Beijing Forestry University, 2003. [21] 肖洋. 北京山区森林植被对非点源污染的生态调控机理研究[D]. 北京: 北京林业大学, 2008.Xiao Y. Ecological regulation mechanism of forest vegetation on non-point source pollution in Beijing mountainous area[D]. Beijing: Beijing Forestry University, 2008. [22] Nachtergaele F, Velthuizen H V, Verelst L, et al. The harmonized world soil database[Z]. 2010. [23] Hu X, Li Z C, Li X Y, et al. Influence of shrub encroachment on CT-measured soil macropore characteristics in the Inner Mongolia Grassland of northern China[J]. Soil and Tillage Research, 2015, 150: 1−9. [24] 阮芯竹, 程金花, 张洪江, 等. 重庆市四面山不同土地利用类型饱和导水率[J]. 水土保持通报, 2015, 35(1):79−84.Ruan X Z, Cheng J H, Zhang H J, et al. Saturated hydraulic conductivity of different land use types in Simian Mountain of Chongqing City[J]. Bulletin of Soil and Water Conservation, 2015, 35(1): 79−84. [25] 田香姣, 程金花, 杜士才, 等. 重庆四面山草地土壤大孔隙的数量和形态特征研究[J]. 水土保持学报, 2014, 28(2):295−299.Tian X J, Cheng J H, Du S C, et al. Study on number and morphological characteristics of soil macropores in grassland in Simian Mountain of Chongqing[J]. Journal of Soil and Water Conservation, 2014, 28(2): 295−299. [26] 曾强, 徐则民, 官琦, 等. 不同植被条件下斜坡土体大孔隙特征分析[J]. 岩石力学与工程学报, 2016, 35(增刊 1):3343−3352.Zeng Q, Xu Z M, Guan Q, et al. Analysis of macropore characteristics of slope soil under different vegetation conditions[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(Suppl. 1): 3343−3352. [27] 王伟, 张洪江, 程金花, 等. 四面山阔叶林土壤大孔隙特征与优先流的关系[J]. 应用生态学报, 2010, 21(5):1217−1223.Wang W, Zhang H J, Cheng J H, et al. Macropore characteristics and its relationships with the preferential flow in broadleaved forest soils of Simian Mountains[J]. Chinese Journal of Applied Ecology, 2010, 21(5): 1217−1223. [28] 阙云, 邓翔宇, 陈嘉. 短时冻区冰雪消融对残积土坡非平衡渗流与稳定性作用机理分析[J]. 工程科学与技术, 2017, 49(6):73−83.Que Y, Deng X Y, Chen J. Mechanism analysis of non-equilibrium seepage and stability of residual soil slope caused by ice and snow melting in short-term frozen area[J]. Advanced Engineering Sciences, 2017, 49(6): 73−83. [29] 冯杰, 郝振纯. CT扫描确定土壤大孔隙分布[J]. 水科学进展, 2002, 13(5):611−617. doi: 10.3321/j.issn:1001-6791.2002.05.014.Feng J, Hao Z C. Distribution of soil macropores characterized by CT[J]. Advances in Water Science, 2002, 13(5): 611−617. doi: 10.3321/j.issn:1001-6791.2002.05.014. [30] 陆斌, 张胜利, 李侃, 等. 秦岭火地塘林区土壤大孔隙分布特征及对导水性能的影响[J]. 生态学报, 2012, 34(6):1512−1519.Lu B, Zhang S L, Li K, et al. Distribution of soil macropores and their influence on saturated hydraulic conductivity in the Huoditang forest region of the Qinling Mountains[J]. Acta Ecologica Sinica, 2012, 34(6): 1512−1519. [31] Hendriks C M A, Bianchi F. Root density and root biomass in pure and mixed forest stands of Douglas-fir and beech[J]. Netherlands Journal of Agricultural Science, 1995, 43(3): 321−331. [32] Luo L, Lin H, Li S. Quantification of 3-D soil macropore networks in different soil types and land uses using computed tomography[J]. Journal of Hydrology, 2010, 393(1−2): 53−64. [33] 孟晨, 牛健植, 于海龙, 等. 土壤大孔隙三维特征影响因素和测定方法研究进展[J]. 北京林业大学学报, 2020, 42(11):1−8.Meng C, Niu J Z, Yu H L, et al. Research progress in influencing factors and measuring methods of 3-D characteristics of soil macropores[J]. Journal of Beijing Forestry University, 2020, 42(11): 1−8. -