高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

景观复杂性和林分因素对两种土壤条件下杨树腐烂病发生的混合影响

刘冬萍 林魏巍 熊典广 牛春林 叶晓芸 田呈明

刘冬萍, 林魏巍, 熊典广, 牛春林, 叶晓芸, 田呈明. 景观复杂性和林分因素对两种土壤条件下杨树腐烂病发生的混合影响[J]. 北京林业大学学报, 2019, 41(12): 128-138. doi: 10.12171/j.1000-1522.20190435
引用本文: 刘冬萍, 林魏巍, 熊典广, 牛春林, 叶晓芸, 田呈明. 景观复杂性和林分因素对两种土壤条件下杨树腐烂病发生的混合影响[J]. 北京林业大学学报, 2019, 41(12): 128-138. doi: 10.12171/j.1000-1522.20190435
Liu Dongping, Lin Weiwei, Xiong Dianguang, Niu Chunlin, Ye Xiaoyun, Tian Chengming. Mixed effects of landscape complexity and stand factors on cytospora canker of poplar across two different field soil conditions[J]. Journal of Beijing Forestry University, 2019, 41(12): 128-138. doi: 10.12171/j.1000-1522.20190435
Citation: Liu Dongping, Lin Weiwei, Xiong Dianguang, Niu Chunlin, Ye Xiaoyun, Tian Chengming. Mixed effects of landscape complexity and stand factors on cytospora canker of poplar across two different field soil conditions[J]. Journal of Beijing Forestry University, 2019, 41(12): 128-138. doi: 10.12171/j.1000-1522.20190435

景观复杂性和林分因素对两种土壤条件下杨树腐烂病发生的混合影响

doi: 10.12171/j.1000-1522.20190435
基金项目: 国家重点研发计划(2017YFD0600105)
详细信息
    作者简介:

    刘冬萍。主要研究方向:景观生态学与杨树腐烂病的关系研究。Email:1661508122@qq.com 地址:100083 北京市海淀区清华东路 35号北京林业大学林学院

    责任作者:

    田呈明,博士,教授。主要研究方向:林木病理学。Email:chengmt@bjfu.edu.cn 地址:同上

Mixed effects of landscape complexity and stand factors on cytospora canker of poplar across two different field soil conditions

  • 摘要: 目的本文探究了不同土壤条件下景观复杂性和林分因素对杨树腐烂病的影响机制,为合理配置景观格局从而有效控制杨树腐烂病提供理论依据,促进杨树人工林的可持续发展。方法于2018年和2019年分别调查了新疆维吾尔自治区克拉玛依市和玛纳斯县两种不同的土壤理化性质下杨树腐烂病的发病情况。通过建立广义线性混合效应模型(GLMMs),以年份为随机效应,在景观尺度上分析景观复杂性和林分因素对杨树腐烂病的发生影响。结果黑杨和新疆杨腐烂病的发生与林分密度和害虫的香农多样性指数呈显著正相关关系,黑杨腐烂病与第一活枝高有显著正相关关系。两种杨树的腐烂病的发生与非杨树寄主的比例,以及海拔高度呈负相关关系;腐烂病与土壤理化性质具有显著相关性,同一景观结构中,克拉玛依的病害发病率高于玛纳斯,而且同一土壤条件下,简单景观中腐烂病的发病率高于复杂景观。结论本研究表明可以通过样地管理和在景观尺度上增强树木抗性来降低杨树腐烂病的发病率,从而为森林有害生物的管理提供理论依据。在造林规划中要考虑周边的景观结构特征对有害生物的潜在影响。同时利用土地覆被数据长期有效地监管景观特征对杨树腐烂病的影响,可以达到改善经济和环境效益的目的。

     

  • 图  1  克拉玛依市(左)和玛纳斯县(右)的样地分布图

    Figure  1.  Spatial distribution of poplar plots in Karamay City (left) and Manasi County (right) of northwestern China

    图  2  新疆杨腐烂病与林分密度(a)和香浓多样性指数(b)的关系

    腐烂病发病率为样地患病树木数量/样地树木总量。下同。Cytospora canker incidence of poplar is the number of diseased trees in the plot/the total number of trees in the plot. Same as below.

    Figure  2.  Relationship between P. alba var. pyramidalis canker and (a) tree density and (b) Shannon diversity index

    图  3  新疆杨腐烂病与海拔(a)和非寄主比例(b)的关系

    Figure  3.  Relationship between P. alba var. pyramidalis canker as well as (a) elevation and (b) the proportion of non-hosts

    图  4  黑杨腐烂病与林分密度(a)和香浓多样性指数(b)的关系

    Figure  4.  Relationship between P. nigra canker and tree density (a) as well as Shannon diversity index (b)

    图  5  黑杨腐烂病与海拔(a)和非寄主比例(b)以及第一活枝高(c)的关系

    Figure  5.  Relationship between P. nigra canker and elevation (a), the proportion of non-hosts (b) as well as the first live branch (c)

    图  6  新疆杨腐烂病在不同土壤条件及250 m的景观结构中的发生情况

    复杂景观表示非林地面积 > 50%,样地是混交林;简单景观则相反。A. 玛纳斯土壤条件;B. 克拉玛依土壤条件。下同。Complex landscape refers to the cumulative proportion of non-forests > 50% and the sample plot is mixed forest, simple landscape is the reverse. A, Manasi soil conditions; B, Karamay soil conditions. Same as below.

    Figure  6.  P. alba var. pyramidalis canker incidence in landscape structures across two different soil conditions at 250 m spatial scale

    图  7  黑杨腐烂病在不同土壤条件及250 m的景观结构中的发生情况

    Figure  7.  P. nigra canker incidence in landscape structures across two different soil conditions at 250 m spatial scale

    表  1  克拉玛依研究区的土壤理化性质平均变量

    Table  1.   Mean variables of soil physical and chemical properties at Karamay City research area

    项目 Item 土壤理化性质 Physical and chemical properties of soil 0 ~ 10 cm 10 ~ 30 cm 30 ~ 50 cm
    荒漠林 Desert forests[45] 有机质 Organic matter/(g·kg− 1) 2.29 1.30 1.80
    人工林 Plantation forests[46] 有机质 Organic matter/(g·kg− 1) 4.79 3.98 3.89
    有效磷 Available phosphorus/(mg·kg− 1) 5.79 5.02 4.41
    全磷 Total phosphorus/ (g·kg− 1) 0.69 0.69 0.58
    有效氮 Available nitrogen/(mg·kg− 1) 7.63 6.81 6.54
    全氮 Total nitrogen/(g·kg− 1) 0.10 0.10 0.58
    pH值 pH value 8.67 8.76 8.71
    有机质 Organic matter/(g·kg− 1) 8.41 7.13 6.59
    土壤密度 Soil density/(g·cm− 3) 1.62 1.64 1.66
    土壤水分 Soil moisture/% 12.08 13.77 13.94
    注:表中数据引自参考文献[4546]。Note: the data in the table is quoted from the references [4546].
    下载: 导出CSV

    表  2  玛纳斯研究区的土壤理化性质平均变量

    Table  2.   Mean variables of soil physical and chemical properties at Manasi County research area

    土壤理化性质
    Physical and chemical properties of soil
    0~10 cm 0~20 cm 20~30 cm
    有机质
    Organic matter/(g·kg− 1)
    11.44
    全磷
    Total phosphorus/(g·kg− 1)
    0.53
    全氮
    Total nitrogen/(g·kg− 1)
    1.98
    全钾
    Total potassium/(g·kg− 1)
    24.22
    有效氮
    Available nitrogen/(mg·kg− 1)
    41.75
    有效磷
    Available phosphorus/(mg·kg− 1)
    8.53
    有效钾
    Available potassium/(mg·kg− 1)
    233.26
    pH值 pH value 8.57
    土壤水分
    Soil moisture/%
    14.16 17.96 18.86
    盐分
    Salinity/(g·kg− 1)
    6 6.66 7.87
    注:表中数据引自参考文献[4749]。Note: the data in the table is quoted from the references [4749].
    下载: 导出CSV

    表  3  模型平均后各解释变量对新疆杨腐烂病的影响

    Table  3.   Results of the model averaging procedure to assess the relationship between P. alba var. pyramidalis canker and explanatory variables

    变量
    Variable
    估计值
    Estimated value
    标准误
    SE
    z
    z value
    P重要值
    Importance
    变量所在模型数量
    Number of models containing variable
    第一活枝高 Height of the first live branch− 0.954 90.639 11.4270.154164
    密度 Density6.919 12.176 13.0840.002**164
    香浓多样性指数 Shannon diversity index3.120 80.847 23.519 < 0.001***164
    非寄主比例 Proportion of non-hosts− 4.097 21.187 43.314 < 0.001***164
    海拔 Elevation− 12.379 22.135 15.536 < 0.001***0.9764
    土壤理化性质 Soil physical and chemical property0.651 70.298 02.0840.037*164
    景观复杂性 Landscape complexity2.146 00.318 36.428 < 0.001***0.764
    注:*表示P < 0.05;**表示 P < 0.01;***表示P < 0.001。下同。Notes: * means P < 0.05; ** means P < 0.01; *** means P < 0.001. Same as below.
    下载: 导出CSV

    表  4  模型平均后各解释变量对黑杨腐烂病的影响

    Table  4.   Results of the model averaging procedure to assess the relationship between P. nigra canker and explanatory variables

    变量
    Variable
    估计值
    Estimated value
    标准误
    SE
    z 值
    z value
    P 重要值
    Importance
    变量包含模型数
    Number of models containing variable
    第一活枝高 Height of the first live branch0.759 40.174 74.305 < 0.001***0.3364
    密度 Density6.612 50.748 78.747 < 0.001***164
    香浓多样性指数 Shannon diversity index2.620 00.462 15.615 < 0.001***0.9964
    非寄主比例 Proportion of non-hosts− 1.752 00.417 04.161 < 0.001***164
    海拔 Elevation− 2.257 70.874 42.5640.010*164
    土壤理化性质 Soil physical and chemical properties− 0.432 00.118 43.615 < 0.001***0.6864
    景观复杂性 Landscape complexity0.325 10.164 01.9640.046*164
    下载: 导出CSV
  • [1] Vira B, Agarwal B, Jamnadass R H, et al. Forests, trees and landscapes for food security and nutrition[M]. Cambridge: Open Book Publishers, 2015.
    [2] Brockerhoff E G, Jactel H, Parrotta J. A. Role of eucalypt and other planted forests in biodiversity conservation and the provision of biodiversity-related ecosystem services[J]. Forest Ecology and Management, 2013, 301: 43−50. doi: 10.1016/j.foreco.2012.09.018
    [3] Sukhdev P, Wittmer H, Schröter-Schlaack C, et al. The economics of ecosystems and biodiversity: mainstreaming the economics of nature: a synthesis of the approach, conclusions and recommendations of TEEB[M]. Ginebra (Suiza): Progress Press, 2010.
    [4] Ball J, Carle J, Del L A. Contribution of poplars and willows to sustainable forestry and rural development[J/OL]. UNASYLVA-FAO-, 2005, 56 (2): 3 [2019−05−30]. http://www.fao.org/tempref/docrep/fao/008/a0026e/a0026e03.pdf.
    [5] Kraeuchi N. Potential impacts of a climate change on forest ecosystems[J]. European Journal of Forest Pathology, 1993, 23(1): 28−50. doi: 10.1111/j.1439-0329.1993.tb00804.x
    [6] Wingfield M J, Brockerhoff E G, Wingfield B D, et al. Planted forest health: the need for a global strategy[J]. Science, 2015, 349: 832−836. doi: 10.1126/science.aac6674
    [7] Condeso T E, Meentemeyer R K. Effects of landscape heterogeneity on the emerging forest disease sudden oak death[J]. Journal of Ecology, 2007, 95(2): 364−375. doi: 10.1111/j.1365-2745.2006.01206.x
    [8] Mundt C C, Sackett K E, Wallace L D. Landscape heterogeneity and disease spread: experimental approaches with a plant pathogen[J]. Ecological Applications, 2011, 21(2): 321−328. doi: 10.1890/10-1004.1
    [9] Medeiros H R, Hoshino A T, Ribeiro M C, et al. Landscape complexity affects cover and species richness of weeds in Brazilian agricultural environments[J]. Basic and Applied Ecology, 2016, 17(8): 731−740. doi: 10.1016/j.baae.2016.10.001
    [10] Hendrickx F, Maelfait J P, Van W W, et al. How landscape structure, landuse intensity and habitat diversity affect components of total arthropod diversity in agricultural landscapes[J]. Journal of Applied Ecology, 2007, 44: 340−351. doi: 10.1111/j.1365-2664.2006.01270.x
    [11] Schirmel J, Albrecht M, Bauer P M, et al. Landscape complexity promotes hoverflies across different types of semi-natural habitats in farmland[J]. Journal of Applied Ecology, 2018, 55(4): 1747−1758. doi: 10.1111/1365-2664.13095
    [12] Ostfeld R S , Keesing F , Eviner V T . Infectious disease ecology: effects of ecosystems on disease and of disease on ecosystems [M]//McCallum H. Landscape structure, disturbance, and disease dynamics. New Jersey:Princeton University Press, 2008: 100–122.
    [13] Padgett G E, Hopkins R L. Landscape epidemiology of Batrachochytrium dendrobatidis in central California[J]. Ecography, 2010, 33(4): 688−697. doi: 10.1111/j.1600-0587.2009.05994.x
    [14] With K A. The landscape ecology of invasive spread[J]. Conservation Biology, 2002, 16(5): 1192−1203. doi: 10.1046/j.1523-1739.2002.01064.x
    [15] Holdenrieder O, Pautasso M, Weisberg P J, et al. Tree diseases and landscape processes: the challenge of landscape pathology[J]. Trends in Ecology & Evolution, 2004, 19(8): 446−452.
    [16] Ostfeld R S, Glass G E, Keesing F. Spatial epidemiology: an emerging (or re-emerging) discipline[J]. Trends in Ecology & Evolution, 2005, 20(6): 328−336.
    [17] Batáry P, Báldi A, Szél G, et al. Responses of grassland specialist and generalist beetles to management and landscape complexity[J]. Diversity and Distributions, 2007, 13(2): 196−202. doi: 10.1111/j.1472-4642.2006.00309.x
    [18] Rusch A, Bommarco R, Jonsson M, et al. Flow and stability of natural pest control services depend on complexity and crop rotation at the landscape scale[J]. Journal of Applied Ecology, 2013, 50(2): 345−354. doi: 10.1111/1365-2664.12055
    [19] Yang L, Zhang Q, Liu B, et al. Mixed effects of landscape complexity and insecticide use on ladybeetle abundance in wheat fields[J]. Pest Management Science, 2019, 75(6): 1638−1645. doi: 10.1002/ps.5281
    [20] Chaplin R, Rourke M E, Blitzer E J, et al. A meta-analysis of crop pest and natural enemy response to landscape complexity[J]. Ecology Letters, 2011, 14(9): 922−932. doi: 10.1111/j.1461-0248.2011.01642.x
    [21] Norton L, Johnson P, Joys A, et al. Consequences of organic and non-organic farming practices for field, farm and landscape complexity[J]. Agriculture, Ecosystems & Environment, 2009, 129(1–3): 221−227.
    [22] Winqvist C, Bengtsson J, Aavik T, et al. Mixed effects of organic farming and landscape complexity on farmland biodiversity and biological control potential across Europe[J]. Journal of Applied Ecology, 2011, 48(3): 570−579. doi: 10.1111/j.1365-2664.2010.01950.x
    [23] Plantegenest M, Le M C, Fabre F. Landscape epidemiology of plant diseases[J]. Journal of the Royal Society Interface, 2007, 4(16): 963−972. doi: 10.1098/rsif.2007.1114
    [24] Christersson L. Poplar plantations for paper and energy in the south of Sweden[J]. Biomass and Bioenergy, 2008, 32(11): 997−1000. doi: 10.1016/j.biombioe.2007.12.018
    [25] Fang S, Xue J, Tang L. Biomass production and carbon sequestration potential in poplar plantations with different management patterns[J]. Journal of Environmental Management, 2007, 85(3): 672−679. doi: 10.1016/j.jenvman.2006.09.014
    [26] Lovarelli D, Fusi A, Pretolani R, et al. Delving the environmental impact of roundwood production from poplar plantations[J]. Science of the Total Environment, 2018, 645: 646−654. doi: 10.1016/j.scitotenv.2018.06.386
    [27] Wang Y, Bai G, Shao G, et al. An analysis of potential investment returns and their determinants of poplar plantations in state-owned forest enterprises of China[J]. New Forests, 2014, 45(2): 251−264. doi: 10.1007/s11056-014-9406-z
    [28] Ma Z, Zhu J, Sun Z, et al. The influences of biotic and abiotic factors on the occurrence and severity of poplar canker disease in Qingfeng County, China and the management implications[J]. Journal of Forestry Research, 2015, 26(4): 1025−1034. doi: 10.1007/s11676-015-0122-0
    [29] Ennos R A. Resilience of forests to pathogens: an evolutionary ecology perspective[J]. Forestry: An International Journal of Forest Research, 2014, 88(1): 41−52.
    [30] Steenackers J, Steenackers M, Steenackers V, et al. Poplar diseases, consequences on growth and wood quality[J]. Biomass and Bioenergy, 1996, 10(5–6): 267−274. doi: 10.1016/0961-9534(95)00121-2
    [31] Wang G, Dong Y, Liu X, et al. The current status and development of insect-resistant genetically engineered poplar in China[J/OL]. Frontiers in Plant Science, 2018 [2019−05−30]. http://people.dyu.edu.tw/paper/9805530_e.pdf.
    [32] Yi H W, Chi Y J. Biocontrol of cytospora canker of poplar in north‐east China with trichoderma longibrachiatum[J]. Forest Pathology, 2011, 41(4): 299−307. doi: 10.1111/j.1439-0329.2010.00704.x
    [33] 潘峰, 田长彦, 邵峰, 等. 新疆克拉玛依市生态敏感性研究[J]. 地理学报, 2011, 66(11):1497−1507. doi: 10.11821/xb201111006

    Pan F, Tian C Y, Shao F, et al. Study on the ecological sensitivity of Karamay City in Xinjiang[J]. Acta Geographica Sinica, 2011, 66(11): 1497−1507. doi: 10.11821/xb201111006
    [34] 岳璐. 干旱地区节水型公路植物景观设计规划研究:以克拉玛依市为例[J]. 科学技术与工程, 2017, 17(7):299−302, 308.

    Yue L. Study on plant landscape design and planning of water-saving highway in arid area: Taking Karamay City as an example[J]. Science Technology and Engineering, 2017, 17(7): 299−302, 308.
    [35] 钟玉婷, 范子昂, 刘新春, 等. 克拉玛依大气降水化学组分及来源分析[J]. 干旱区地理, 2019, 42(5):1038−1047.

    Zhong Y T, Fan Z, Liu X C, et al. Chemical Characteristics and Source Assessment of Atmospheric Precipitation in Karamay[J]. Arid Area Geography, 2019, 42(5): 1038−1047.
    [36] 黄聪. 克拉玛依人工林景观格局变化与气候因子关系分析[D]. 乌鲁木齐: 新疆大学, 2010.

    Huang C. Analysis of the relationship between landscape pattern change and climatic factors of Karamay plantation area[D]. Urumchi: Xinjiang University, 2010.
    [37] 轩俊伟, 盛建东. 2001—2017年新疆玛纳斯河流域植被NDVI时空变化特征[J]. 林业资源管理, 2018, 6(6):30−37.

    Xuan J W, Sheng J D. Analysis on the spatial-temporal variation of NDVI in the Manas River Watershed of Xinjiang from 2001 to 2017[J]. Forest Resources Management, 2018, 6(6): 30−37.
    [38] 黄犁, 徐丽萍. 玛纳斯河流域绿洲时空演变及其景观格局变化[J]. 干旱区研, 2019, 36(5):1261−1269.

    Huang L, Xu L P. An analysis of spatial and temporal evolution of oasis in the middle and lower reaches of Manas River Basin[J]. Arid Zone Research, 2019, 36(5): 1261−1269.
    [39] 李义玲, 乔木, 杨小林, 等. 干旱区典型流域近30年土地利用/土地覆被变化的分形特征分析: 以玛纳斯河流域为例[J]. 干旱区地理, 2008(1):75−81.

    Li Y L, Qiao M, Yang X L, et al. Analysis of fractal characteristics of land use/land cover change in typical watersheds in arid areas in recent 30 years: taking the Manas River Basin as an example[J]. Arid Land Geography, 2008(1): 75−81.
    [40] Meentemeyer R K, Condeso T E. Effects of landscape heterogeneity on the emerging forest disease sudden oak death[J]. Phytopathology, 2006, 96(6): 364−375.
    [41] Ito S, Nakayama R, Buckley G P. Effects of previous land-use on plant species diversity in semi-natural and plantation forests in a warm-temperate region in southeastern Kyushu, Japan[J]. Forest Ecology and Management, 2004, 196(2–3): 213−225. doi: 10.1016/j.foreco.2004.02.050
    [42] Damascena J G, Leite G L D, Silva F W S, et al. Collinearity: a review of methods to deal with it and a simulation study evaluating their performance[J]. Ecography, 2013, 36(1): 27−46. doi: 10.1111/j.1600-0587.2012.07348.x
    [43] Shannon C. A mathematical theory of communication[J]. Bell System Technical Journal, 1948, 27: 379−656. doi: 10.1002/j.1538-7305.1948.tb01338.x
    [44] Simpson E H. Measurement of diversity[J]. Nature, 1949, 163: 688. doi: 10.1038/163688a0
    [45] 张文俊, 马珂, 师庆东, 等. 克拉玛依人工杨树碳汇林对土壤有机碳储量的影响[J]. 新疆农业科学, 2012, 49(5):856−861.

    Zhang W J, Ma K, Shi Q D, et al. The study of the influence poplar plantation carbon sink[J]. Xinjiang Agricultural Sciences, 2012, 49(5): 856−861.
    [46] 张毓涛, 郭树芳, 张新平, 等. 克拉玛依人工林生物量与土壤理化性质[J]. 干旱区研究, 2015, 32(2):402−409.

    Zhang Y T, Guo S F, Zhang X P, et al. Biomass and soil physical and chemical properties[J]. Arid Zone Research, 2015, 32(2): 402−409.
    [47] 阿依古丽·买买提, 吉力力·阿不都外力, 葛拥晓. 玛纳斯河流域绿洲土壤养分空间变异特征与格局[J]. 干旱区资源与环境, 2013, 27(9):153−159.

    Mamat A, Abuduwai J, Ge Y X. Spatial variability and pattern of soil nutrients in the oasis of Manas River Watershed[J]. Journal of Arid Land Resources and Environment, 2013, 27(9): 153−159.
    [48] 张丽, 才日玛, 盛建东. 玛纳斯县农田土壤养分变化分析[J]. 新疆师范大学学报(自然科学版), 2014, 33(1):20−26.

    Zhang L, Cai R M, Sheng J D. Analysis of soil nutrient changes in farmland in Manas County[J]. Journal of Xinjiang Normal University (Natural Science Edition), 2014, 33(1): 20−26.
    [49] 沈浩, 吉力力·阿不都外力. 玛纳斯河流域农田土壤水盐空间分布特征及影响因素[J]. 应用生态学报, 2015, 26(3):769−776.

    Shen H, Jili A W. Spatial distribution of soil moisture and salinity and their influence factors in the farmland of Manas River catchment, Northwest China[J]. Journal of Applied Ecology, 2015, 26(3): 769−776.
    [50] Schmiedel I, Bergmeier E, Culmsee H. Plant species richness patterns along a gradient of landscape modification intensity in Lower Saxony, Germany[J]. Landscape and Urban Planning, 2015, 141: 41−51. doi: 10.1016/j.landurbplan.2015.03.009
    [51] Schulz C, Koch R, Cierjacks A, et al. Land change and loss of landscape diversity at the Caatinga phytogeographical domain: Analysis of pattern-process relationships with MODIS land cover products (2001–2012)[J]. Journal of Arid Environments, 2017, 136: 54−74. doi: 10.1016/j.jaridenv.2016.10.004
    [52] Burnham K P, Anderson D R, Huyvaert K P. AIC model selection and multimodel inference in behavioral ecology: some background, observations, and comparisons[J]. Behavioral Ecology and Sociobiology, 2011, 65(1): 23−35. doi: 10.1007/s00265-010-1029-6
    [53] Nakagawa S, Freckleton R P. Model averaging, missing data and multiple imputation: a case study for behavioural ecology[J]. Behavioral Ecology and Sociobiology, 2011, 65(1): 103−116. doi: 10.1007/s00265-010-1044-7
    [54] Bates D, Mächler M, Bolker B S, et al. Fitting linear mixed-effects models using lme4[Z/OL]. Journal of Statistical Software, 2015 [2019−05−30]. https://www.jstatsoft.org/issue/view/v067.
    [55] Barton K. MuMIn: Multi-Model inference[J]. R Package Version, 2014, 1(10): 5−25.
    [56] Fatehi P, Damm A, Leiterer R, et al. Tree density and forest productivity in a heterogeneous alpine environment: insights from airborne laser scanning and imaging spectroscopy[J]. Forests, 2017, 8(6): 212. doi: 10.3390/f8060212
    [57] Fatehi P, Damm A, Schaepman M, et al. Estimation of alpine forest structural variables from imaging spectrometer data[J]. Remote Sensing, 2015, 7(12): 16315−16338. doi: 10.3390/rs71215830
    [58] Shibata S. Effect of density control on tree growth at ecological tree planting sites in Japan[J]. Landscape and Ecological Engineering, 2006, 2(1): 13−19. doi: 10.1007/s11355-006-0031-7
    [59] Gurr G M, Wratten S D, Landis D A, et al. Habitat management to suppress pest populations: progress and prospects[J]. Annual Review of Entomology, 2017, 62: 91−109. doi: 10.1146/annurev-ento-031616-035050
    [60] Bolliger J, Schweizer W. Swiss forests and climate change: comparison of simulated quantitative vegetation models[J]. Schweizerische Zeitschrift fur Forstwesen, 2002, 153(5): 167−175. doi: 10.3188/szf.2002.0167
    [61] Van Drunen S G, McCune J L, Husband B C. Distribution and environmental correlates of fungal infection and host tree health in the endangered American chestnut in Canada[J]. Forest Ecology and Management, 2018, 427: 60−69. doi: 10.1016/j.foreco.2018.05.051
    [62] Jactel H, Brockerhoff E G. Tree diversity reduces herbivory by forest insects[J]. Ecology Letters, 2007, 10(9): 835−848. doi: 10.1111/j.1461-0248.2007.01073.x
    [63] Guyot V, Castagneyrol B, Vialatte A, et al. Tree diversity limits the impact of an invasive forest pest[J]. PLoS One, 2015, 10(9), e0136469 [2019−11−05]. https://doi.org/10.1371/journal.pone.0136469.
    [64] Jonsson, M, Straub C S, Didham R K, et al. Experimental evidence that the effectiveness of conservation biological control depends on landscape complexity[J]. Journal of Applied Ecology, 2015, 52(5): 1274−1282. doi: 10.1111/1365-2664.12489
    [65] Vasseur C, Joannon A, Aviron S, et al. The cropping systems mosaic: how does the hidden heterogeneity of agricultural landscapes drive arthropod populations[J]. Agriculture, Ecosystems & Environment, 2013, 166: 3−14.
    [66] Tscharntke T, Bommarco R, Clough Y, et al. Reprint of “Conservation biological control and enemy diversity on a landscape scale”[J]. Biological Control, 2008, 45(2): 238−253. doi: 10.1016/S1049-9644(08)00082-0
    [67] Bianchi F J, Booij C J H, Tscharntke T. Sustainable pest regulation in agricultural landscapes: a review on landscape composition, biodiversity and natural pest control[J]. Proceedings of the Royal Society B: Biological Sciences, 2006, 273: 1715−1727. doi: 10.1098/rspb.2006.3530
    [68] Tillman P G, Smith H, Holland J. Cover crops and related methods for enhancing agricultural diversity and conservation biocontrol: Successful case studies[J/OL]. Book Chapter, 2012, 309−327 [2019−10−30]. https://www.ars.usda.gov/research/publications/publication/?seqNo115=263004.
    [69] 陈接华, 王绍明, 曹国栋, 等. 玛纳斯河流域不同地貌和植被类型下土壤物理性质研究[J]. 新疆农业科学, 2012, 49(2):354−361.

    Chen J H, Wang S M, Cao G D, et al. Study on soil physical properties under different landforms and vegetation types in manas river watershed[J]. Xinjiang Agricultural Science, 2012, 49(2): 354−361.
    [70] Dai L, Zhao W, Shao G, et al. The progress and challenges in sustainable forestry development in China[J]. International Journal of Sustainable Development & World Ecology, 2013, 20(5): 394−403.
    [71] Ryan M G, Binkley D, Fownes J H. Age-related decline in forest productivity: pattern and process[J]. Advances in Ecological Research, 1997, 27: 213−262.
    [72] Castagneyrol B, Jactel H, Vacher C, et al. Effects of plant phylogenetic diversity on herbivory depend on herbivore specialization[J]. Journal of Applied Ecology, 2014, 51(1): 134−141. doi: 10.1111/1365-2664.12175
    [73] Iverson A L, Marín L E, Ennis K K, et al. Do polycultures promote win-wins or trade-offs in agricultural ecosystem services? A meta-analysis[J]. Journal of Applied Ecology, 2014, 51(6): 1593−1602. doi: 10.1111/1365-2664.12334
    [74] Castagneyrol B, Jactel H. Unraveling plant-animal diversity relationships: a meta-regression analysis[J]. Ecology, 2012, 93(9): 2115−2124. doi: 10.1890/11-1300.1
    [75] Guyot V, Castagneyrol B, Vialatte A, et al. Tree diversity reduces pest damage in mature forests across Europe[J]. Biology Letters, 2016, 12(4): 20151037. doi: 10.1098/rsbl.2015.1037
    [76] Rega C, Bartual A M, Bocci G, et al. A pan-European model of landscape potential to support natural pest control services[J]. Ecological Indicators, 2018, 90: 653−664. doi: 10.1016/j.ecolind.2018.03.075
    [77] Brockerhoff E G, Kimberley M, Liebhold A M, et al. Predicting how altering propagule pressure changes establishment rates of biological invaders across species pools[J]. Ecology, 2014, 95(3): 594−601. doi: 10.1890/13-0465.1
    [78] Haack R A, Britton K O, Brockerhoff E G, et al. Effectiveness of the International Phytosanitary Standard ISPM No. 15 on reducing wood borer infestation rates in wood packaging material entering the United States[J/OL]. PLoS One, 2014, 9(5), e96611 [2019−05−30]. https://doi.org/10.1371/journal.pone.0096611.
    [79] Roy B A, Alexander, H M, Davidson J, et al. Increasing forest loss worldwide from invasive pests requires new trade regulations[J]. Frontiers in Ecology and the Environment, 2014, 12(8): 457−465. doi: 10.1890/130240
  • 加载中
图(7) / 表(4)
计量
  • 文章访问数:  1548
  • HTML全文浏览量:  454
  • PDF下载量:  61
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-11-19
  • 修回日期:  2019-11-29
  • 网络出版日期:  2019-12-09
  • 刊出日期:  2019-12-01

目录

    /

    返回文章
    返回