高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于氢稳定同位素技术对中国地区红脂大小蠹溯源追踪的可行性分析

覃责实 石娟 郝艳平 崔骁芃 李碧鹰

覃责实, 石娟, 郝艳平, 崔骁芃, 李碧鹰. 基于氢稳定同位素技术对中国地区红脂大小蠹溯源追踪的可行性分析[J]. 北京林业大学学报, 2021, 43(5): 93-98. doi: 10.12171/j.1000-1522.20190437
引用本文: 覃责实, 石娟, 郝艳平, 崔骁芃, 李碧鹰. 基于氢稳定同位素技术对中国地区红脂大小蠹溯源追踪的可行性分析[J]. 北京林业大学学报, 2021, 43(5): 93-98. doi: 10.12171/j.1000-1522.20190437
Qin Zeshi, Shi Juan, Hao Yanping, Cui Xiaopeng, Li Biying. Feasibility analysis on species origin traceability by hydrogen stable isotope: sample case of Dendroctonus valens (Coleoptera: Scolytidae)[J]. Journal of Beijing Forestry University, 2021, 43(5): 93-98. doi: 10.12171/j.1000-1522.20190437
Citation: Qin Zeshi, Shi Juan, Hao Yanping, Cui Xiaopeng, Li Biying. Feasibility analysis on species origin traceability by hydrogen stable isotope: sample case of Dendroctonus valens (Coleoptera: Scolytidae)[J]. Journal of Beijing Forestry University, 2021, 43(5): 93-98. doi: 10.12171/j.1000-1522.20190437

基于氢稳定同位素技术对中国地区红脂大小蠹溯源追踪的可行性分析

doi: 10.12171/j.1000-1522.20190437
基金项目: 中央高校基本科研业务费专项(2016ZCQ07),国家自然科学基金面上项目(31770687)
详细信息
    作者简介:

    覃责实。主要研究方向:森林保护。Email:qin_zeshi@163.com 地址:100083北京市海淀区清华东路35号北京林业大学林学院

    责任作者:

    石娟,教授,博士生导师。主要研究方向:森林保护。Email:shi_juan@263.net 地址:同上

  • 中图分类号: S763

Feasibility analysis on species origin traceability by hydrogen stable isotope: sample case of Dendroctonus valens (Coleoptera: Scolytidae)

  • 摘要: 红脂大小蠹是一种外来蛀干类害虫,它可以通过自然传播和人为传播途径进行远距离扩散。目前最为有效的防治手段就是及时进行监测和预警,但是由于缺乏快速追踪和溯源的手段,使得防治工作变得困难。  目的  基于氢稳定同位素溯源技术,建立可用于追踪中国地区红脂大小蠹的溯源模型。  方法  从全球降水氢同位素数据库中下载中国地区的栅格数据,利用ArcGIS 10.4.1构建中国大陆地区降水氢同位素区划图(坐标系统为Beijing 1954)。在5个样地累计诱捕红脂大小蠹成虫153头,利用稳定同位素质谱仪和元素分析仪测定样品的氢稳定同位素比值(δ2H)。利用R软件构建红脂大小蠹与降水δ2H值的标准曲线方程。  结果  通过中国大陆地区降水氢同位素区划图得出:在东部季风区,降水δ2H值呈现出区域性变化,并大致表现为从东南向西北递减的梯度变化。5个样地的红脂大小蠹的δ2H值之间具有显著性差异。红脂大小蠹与降水的δ2H值呈正相关关系,并基于试验数据建立线性回归方程式:y = 3.166x + 86.050,经t检验、F检验、R2检验以及残差检验证明模型的显著性和匹配度都很高。  结论  红脂大小蠹的δ2H值与其生境中的降水δ2H值呈现出高度相关的线性关系,且降水δ2H值在红脂大小蠹分布区具有可用于判别的规律。因此,基于本试验的数学模型可以实现中国地区红脂大小蠹的溯源追踪。

     

  • 图  1  中国大陆地区降水氢同位素区划图

    Figure  1.  Zoning map of stable hydrogen isotopes during precipitation in mainland China

    图  2  红脂大小蠹与降水δ2H值之间的关系

    Figure  2.  Relationship of δ2H between D. valens and precipitation

    图  3  检验结果

    Figure  3.  Test results

    表  1  在中国的5个地理位置的红脂大小蠹δ2H稳定同位素值

    Table  1.   δ2H values of D. valens in five geographical locations in China

    地点
    Region
    经度
    Longitude
    纬度
    Latidude
    海拔
    Altitude/m
    红脂大小蠹δ2H测量值
    δ2H of D. valens (measured value)/‰
    降水δ2H理论值
    δ2H of precipitation (theoretical value)/‰
    CF (n = 3)118°24′E41°24′N1 089−143.7 ± 0.9−73
    YQ (n = 2)115°48′E40°30′N1 125−138.2 ± 1.2−70
    XY (n = 3)108°48′E35°18′N1 578−116.2 ± 2.2−64
    YA (n = 2)110°00′E35°48′N1 287−108.4 ± 0.4−61
    QS (n = 3)112°18′E35°48′N1 045−102.9 ± 2.7−60
    注:测量值用平均数 ± 标准差的形式表示,n表示生物学重复组数。CF为内蒙古自治区赤峰市,YQ为北京市延庆区,XY为陕西省咸阳市,YA为陕西省延安市,QS为山西省晋城市沁水县。下同。Notes: measured data are mean ± SD. n is biological replicates. CF represents Chifeng City in Inner Mongolia, YQ represents Yanqing District in Beijing, XY represents Xianyang City in Shaanxi Province, YA represents Yan’an City in Shaanxi Province, QS represents Qinshui County, Jincheng City in Shanxi Province. Same as below.
    下载: 导出CSV
  • [1] 张强, 陈安良, 郝双红, 等. 我国红脂大小蠹生物学与防治研究概况[J]. 西北林学院学报, 2004, 19(4):109−112. doi: 10.3969/j.issn.1001-7461.2004.04.031

    Zhang Q, Chen A L, Hao S H, et al. A survey of the study on the biology and control of Dendroctonus valens in China[J]. Journal of Northwest Forestry University, 2004, 19(4): 109−112. doi: 10.3969/j.issn.1001-7461.2004.04.031
    [2] 贾玉玲, 付晓兵, 朱建罡, 等. 桥山林区油松常见害虫发生规律与防治[J]. 陕西林业科技, 2015(4):73−75.

    Jia Y L, Fu X B, Zhu J B, et al. Pests often attacking Pinus tabulaeformis in Qiaoshan Forest region: occurrence rules and measures of control[J]. Shaanxi Forestry Science and Technology, 2015(4): 73−75.
    [3] 赵建兴, 杨忠岐, 任晓红, 等. 红脂大小蠹的生物学特性及在我国的发生规律[J]. 林业科学, 2008, 44(2):99−105. doi: 10.3321/j.issn:1001-7488.2008.02.015

    Zhao J X, Yang Z Q, Ren X H, et al. Biological characteristics and occurring law of Dendroctonus valens in China[J]. Scientia Silvae Sinicae, 2008, 44(2): 99−105. doi: 10.3321/j.issn:1001-7488.2008.02.015
    [4] 杨爽. 红脂大小蠹新传入地区监测和防控技术[J]. 河北林业科技, 2017(2):53−54.

    Yang S. Prevention and control technology of red turpentine beetle (Dendroctonus valens LeConte) in new afferent zone[J]. The Journal of Hebei Forestry Science and Technology, 2017(2): 53−54.
    [5] 蔺丹丹. 辽西地区红脂大小蠹防控技术[J]. 江西农业, 2018(10):8. doi: 10.3969/j.issn.1674-1479.2018.10.007

    Lin D D. Prevention and control technology of Dendroctonus valens in western Liaoning[J]. Jiangxi Agriculture, 2018(10): 8. doi: 10.3969/j.issn.1674-1479.2018.10.007
    [6] 徐洪儒, 李颖超, 李镇宇. 红脂大小蠹在中国成灾原因及扩散趋势分析[J]. 植物检疫, 2006, 2(5):278−280. doi: 10.3969/j.issn.1005-2755.2006.05.005

    Xu H R, Li Y C, Li Z Y. The analysis of outbreak reason and spread directions of Dendroctonus valens[J]. Plant Quarantine, 2006, 2(5): 278−280. doi: 10.3969/j.issn.1005-2755.2006.05.005
    [7] 王涛, 葛雪贞, 宗世祥. 气候变化条件下红脂大小蠹在中国的潜在适生区预测[J]. 环境昆虫学报, 2018, 40(4):758−768.

    Wang T, Ge X Z, Zong S X. Predicting the potential distribution in China of Dendroctonus valens LeConte[J]. Journal of Environmental Entomology, 2018, 40(4): 758−768.
    [8] 万宣伍. 基于分子标记的桔小实蝇起源地推断、扩散路径重构及扩散模式研究[D]. 重庆: 西南大学, 2012.

    Wan X W. Inference on the origin, colonization routes and dispersal patterns of the oriental friut fly, Bactrocera dorsalis (Hendel), based on molecular markers[D]. Chongqing: Southwest University, 2012.
    [9] Djoumad A, Nisole A, Zahiri R, et al. Comparative analysis of mitochondrial genomes of geographic variants of the gypsy moth, Lymantria dispar, reveals a previously undescribed genotypic entity[J]. Scientific Reports, 2017, 7(1): 1−12. doi: 10.1038/s41598-016-0028-x
    [10] Hendrix W H, Showers W B. Tracing black cutworm and armyworm (Lepidoptera: Noctuidae) northward migration using Pithecellobium and Calliandra pollen[J]. Environmental Entomology, 1992, 21(5): 1092−1096. doi: 10.1093/ee/21.5.1092
    [11] Lingren P D, Bryant V M, Raulston J R, et al. Adult feeding host range and migratory activities of com earworm, cabbage looper, and celery looper (Lepidoptera: Noctuidae) moths as evidenced by attached pollen[J]. Journal of Economic Entomology, 1993, 86(5): 1429−1439. doi: 10.1093/jee/86.5.1429
    [12] 郭波莉, 魏益民, 潘家荣. 同位素指纹分析技术在食品产地溯源中的应用进展[J]. 农业工程学报, 2007, 23(3):284−289. doi: 10.3321/j.issn:1002-6819.2007.03.055

    Guo B L, Wei Y M, Pan J R. Progress in the application of isotopic fingerprint analysis to food origin traceability[J]. Transactions of the Chinese Society of Agricultural Engineering, 2007, 23(3): 284−289. doi: 10.3321/j.issn:1002-6819.2007.03.055
    [13] Peterson B J, Fry B. Stable isotopes in ecosystem studies[J]. Annual Review of Ecology and Systematics, 1987, 1(18): 293−320.
    [14] Hobson K A. Isotopic ornithology: a perspective[J]. Journal of Ornithology, 2011, 152(1): 49−66.
    [15] Hobson K A, Clark R G. Assessing avian diets using stable isotopes(I): turnover of 13C in tissues[J]. Condor, 1992, 94(1): 181−188. doi: 10.2307/1368807
    [16] Schell D, Saupe S M, Haubenstock N. Bowhead whale (Balaena mysticetus) growth and feeding as estimated by δ13C techniques[J]. Marine Biology, 1989, 103(4): 433−443. doi: 10.1007/BF00399575
    [17] Hobson K A. Tracing origins and migration of wildlife using stable isotopes: a review[J]. Oecologia, 1999, 120(3): 314−326. doi: 10.1007/s004420050865
    [18] Wassenaar L I, Hobson K A. Natal origins of migratory monarch butterflies at wintering colonies in Mexico: new isotopic evidence[J]. Proceedings of the National Academy of Sciences, 1998, 95(26): 15436−15439. doi: 10.1073/pnas.95.26.15436
    [19] Hobson K A, Taylor L I W A. Stable isotopes (δD and δ13C) are geographic indicators of natal origins of monarch butterflies in eastern North America[J]. Oecologia, 1999, 120(3): 397−404. doi: 10.1007/s004420050872
    [20] Hungate B A, Kearns D N, Kiona O, et al. Hydrogen isotopes as a sentinel of biological invasion by the Japanese beetle, Popillia japonica (Newman)[J/OL]. PLoS ONE, 2016, 11(3): e0149599 [2019−03−19]. DOI: 10.1371/journal.pone.0149599.
    [21] Liu J R, Song X F, Yuan G F, et al. Characteristics of δ18O in precipitation over eastern Monsoon China and the water vapor sources[J]. Chinese Science Bulletin, 2010, 55(2): 200−211. doi: 10.1007/s11434-009-0202-7
    [22] Bowen G J, Wilkinson B. Spatial distribution of δ18O in meteoric precipitation[J]. Geology, 2015, 30(4): 315−318.
    [23] Tanaka R, Nakamura E. Determination of 17O-excess of terrestrial silicate/oxide minerals with respect to Vienna Standard Mean Ocean Water (VSMOW)[J]. Rapid Communications in Mass Spectrometry, 2013, 27(2): 285−297. doi: 10.1002/rcm.6453
    [24] Bowen G J. Waterisotopes database[DB/OL]. 2003[2019−02−21]. http://www.waterisotopes.org.
    [25] Bowen G J, Wassenaar L I, Hobson K A. Global application of stable hydrogen and oxygen isotopes to wildlife forensics[J]. Oecologia, 2005, 143(3): 337−348. doi: 10.1007/s00442-004-1813-y
  • 加载中
图(3) / 表(1)
计量
  • 文章访问数:  317
  • HTML全文浏览量:  107
  • PDF下载量:  23
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-11-21
  • 修回日期:  2021-04-13
  • 网络出版日期:  2021-05-18
  • 刊出日期:  2021-05-27

目录

    /

    返回文章
    返回