高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

太白山锐齿栎林地上生物量分布

尉文 庞荣荣 彭潔莹 张硕新 闫琰

尉文, 庞荣荣, 彭潔莹, 张硕新, 闫琰. 太白山锐齿栎林地上生物量分布[J]. 北京林业大学学报, 2019, 41(12): 69-76. doi: 10.12171/j.1000-1522.20190440
引用本文: 尉文, 庞荣荣, 彭潔莹, 张硕新, 闫琰. 太白山锐齿栎林地上生物量分布[J]. 北京林业大学学报, 2019, 41(12): 69-76. doi: 10.12171/j.1000-1522.20190440
Yu Wen, Pang Rongrong, Peng Jieying, Zhang Shuoxin, Yan Yan. Above-ground biomass distribution of Quercus aliena var. acuteserrata forest in Taibai Mountain[J]. Journal of Beijing Forestry University, 2019, 41(12): 69-76. doi: 10.12171/j.1000-1522.20190440
Citation: Yu Wen, Pang Rongrong, Peng Jieying, Zhang Shuoxin, Yan Yan. Above-ground biomass distribution of Quercus aliena var. acuteserrata forest in Taibai Mountain[J]. Journal of Beijing Forestry University, 2019, 41(12): 69-76. doi: 10.12171/j.1000-1522.20190440

太白山锐齿栎林地上生物量分布

doi: 10.12171/j.1000-1522.20190440
基金项目: 国家自然科学基金青年项目(31700380),中央高校基本科研业务费专项(2452016139)
详细信息
    作者简介:

    尉文。主要研究方向:森林生态学。Email:yw2358200052@126.com 地址:712100 陕西省杨凌示范区西北农林科技大学林学院

    责任作者:

    张硕新,博士,教授。主要研究方向:生态学。Email:sxzhang@nwafu.edu.cn 地址:同上。闫琰,博士,讲师。主要研究方向:森林生态学。Email:yanyanemail@nwafu.edu.cn 地址:同上

  • 中图分类号: S798.189

Above-ground biomass distribution of Quercus aliena var. acuteserrata forest in Taibai Mountain

  • 摘要: 目的生物量是全球气候变化背景下估计碳储量的重要依据,太白山为秦岭主峰,了解其森林的生物量分配特征,将为秦岭植被恢复过程中森林固碳动态提供依据和参考。方法以太白山锐齿栎原始林和次生林1.5 hm2样地中所有胸径(DBH) ≥ 1 cm木本植物数据和地形及土壤养分数据为基础,用单因素方差分析比较了林分中地上生物量分配特征及其随生境、尺度和径级的变化规律。结果锐齿栎原始林和次生林样地平均地上生物量分别是279.50 t/hm2和217.81 t/hm2,且不同生境中的地上生物量各有差异:在原始林土壤全氮含量较高的生境中地上生物量较小,而次生林中速效磷含量较高的生境中地上生物量也较小。同时,在原始林凹凸度较大的生境,其地上生物量较大。在相同取样尺度下原始林样地的地上生物量均大于次生林;而在同一块样地中地上生物量与取样尺度不相关。原始林各径级平均地上生物量随径级的增加表现出先增加后减小的趋势,且在第Ⅵ径级中的平均地上生物量最大。次生林各径级平均地上生物量随径级的增加而增大。在第Ⅳ ~ Ⅶ径级中,原始林平均地上生物量显著高于次生林,而在第Ⅸ径级中,原始林平均地上生物量小于次生林。结论因此,本研究结果表明干扰、生境异质性、径级大小均会影响太白山锐齿栎林的地上生物量分布。

     

  • 图  1  样地生境分类

    AP. 速效磷;TN. 全氮。AP, available phophorus; TN, total nitrogen.

    Figure  1.  Multivariate regression tree for habitats in the forest sample plots

    图  2  不同生境中的地上生物量分布Fig. 2 Distribution of above-ground biomass in different habitats

    不同小写字母表示一个样地不同生境的地上生物量有显著性差异(P < 0.05)。Different lowercase letters indicate significant differences in the above-ground biomass at different habitats in one plot (P < 0.05).

    图  3  不同取样尺度地上生物量分布

    相同大写字母表示同一样地不同尺度的地上生物量无显著性差异(P > 0.05);不同小写字母表示不同样地同一尺度的地上生物量有显著性差异(P < 0.05)。The same uppercase letters indicate no significant difference in the above-ground biomass at different sampling scales in one plot (P > 0.05), and the different lowercase letters indicate significant differences in the above-ground biomass at same sampling scales in PF and SF plot (P < 0.05).

    Figure  3.  Comparisons in above-ground biomass at the three sampling scales among PF and SF

    图  4  不同径级地上生物量分布

    Figure  4.  Distribution of above-ground biomass in different DBH classes

    表  1  样地基本概况

    Table  1.   Basic summary of Q. aliena var. acuteserrata permanent plots

    林型
    Forest type
    经纬度
    Longitude and latitude
    海拔
    Altitude/m
    物种数
    Number of species
    个体数
    Number of trees
    平均胸径
    Mean DBH/cm
    胸高断面积/(m2·hm− 2
    Basal area/(m2·ha− 1)
    原始林
    Primary forest (PF)
    34°03′45″N
    107°41′42″E
    1 755.04 ~ 1 827.67472 84011.539.092 5
    次生林
    Secondary forest (SF)
    34°04′63″N
    107°41′49″E
    1 365.01 ~ 1 448.17652 839 9.431.396 9
    下载: 导出CSV

    表  2  不同树种(组)的生物量模型和参数

    Table  2.   Biomass models and parameters of different tree species (or groups)

    树种(组)
    Tree species (or group)
    生物量模型和参数
    Biomass model and parameter
    胸径范围
    DBH range/cm
    文献
    Literature
    锐齿栎 Q. aliena var. acuteserrataWT = 0.204 84D2.061 67 < 5 cm[26]
    WT = 0.093 93D2.546 08 ≥ 5 cm
    油松 Pinus tabuliformisWS = 0.145 0D2.156 7; WB = 0.067 3D1.978 1; WL = 0.060 0D1.932 9所有径级
    All of DBH class
    [27]
    华山松 Pinus armandiiWS = 0.078 7D2.282 3; WB = 0.027 0D2.366 4; WL = 0.004 6D2.554 0
    其他阔叶类 Other broadleaved treesWS = 0.113 6D2.153 9; WB = 0.013 6D2.537 6; WL = 0.015 8D2.064 7 < 10 cm
    WS = 0.102 8D2.198 8; WB = 0.013 0D2.556 9; WL = 0.015 6D2.069 610 ~ 20 cm
    WS = 0.095 3D2.224 6; WB = 0.012 5D2.569 9; WL = 0.015 4D2.073 6 > 20 cm
    注:WSWBWLWT分别为树干、树枝、树叶和地上生物量,D为胸径。Notes: WS, WB, WL and WT are biomass of stem, branch, leave and above-ground total, respectively, D indicates DBH of tree.
    下载: 导出CSV

    表  3  不同径级地上生物量分布

    Table  3.   Distribution of above-ground biomass in different DBH classes

    径级 DBH class/cm 原始林 PF次生林 SF
    地上生物量/(t·hm− 2
    Above-ground biomass/(t·ha− 1)
    比率
    Ratio/%
    地上生物量/(t·hm− 2
    Above-ground biomass/(t·ha− 1)
    比率
    Ratio/%
    Ⅰ (1 ≤ DBH < 5) 1.19 ± 0.66A 0.43 1.67 ± 0.65B 0.76
    Ⅱ (5 ≤ DBH < 10) 1.48 ± 1.44A 0.53 1.91 ± 1.59A 0.88
    Ⅲ (10 ≤ DBH < 15) 3.70 ± 2.61A 1.31 3.49 ± 3.06A 1.60
    Ⅳ (15 ≤ DBH < 20) 20.95 ± 7.81A 7.43 11.65 ± 12.45B 5.33
    Ⅴ (20 ≤ DBH < 25) 51.48 ± 12.06A 18.26 22.90 ± 32.30B 10.49
    Ⅵ (25 ≤ DBH < 30) 77.89 ± 26.02A 27.63 36.60 ± 40.67B 16.76
    Ⅶ (30 ≤ DBH < 35) 57.84 ± 28.97A 20.52 39.46 ± 31.38B 18.06
    Ⅷ (35 ≤ DBH < 40) 41.46 ± 30.42A 14.70 43.94 ± 32.10A 20.11
    Ⅸ (DBH ≥ 40) 25.92 ± 46.19A 9.19 56.82 ± 52.11A 26.01
    注:不同大写字母表示两个样地同一径级的地上生物量有显著性差异(P < 0.05)。
    Note: different uppercase letters indicate significant differences in the above-ground biomass at same DBH class in PF and SF (P < 0.05).
    下载: 导出CSV
  • [1] Temesgen H, Ver Hoef J M. Evaluation of the spatial linear model, random forest and gradient nearest-neighbour methods for imputing potential productivity and biomass of the Pacific Northwest forests[J]. Forestry, 2015, 88(1): 131−142. doi: 10.1093/forestry/cpu036
    [2] Shen A, Wu C, Jiang B, et al. Spatiotemporal variations of aboveground biomass under different terrain conditions[J/OL]. Forests, 2018, 9(12), 778 [2019−10−12]. https://doi.org/10.3390/f9120778.
    [3] Jagodziński A M, Dyderski M K, Gęsikiewicz K, et al. Effects of stand features on aboveground biomass and biomass conversion and expansion factors based on a Pinus sylvestris L. chronosequence in Western Poland[J]. European Journal of Forest Research, 2019, 138: 673−683. doi: 10.1007/s10342-019-01197-z
    [4] Wasof S, Lenoir J, Hattab T, et al. Dominance of individual plant species is more important than diversity in explaining plant biomass in the forest understorey[J]. Journal of Vegetation Science, 2018, 29(3): 521−531. doi: 10.1111/jvs.12624
    [5] Mcewan R W, Lin Y C, Sun I F, et al. Topographic and biotic regulation of aboveground carbon storage in subtropical broad-leaved forests of Taiwan[J]. Forest Ecology and Management, 2011, 262(9): 1817−1825. doi: 10.1016/j.foreco.2011.07.028
    [6] Liu D M, Lai J S, Muller-Landau H C, et al. Topographic variation in aboveground biomass in a subtropical evergreen broad-leaved forest in China[J/OL]. PLoS One, 2013, 8(5) [2019−10−25]. https://doi.org/10.1371/journal.pone.0048244.
    [7] 郭屹立, 王斌, 向悟生, 等. 喀斯特季节性雨林木本植物胸高断面积分布格局及其对地形因子的响应[J]. 生物多样性, 2016, 24(1):30−39. doi: 10.17520/biods.2015207

    Guo Y L, Wang B, Xiang W S, et al. Responses of spatial pattern of woody plants’ basal area to topographic factors in a tropical karst seasonal rainforest in Nonggang, Guangxi, southern China[J]. Biodiversity Science, 2016, 24(1): 30−39. doi: 10.17520/biods.2015207
    [8] Castilho C V D, Magnusson W E, Araújo R N O D, et al. Variation in aboveground tree live biomass in a central Amazonian forest: effects of soil and topography[J]. Forest Ecology and Management, 2006, 234(1−3): 85−96. doi: 10.1016/j.foreco.2006.06.024
    [9] Axmanová I, Zeleny D, Li C F, et al. Environmental factors influencing herb layer productivity in Central European oak forests: insights from soil and biomass analyses and a phytometer experiment[J]. Plant and Soil, 2011, 342(1−2): 183−194. doi: 10.1007/s11104-010-0683-9
    [10] Paoli G D, Curran L M, Slik J W F. Soil nutrients affect spatial patterns of aboveground biomass and emergent tree density in southwestern Borneo[J]. Oecologia, 2008, 155(2): 287−299. doi: 10.1007/s00442-007-0906-9
    [11] Douxchamps S, Frossard E, Uehlinger N, et al. Identifying factors limiting legume biomass production in a heterogeneous on-farm environment[J]. Journal of Agriculture Science, 2012, 150(6): 675−690. doi: 10.1017/S0021859611000931
    [12] Liu J J, Tan Y H, Slik J W F. Topography related habitat associations of tree species traits, composition and diversity in a Chinese tropical forest[J]. Forest Ecology and Management, 2014, 330: 75−81. doi: 10.1016/j.foreco.2014.06.045
    [13] 彭密. 胜山阔叶红松林乔木层生物量的空间变异及其模拟[D]. 哈尔滨: 东北林业大学, 2017.

    Peng M. Spatial variability and simulation of biomass of arbor layer of broad-leaved Korean pine forest in Shengshan[D]. Harbin: Northeast Forestry University, 2017.
    [14] Li Y, Dong S K, Liu S L, et al. Relationships between plant diversity and biomass production of alpine grasslands are dependent on the spatial scale and the dimension of biodiversity[J]. Ecological Engineering, 2019, 127: 375−382. doi: 10.1016/j.ecoleng.2018.12.015
    [15] Fleishman E, Noss R F, Noon B R. Utility and limitations of species richness metrics for conservation planning[J]. Ecological Indicators, 2006, 6(3): 543−553. doi: 10.1016/j.ecolind.2005.07.005
    [16] Vilà M, Carrillo-Gavilán A, Vayreda J, et al. Disentangling biodiversity and climatic determinants of wood production[J/OL]. PLoS One, 2013 [2019−10−19]. https://doi.org/10.1371/journal.pone.0053530.
    [17] Jucker T, Bouriaud O, Avacaritei D, et al. Competition for light and water play contrasting roles in driving diversity-productivity relationships in Iberian forests[J]. Journal of Ecology, 2014, 102(5): 1202−1213. doi: 10.1111/1365-2745.12276
    [18] Wang W F, Lei X D, Ma Z H, et al. Positive relationship between aboveground carbon stocks and structural diversity in Spruce-dominated forest stands in New Brunswick, Canada[J]. Forest Science, 2011, 57(6): 506−515.
    [19] 谭珊珊, 王忍忍, 龚筱羚, 等. 群落物种及结构多样性对森林地上生物量的影响及其尺度效应: 以巴拿马BCI样地为例[J]. 生物多样性, 2017, 25(10):1054−1064.

    Tan S S, Wang R R, Gong X L, et al. Scale dependent effects of species diversity and structural diversity on aboveground biomass in a tropical forest on Barro Colorado Island, Panama[J]. Biodiversity Science, 2017, 25(10): 1054−1064.
    [20] Hughes J B, Roughgarden J. Species diversity and biomass stability[J]. The American Naturalist, 2000, 155(5): 618−627. doi: 10.1086/303348
    [21] Grace J B, Anderson T M, Seabloom E W, et al. Integrative modelling reveals mechanisms linking productivity and plant species richness[J]. Nature, 2016, 529: 390−393. doi: 10.1038/nature16524
    [22] Ali A, Yan E R, Chen H Y H, et al. Stand structural diversity rather than species diversity enhances\aboveground carbon storage in secondary subtropical forests in Eastern China[J]. Biogeosciences, 2016, 13(16): 4627−4635. doi: 10.5194/bg-13-4627-2016
    [23] Zhang Y, Chen H Y H, Taylor A R. Positive species diversity and above-ground biomass relationships are ubiquitous across forest strata despite interference from overstorey trees[J]. Functional Ecology, 2017, 31: 419−426. doi: 10.1111/1365-2435.12699
    [24] Chave J, Andalo C, Brown S, et al. Tree allometry and improved estimation of carbon stocks and balance in tropical forests[J]. Oecologia, 2005, 145(1): 87−99. doi: 10.1007/s00442-005-0100-x
    [25] Xu J S, Chai Y F, Wang M, et al. Shifts in plant community assembly processes across growth forms along a habitat severity gradient: a test of the plant functional trait approach[J]. Front Plant Sci, 2018, 9: 180. doi: 10.3389/fpls.2018.00180
    [26] LY/T 2658—2016, 国家林业局. 立木生物量模型及碳计量参数—栎树[S]. 北京: 中国标准出版社, 2017.

    LY/T 2659—2016, State Forestry Administration. Tree biomass models and related parameters to carbon accounting for Quercus[S]. Beijing: China Forestry Publishing House, 2017.
    [27] 周国逸, 尹光彩, 唐旭利, 等. 中国森林生态系统碳储量: 生物量方程[M]. 北京: 科学出版社, 2018.

    Zhou G Y, Yin G C, Tang X L, et al. Carbon storage of forest ecosystem, biomass equation in China[M]. Beijing: Science Press, 2018.
    [28] Harms K E, Condit R, Hubbell S P, et al. Habitat associations of trees and shrubs in a 50 ha neotropical forest plot[J]. Journal of Ecology, 2001, 89(6): 947−959. doi: 10.1111/j.1365-2745.2001.00615.x
    [29] 鲍士旦. 土壤农化分析[M]. 北京: 中国农业出版社, 2007.

    Bao S D. Analysis of soil agrochemical[M]. Beijing: China Agriculture Press, 2007.
    [30] 赖江山, 米湘成, 任海保, 等. 基于多元回归树的常绿阔叶林群丛数量分类:以古田山24公顷森林样地为例[J]. 植物生态学报, 2010, 34(7):761−769.

    Lai J S, Mi X C, Ren H B, et al. Numerical classification of associations in subtropical evergreen broad-leaved forest based on multivariate regression trees, a case study of 24 hm2 Gutianshan forest plot in China[J]. Chinese Journal of Plant Ecology, 2010, 34(7): 761−769.
    [31] Mascaro J, Asner G P, Muller-Landau H C, et al. Controls over aboveground forest carbon density on Barro Colorado Island, Panama[J]. Biogeosciences, 2011, 8(6): 1615−1629. doi: 10.5194/bg-8-1615-2011
    [32] Ryan M G, Stape J L, Binkley D, et al. Factors controlling Eucalyptus productivity: how water availability and stand structure alter production and carbon allocation[J]. Forest Ecology and Management, 2010, 259(9): 1695−1703. doi: 10.1016/j.foreco.2010.01.013
    [33] Toledo M, Poorter L, Pena-Claros M, et al. Climate is a stronger driver of tree and forest growth rates than soil and disturbance[J]. Journal of Ecology, 2011, 99(1): 254−264. doi: 10.1111/j.1365-2745.2010.01741.x
    [34] Yuan Z Q, Gazol A, Wang X G, et al. Pattern and dynamics of biomass stock in old growth forests: the role of habitat and tree size[J]. Acta Oecologica, 2016, 75: 15−23. doi: 10.1016/j.actao.2016.06.007
    [35] Pedro M S, Rammer W, Seidl R, et al. Disentangling the effects of compositional and structural diversity on forest productivity[J]. Journal of Vegetation Science, 2017, 28: 649−658. doi: 10.1111/jvs.12505
    [36] Stephenson N L, Das A J, Condit R, et al. Rate of tree carbon accumulation increases continuously with tree size[J]. Nature, 2014, 507: 90−93. doi: 10.1038/nature12914
    [37] Pach M, Podlaski R. Tree diameter structural diversity in Central European forests with Abies alba and Fagus sylvatica: managed versus unmanaged forest stands[J]. Ecological Research, 2015, 30(2): 367−384. doi: 10.1007/s11284-014-1232-4
    [38] Slik J W F, Paoli G, McGuire K, et al. Large trees drive forest aboveground biomass variation in moist lowland forests across the tropics[J]. Global Ecology & Biogeography, 2014, 229(12): 1261−1271.
  • 加载中
图(4) / 表(3)
计量
  • 文章访问数:  1166
  • HTML全文浏览量:  522
  • PDF下载量:  69
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-11-15
  • 修回日期:  2019-11-29
  • 网络出版日期:  2019-12-05
  • 刊出日期:  2019-12-01

目录

    /

    返回文章
    返回