高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

镉胁迫对黑杨派无性系生理生化特性及生长的影响

姚俊修 陈甘牛 李善文 乔艳辉 仲伟国 李庆华 董玉峰 吴德军

姚俊修, 陈甘牛, 李善文, 乔艳辉, 仲伟国, 李庆华, 董玉峰, 吴德军. 镉胁迫对黑杨派无性系生理生化特性及生长的影响[J]. 北京林业大学学报, 2020, 42(4): 12-20. doi: 10.12171/j.1000-1522.20190462
引用本文: 姚俊修, 陈甘牛, 李善文, 乔艳辉, 仲伟国, 李庆华, 董玉峰, 吴德军. 镉胁迫对黑杨派无性系生理生化特性及生长的影响[J]. 北京林业大学学报, 2020, 42(4): 12-20. doi: 10.12171/j.1000-1522.20190462
Yao Junxiu, Chen Ganniu, Li Shanwen, Qiao Yanhui, Zhong Weiguo, Li Qinghua, Dong Yufeng, Wu Dejun. Physiological and biochemical properties and growth of Aigeiros clones under cadmium stress[J]. Journal of Beijing Forestry University, 2020, 42(4): 12-20. doi: 10.12171/j.1000-1522.20190462
Citation: Yao Junxiu, Chen Ganniu, Li Shanwen, Qiao Yanhui, Zhong Weiguo, Li Qinghua, Dong Yufeng, Wu Dejun. Physiological and biochemical properties and growth of Aigeiros clones under cadmium stress[J]. Journal of Beijing Forestry University, 2020, 42(4): 12-20. doi: 10.12171/j.1000-1522.20190462

镉胁迫对黑杨派无性系生理生化特性及生长的影响

doi: 10.12171/j.1000-1522.20190462
基金项目: 山东省重点研发计划项目(2017GNC11115),林业科技发展项目(KJZXZZ2019015)
详细信息
    作者简介:

    姚俊修,博士,高级工程师。主要研究方向:林木遗传育种。Email:yjx95289528@163.com 地址:250014山东省济南市历下区文化东路42号山东省林业科学研究院

    责任作者:

    李善文,博士,研究员。主要研究方向:林木遗传育种。Email:lishanwen66@163.com 地址:同上

  • 中图分类号: S722.3

Physiological and biochemical properties and growth of Aigeiros clones under cadmium stress

  • 摘要: 目的为研究重金属Cd对林木生理生化特性的影响,探讨林木对Cd胁迫的响应机制,为日渐严重的土壤重金属污染治理提供依据。方法对黑杨派的5个无性系进行沙培试验,测定其地径和苗高生长量及8个生理生化指标,评价不同无性系抗Cd2+胁迫的能力。结果镉胁迫导致无性系的CAT及MDA含量较CK呈先增加后减少的趋势;POD和SOD活性较CK也呈先增大后减小的变化趋势,其中L35、鲁林9号、鲁林16号的POD活性始终排在前3位;随着镉处理浓度的增加,无性系L35、I-107和中菏1号的脯氨酸及可溶性糖含量较CK均呈现逐渐上升趋势,而叶绿素含量均呈先增加后减少的趋势,L35、I-107和中菏1号的叶绿素含量始终排在前3位。各无性系的地径和苗高在Cd胁迫下存在差异,苗高达到显著水平,而地径未达到显著水平,表明参试无性系苗高性状较地径对Cd的胁迫更为敏感。结论利用主成分分析对5个无性系生长量及生理生化指标进行综合评价,L35、中菏1号和I-107的抗重金属Cd能力较强,可作为修复重金属镉污染土壤的理想无性系。

     

  • 图  1  不同Cd2+质量浓度对不同无性系地径的影响

    不同小写字母表示同一处理不同无性系间差异显著(P < 0.05)。下同。Different lowercase letters indicate that there are significant differences among different clones in the same treatment (P < 0.05). The same below.

    Figure  1.  Effects of Cd2+ with different mass concentrations on ground diameter of different clones

    图  2  不同Cd2+质量浓度对不同无性系苗高的影响

    Figure  2.  Effects of Cd2+ with different mass concentrations on seedling height of different clones

    图  3  Cd胁迫对5个黑杨无性系CAT活性的影响

    Figure  3.  Effects of Cd stress on CAT activity of five Aigeiros clones

    图  4  Cd胁迫对5个黑杨派无性系MDA含量的影响

    Figure  4.  Effects of Cd stress on MDA content of five Aigeiros clones

    图  5  Cd胁迫对5个黑杨派无性系POD活性的影响

    Figure  5.  Effects of Cd stress on POD activity of five Aigeiros clones

    图  6  Cd胁迫对5个黑杨派无性系SOD活性的影响

    Figure  6.  Effects of Cd stress on SOD activity of five Aigeiros clones

    图  7  Cd胁迫对5个黑杨派无性系电导率的影响

    Figure  7.  Effects of Cd stress on conductivityof five Aigeiros clones

    图  8  Cd胁迫对5个黑杨派无性系可溶性糖含量的影响

    Figure  8.  Effects of Cd stress on soluble sugarcontent of five Aigeiros clones

    图  9  Cd胁迫对5个黑杨派无性系脯氨酸含量的影响

    Figure  9.  Effects of Cd stress on proline content of five Aigeiros clones

    图  10  Cd胁迫对5个黑杨派无性系叶绿素含量的影响

    Figure  10.  Effects of Cd stress on chlorophyll content of five Aigeiros clones

    表  1  黑杨派无性系Cd胁迫下的主成分分析

    Table  1.   Principal component analysis on Aigeiros clones under Cd stress

    测定指标 Testing index第一主成分 Prin1第二主成分 Prin2第三主成分 Prin3第四主成分 Prin4
    特征根 Characteristic root 4.622 4 2.583 4 1.457 2 1.336 9
    累计贡献 Cumulative contribution rate/% 46.224 8 72.059 2 86.631 5 100.000 0
    苗高 Seedling height 0.076 6 0.536 2 0.381 8 −0.115 6
    地径 Ground diameter −0.462 7 0.046 6 0.053 4 −0.022 2
    过氧化氢酶 CAT −0.348 5 −0.281 2 −0.009 1 0.418 7
    丙二醛 MDA 0.177 7 0.000 1 −0.710 0 −0.299 0
    过氧化物酶 POD −0.085 6 0.490 2 −0.024 2 0.507 6
    超氧化物歧化酶 SOD 0.246 7 −0.401 6 0.387 6 0.249 3
    电导率 Electrical conductivity 0.354 3 0.305 5 −0.197 6 0.301 8
    可溶性糖 Soluble sugar 0.414 4 0.059 1 −0.108 2 0.367 3
    脯氨酸 Proline 0.352 2 0.067 4 0.381 7 −0.389 4
    叶绿素 Chlorophyll 0.371 0 −0.358 2 0.003 1 0.155 2
    下载: 导出CSV

    表  2  5个无性系的主成分值及其排序

    Table  2.   Principal component values and ranking of 5 Aigeiros clones

    项目
    Item
    I-107
    P. × euramericana ‘Neva’
    中菏1号
    P. deltoides‘Zhonghe 1’
    L35
    P. × euramericana ‘L35’
    鲁林16号
    P. deltoides‘Lulin 16’
    鲁林9号
    P. deltoides‘Lulin 9’
    主成分值
    Principal component value
    0.225 61.783 02.363 4−2.427 6−1.944 4
    排序 Order32154
    下载: 导出CSV
  • [1] Hu H, Jin Q, Kavan P. A study of heavy metal pollution in China: current status, pollution-control policies and countermeasures[J]. Sustainability, 2014, 6(9): 5820−5838. doi: 10.3390/su6095820
    [2] Ponsbranchu E, Ayrault S, Roybarman M, et al. Three centuries of heavy metal pollution in Paris (France) recorded by urban speleothems[J]. Science of the Total Environment, 2015, 518−519: 86−96. doi: 10.1016/j.scitotenv.2015.02.071
    [3] 杨海琳. 土壤重金属污染修复的研究[J]. 环境科学与管理, 2009, 34(6):130−135. doi: 10.3969/j.issn.1673-1212.2009.06.038

    Yang H L. Remediation of heavy metal polluted soil[J]. Environmental Science and Management, 2009, 34(6): 130−135. doi: 10.3969/j.issn.1673-1212.2009.06.038
    [4] 吴双桃. 镉污染土壤治理的研究进展[J]. 广东化工, 2005(4):40−41, 50. doi: 10.3969/j.issn.1007-1865.2005.04.015

    Wu S T. The latest development about the remedy of Cd contaminated soil[J]. Guangdong Chemical Industry, 2005(4): 40−41, 50. doi: 10.3969/j.issn.1007-1865.2005.04.015
    [5] 王娜, 魏样. 土壤重金属镉污染来源及其修复技术探究[J]. 环境与发展, 2019, 31(8):55−56, 58.

    Wang N, Wei Y. Study on sources of heavy metal cadmium pollution in soil and its remediation technology[J]. Environment and Development, 2019, 31(8): 55−56, 58.
    [6] 周东美, 邓昌芬. 重金属污染土壤的电动修复技术研究进展[J]. 农业环境科学学报, 2003, 22(4):505−508. doi: 10.3321/j.issn:1672-2043.2003.04.031

    Zhou D M, Deng C F. Review: electrokinetic remediation of heavy metal contaminated soil[J]. Journal of Agro-environment, Science, 2003, 22(4): 505−508. doi: 10.3321/j.issn:1672-2043.2003.04.031
    [7] 樊霆, 叶文玲, 陈海燕, 等. 农田土壤重金属污染状况及修复技术研究[J]. 生态环境, 2013, 22(10):1727−1736.

    Fan T, Ye W L, Chen H Y, et al. Review on contamination and remediation technology of heavy metal in agricultural soil[J]. Ecology and Environmental Sciences, 2013, 22(10): 1727−1736.
    [8] Reysens I L, Blust R, De Temme R, et al. Clonal variation in heavy metal accumulation and biomass production in a poplar coppice culture(I): seasonal variation in leaf, wood and bark concentrations[J]. Environmental Pollution, 2004, 131(3): 485−494. doi: 10.1016/j.envpol.2004.02.009
    [9] Mihucz V G, Csog A, Fodor F, et al. Impact of two iron (Ⅲ) chelators on the iron, cadmium, lead and nickel accumulation in poplar grown under heavy metal stress in hydroponics[J]. Journal of Plant Physiology, 2012, 169(6): 561−566. doi: 10.1016/j.jplph.2011.12.012
    [10] Elobeid M, Gobel C, Feussne R I, et al. Cadmium interferes with auxin physiology and lignification in poplar[J]. Journal of Experimental Botany, 2012, 63(3): 1413−1421. doi: 10.1093/jxb/err384
    [11] 姜岳忠, 李善文, 秦光华, 等. 黑杨派无性系区域化试验初报[J]. 林业科学, 2006, 42(12):143−147. doi: 10.3321/j.issn:1001-7488.2006.12.026

    Jiang Y Z, Li S W, Qin G H, et al. Regional test of poplar clones in section Aigeiros[J]. Scientia Silvae Sinicae, 2006, 42(12): 143−147. doi: 10.3321/j.issn:1001-7488.2006.12.026
    [12] 张春燕, 王瑞刚, 范稚莲, 等. 杨树和柳树富集Cd、Zn、Pb的品种差异性[J]. 农业环境科学学报, 2013, 32(3):530−538.

    Zhang C Y, Wang R G, Fan Z L, et al. Difference in cadmium, zinc and lead accumulation of poplar and willow species[J]. Journal of Agro-Environment Science, 2013, 32(3): 530−538.
    [13] 何佳丽. 杨树对重金属镉胁迫的分子生理响应机制研究[D]. 杨凌: 西北农林科技大学, 2014.

    He J L.A study on mechanisms of molecular and physiological responses to cadmium in Populus species[D]. Yangling: Northwest A&F University, 2014.
    [14] 郑慧芳. 镉胁迫下杨树耐受性和次生生长的氮、硅调控[D]. 杨凌: 西北农林科技大学, 2018.

    Zheng H F.The regulation of the tolerance of poplar and the secondary growth of nitrogen and silicon under cadmium stress[D]. Yangling: Northwest A&F University, 2018.
    [15] 杨传宝, 孙超, 李善文, 等. 白杨派无性系苗期耐盐性综合评价及筛选[J]. 北京林业大学学报, 2017, 39(10):24−32.

    Yang C B, Sun C, Li S W, et al. Comprehensive evaluation and screening of salt tolerance for Leuce clones at nursery stage[J]. Journal of Beijing Forestry University, 2017, 39(10): 24−32.
    [16] 杨传宝, 倪惠菁, 李善文, 等. 白杨派无性系苗期对NaHCO3胁迫的生长生理响应及耐盐碱性综合评价[J]. 植物生理学报, 2016, 52(10):1555−1564.

    Yang C B, Ni H J, Li S W, et al. Growth and physiological responses to NaHCO3 stress and comprehensive evaluation on saline-alkaline tolerance in Leuce clones at seedling stage[J]. Plant Physiology Journal, 2016, 52(10): 1555−1564.
    [17] 杨传宝, 姚俊修, 李善文, 等. 白杨派无性系苗期对干旱胁迫的生长生理响应及抗旱性综合评价[J]. 北京林业大学学报, 2016, 38(5):58−66.

    Yang C B, Yao J X, Li S W, et al. Growth and physiological responses to drought stress and comprehensive evaluation on drought tolerance in Leuce clones at nursery stage[J]. Journal of Beijing Forestry University, 2016, 38(5): 58−66.
    [18] 万雪琴, 张帆, 夏新莉, 等. 镉胁迫对杨树矿质营养吸收和分配的影响[J]. 林业科学, 2009, 45(7):46−51.

    Wan X Q, Zhang F, Xia X L, et al. Effects of cadmium stress on absorption and distribution of mineral nutrients in poplar plants[J]. Scientia Silvae Sinicae, 2009, 45(7): 46−51.
    [19] 李合生. 现代植物生理学[M]. 北京: 高等教育出版社, 2012: 358.

    Li H S. Modern plant physiology[M]. Beijing: Higher Education Press, 2012: 358.
    [20] 赵世杰, 史国安, 董新纯. 植物生理学试验指导[M]. 北京: 中国农业科学技术出版社, 2002: 83−135.

    Zhao S J, Shi G A, Dong X C. Guidance for plant physiological tests[M]. Beijing: China Agricultural Science and Technology Press, 2002: 83−135.
    [21] 张宪政. 植物叶绿素含量测定−丙酮乙醇混合液法[J]. 辽宁农业科学, 1986(3):23−25.

    Zhang X Z. Determination of plant chlorophyll content by acetone-ethanol mixture method[J]. Liaoning Agricultural Sciences, 1986(3): 23−25.
    [22] 李子芳, 刘惠芬, 熊肖霞, 等. 镉胁迫对小麦种子萌发幼苗生长及生理生化特性的影响[J]. 农业环境科学学报, 2005, 24(增刊1):17−20.

    Li Z F, Liu H F, Xiong X X, et al. Effect of cadmium on seed germination, seedling development and physiological and biochemical characteristics of wheat[J]. Journal of Agro-Environment Science, 2005, 24(Suppl.1): 17−20.
    [23] Rom C, Romeo S, Francini A, et al. Leaves position in Populus alba Villafranca clone reveals a strategy towards cadmium uptake response[J]. Plant Growth Regulation, 2016, 79(3): 355−366. doi: 10.1007/s10725-015-0139-6
    [24] 顾颉刚. 镉胁迫对杨树无性系植株生长发育及部分生理特性影响的研究[D]. 天津: 天津师范大学, 2008.

    Gu J G. The study on Cd effect of growth and some physiological charaeteristics of Populus clones[D]. Tianjin: Tianjin Normal University, 2008.
    [25] Quanacci M F, Baker A J M, Navari-Izzo F. Nitrilotriacetate-and citric acid-assisted phytoextraction of cadmium by Indian mustard[J]. Chemsphere, 2005, 59: 1249−1255.
    [26] 黄玉敏, 邓勇, 李德芳, 等. 镉胁迫对大麻幼苗生长及生理生化影响[J]. 中国麻业科学, 2017, 39(5):227−233. doi: 10.3969/j.issn.1671-3532.2017.05.003

    Huang Y M, Deng Y, Li D F, et al. Effect of growth and physiology-chemistry of hemp (Cannabis sativa) seedlings under cadmium stress[J]. Plant Fiber Sciences in China, 2017, 39(5): 227−233. doi: 10.3969/j.issn.1671-3532.2017.05.003
    [27] 唐星林, 金洪平, 周晨, 等. 镉胁迫对龙葵叶绿素荧光和光合生化特性的影响[J]. 中南林业科技大学学报, 2019, 39(9):102−108.

    Tang X L, Jin H P, Zhou C, et al. Effects of cadmium stress on chlorophyll fluorescence and photosynthetic biochemical characteristics in leaves of Solanum nigrum[J]. Journal of Central South University of Forestry & Technology, 2019, 39(9): 102−108.
    [28] 尹大川, 邓勋, 宋小双, 等. Cd胁迫下外生菌根菌对樟子松生理指标和根际土壤酶的影响[J]. 生态学杂志, 2017, 36(11):3072−3078.

    Yin D C, Deng X, Song X S, et al. Effects of ectomycorrhizal fungi on physiological indexes of Pinus sylvestris var. mongolica seedlings and soil enzyme activities under cadmium stress[J]. Chin J Ecol, 2017, 36(11): 3072−3078.
    [29] 周青, 黄晓华, 施国新, 等. 镉对5种常绿树木若干生理生化特性的影响[J]. 环境科学研究, 2001, 14(3):9−11. doi: 10.3321/j.issn:1001-6929.2001.03.004

    Zhou Q, Huang X H, Shi G X, et al. Effect of cadmium on the physiological and biochemical character of evergreen trees[J]. Research of Environmental Sciences, 2001, 14(3): 9−11. doi: 10.3321/j.issn:1001-6929.2001.03.004
    [30] 杨园, 王艮梅. 杨树对镉胁迫的响应及抗性机制研究进展[J]. 世界林业研究, 2017, 30(4):29−34.

    Yang Y, Wang G M. Poplar response to Cd stress and its resistance mechanism[J]. World Forestry Research, 2017, 30(4): 29−34.
    [31] 孙永娣, 巢建国, 谷巍, 等. 镉胁迫对茅苍术生理生化特征的影响[J]. 植物生理学报, 2018, 54(12):1857−1864.

    Sun Y D, Chao J G, Gu W, et al. Effect of cadmium stress on physiological and biochemical characteristics of Atractylodes lancea[J]. Plant Physiology Journal, 2018, 54(12): 1857−1864.
    [32] 陈霞霞, 蒲高忠, 黄玉清, 等. 铊和镉胁迫对芦竹生长及光合特征的影响[J], 广西植物, 2019,39(6):743−751.

    Chen X X, Pu G Z, Huang Y Q, et al. Effects of thallium and cadmium stress on growth and photosynthetic characteristics of Arundo donax[J], Guihaia, 2019,39(6):743−751.
    [33] 简敏菲, 杨叶萍, 余厚平, 等. 不同浓度 Cd2+ 胁迫对苎麻叶绿素及其光合荧光特性的影响[J]. 植物生理学报, 2015, 51(8):1331−1338.

    Jian M F, Yang Y P, Yu H P, et al. Influences of different cadmium concentration stress on chlorophyll and its photosynthetic fluorescence characteristics of ramie (Boehmeria nivea)[J]. Plant Physiology Journal, 2015, 51(8): 1331−1338.
    [34] 马晓华, 张旭乐, 钱仁卷, 等. 镉与铜胁迫下无柄小叶榕的生理响应[J]. 森林与环境学报, 2019, 39(2):194−200.

    Ma X H, Zhang X L, Qian R J, et al. Physiological response of Ficus concinna var. subsessilis under heavy metal cadmium-copper stress[J]. Journal of Forest and Environment, 2019, 39(2): 194−200.
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  1086
  • HTML全文浏览量:  449
  • PDF下载量:  28
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-12-11
  • 修回日期:  2020-02-18
  • 网络出版日期:  2020-04-12
  • 刊出日期:  2020-04-27

目录

    /

    返回文章
    返回