Relationship model between stand mean height and mean DBH for natural Quercus spp. broadleaved mixed stands
-
摘要:目的 考虑天然混交林的林分密度、直径结构和树种结构,基于代数差分方程构建最适宜的林分平均高与平均胸径关系模型,为天然混交林的立地生产力估计与可持续经营提供理论依据。方法 以吉林省天然栎类阔叶混交林为研究对象,利用4期连续调查固定样地数据,基于Richards方程构建4种数据结构类型即typeC、typeD、typeE和typeF的基础代数差分方程,比较分析得出最优数据结构类型;基于最优数据结构类型,以5个林分密度指标即林木株数(N)、林分断面积(BA)、林分密度指数(SDIr)、可加林分密度指数(SDIa)和郁闭度(CD),5个直径多样性指数即Shannon均匀度指数(ShaI)、Simpson指数(SimI)、McIntosh均匀度指数(MceI)、Gini系数(GinI)和Berger-Parker指数(BerI),4个树种多样性指数即ShaI、SimI、MceI和BerI,构建并比较分析不同多样性代数差分方程的差异,得出最佳方程为最适宜林分平均高与平均胸径关系模型。结果 不同数据结构类型的建模效果由好到差排序:typeD > typeC > typeF > typeE。除了typeC,其他3个数据结构类型的模型参数b和r均显著不为零(P < 0.01),说明typeD拟合的模型参数检验效果最佳。林分密度指标SDIr的建模效果最好。无论使用哪个林分密度指标,其模型参数b0、r和cSD均显著(P < 0.01),说明5个林分密度指标的模型参数检验效果均比较理想。直径多样性指数ShaI的建模效果最好。除了GinI,其他4个直径多样性指数的模型参数b0、r、cSDIr和cDI均显著(P < 0.01),表明ShaI、SimI、MceI和BerI均为较理想的直径多样性指数。4个树种多样性指数的建模拟合效果和检验数据效果差别不大。BerI的模型参数b0、r、cSDIr、cShaI和cSP均显著(P < 0.01),说明BerI是较理想的树种多样性指数。ShaI、SimI和MceI的模型参数b0、r、cSDIr、cShaI和cSP均不能同时达到0.05显著水平,说明ShaI、SimI和MceI是不理想的树种多样性指数。结论 typeD是最优的数据结构类型,林分密度、直径多样性和树种多样性对模型均有影响。其中,林分密度指标SDIr、直径多样性指数ShaI和树种多样性指数BerI建立的多样性代数差分方程拟合效果最佳,为最适宜的天然栎类阔叶混交林林分平均高与平均胸径关系模型。Abstract:Objective Considering stand density, diameter structure and tree species structure, the optimal model for stand mean height and mean DBH relationship was constructed using algebraic difference approach. It may provide a theoretical basis for site productivity estimation and sustainable management of natural mixed forests.Method Base algebraic difference approaches were modeled with 4 different data structure types, i.e. typeC, typeD, typeE and typeF based on Richards model using 4 inventory data of permanent sample plots in natural Quercus spp. broadleaved mixed stands. The 4 different base algebraic difference approaches were comparatively analyzed to get the optimal data structure type. Algebraic difference approach of diversity indices was constructed based on the optimal data structure type using 5 different stand density indices, including tree number (N), stand basal area (BA), stand density index (SDIr), additive stand density index (SDIa) and canopy density (CD), and the 5 different diameter diversity indices including Shannon evenness index (ShaI), Simpson index (SimI), McIntosh evenness index (MceI), Gini coefficient (GinI) and Berger-Parker index (BerI), and the 4 different species diversity indices including ShaI, SimI, MceI and BerI. The algebraic difference approach of diversity indices was comparatively analyzed to obtain the optimize algebraic difference approaches, i.e. the optimize stand mean height and mean DBH relationship.Result Model fitting effects of calibration data in different data structure types were sorted from best to worst, and the ranking was: typeD > typeC > typeF > typeE. Except for typeC, model coefficients b and r of the other three data structure types were significant (P < 0.01), indicating that the model fitting effects of typeD were the best. Model fitting effects of SDIr were the best. Model coefficients b0, r and cSD were significant (P < 0.01), regardless of which stand density index was used, indicating that model fitting effects of the 5 different stand density indices were reasonable. Model fitting effect of ShaI was the best. Except for GinI, model coefficients b0, r, cSDIr and cDI of the other 4 diameter diversity indices were significant (P < 0.01), indicating that model fitting effects of ShaI, SimI, MceI and BerI were reasonable. Model fitting and validation effects had little difference among the 4 species diversity indices. Model coefficients b0, r, cSDIr, cShaI and cSP of BerI were significant (P < 0.01), indicating that BerI was reasonable. However, model coefficients b0, r, cSDIr, cShaI and cSP of ShaI, SimI and MceI were not significant at the level of 0.05, indicating that ShaI, SimI and MceI were not reasonable.Conclusion TypeD is the best data structure type, stand density, diameter diversity and species diversity were significant for algebraic difference approach. Moreover, the model fitting effects of algebraic difference approach within SDIr, ShaI and BerI are the best, which is served as the optimize stand mean height and mean DBH relationship in natural Quercus spp.
broadleaved mixed stands. -
-
图 3 多样性代数差分方程建模流程图
ModeO代表基础代数差分方程,即公式(3)。Sig. test表示参数显著性检验,Sig.表示参数检验显著,Not Sig.表示参数检验不显著,None表示模型中不加入fSD、fDD和fSPD。 ModeO represents the basic algebraic difference equation, i.e. formula (3). Sig. test denotes significance test of parameters, Sig. denotes parameter test is significant, Not Sig. denotes parameter test is not significant, None denotes that fSD, fDD and fSPD are not added into the model.
Figure 3. Modeling flowchart of diversity algebraic differential equations
表 1 229个连续调查固定样地统计结果
Table 1 Summary statistics for 229 permanent sample plots inventory
特征值 Characteristic value 建模数据 Calibration data 检验数据 Validation data 连续调查2次 Continuously investigating twice 35 18 连续调查3次 Continuously investigating three times 57 23 连续调查4次 Continuously investigating four times 55 41 总样地个数 Total number of sample plots 147 82 林分年龄 Stand age 55 ± 31 (10, 152) 57 ± 28 (6, 149) 林分平均高 Stand mean height/m 13.0 ± 4.7 (2.0, 24.0) 13.8 ± 3.9 (5.0, 22.2) 林分平均直径 Stand mean diameter/cm 14.8 ± 4.9 (6.1, 28.9) 15.6 ± 4.2 (6.0, 25.9) 林分优势直径 Stand dominant diameter/cm 28.6 ± 11.3 (6.9, 57.7) 30.6 ± 9.3 (6.8, 56.4) 林木株数(N)/(株·hm−2) Tree number (N) /(plant·ha−1) 1 133 ± 483 (200, 2 717) 1 100 ± 433 (250, 2267) 林分断面积(BA)/(m2·hm−2) Stand basal area (BA)/(m2·ha−1) 20.100 ± 11.700 (0.833, 53.833) 20.800 ± 10.350 (1.150, 57.133) 注:小括号内的值表示范围,下同。连续调查是指前后两次调查的时间间隔为5年。Notes: values in parentheses denote scope, the same below. Continuously investigating refers to the time interval of 5 years between two surveys. 表 2 林分密度指标
Table 2 Stand density indices
林分密度指标
Stand density index林分密度指数
Stand density index (SDIr)可加林分密度指数
Additive stand density index (SDIa)公式 Formula SDIr=n(DgD0)1.605,Dg=√1nn∑i=1d2i SDIa=n∑i=1(diD0)1.605 注:n表示林木株数,di表示第i株林木的胸径,Dg表示林分平均胸径,D0表示标准直径。Notes: n is the number of trees, di is the DBH of tree i, Dg is stand mean DBH, D0 is standard diameter. 表 3 229个连续调查固定样地的林分密度指标
Table 3 Stand density indices for 229 permanent sample plots inventory
林分密度指标 Stand density index 建模数据 Calibration data 检验数据 Validation data 林木株数(N)/(株·hm−2) Tree number(N)/(stem·ha−1) 1133 ± 483 (200, 2717) 1100 ± 433 (250, 2267) 林分断面积(BA)/(m2·hm−2) Stand basal area(BA)/(m2·ha−1) 20.100 ± 11.700 (0.833, 53.833) 20.800 ± 10.350 (1.150, 57.133) SDIa 636.050 ± 315.833 (42.450, 1382.650) 651.817 ± 279.083 (57.117, 1522.033) SDIr 696.250 ± 355.717 (42.650, 1540.833) 717.633 ± 318.400 (58.650, 1797.983) 郁闭度 Canopy density (CD) 0.8 ± 0.2 (0.2, 1.0) 0.8 ± 0.1 (0.3, 1.0) 表 4 5个多样性指数
Table 4 Five diversity indices
多样性指数 Diversity index 公式 Formula 适用类型 Applicable type 均匀度指数 Shannon evenness index (ShaI) ShaI=−S∑i=1pilnpilnS 直径多样性,树种多样性
Diameter diversity , tree species diversitySimpson指数 Simpson index (SimI) SimI=1−S∑i=1p2i 直径多样性,树种多样性
Diameter diversity, tree species diversityMcIntosh均匀度指数 McIntosh evenness index (MceI) MceI=BA−√S∑i=1ba2iBA−BA√S 直径多样性,树种多样性
Diameter diversity, tree species diversityBerger-Parker指数 Berger-Parker index (BerI) BerI=1−bamaxBA 直径多样性,树种多样性
Diameter diversity, tree species diversityGini系数 Gini coefficient (GinI) GinI=n∑j=1(2j−n−1)bajn∑j=1baj(n−1) 直径多样性
Diameter diversity注:pi在直径多样性指数中表示第i个径阶的断面积比例,在树种多样性指数中表示第i个树种的株数比例;S在直径多样性指数中表示径阶数,在树种多样性指数中表示树种数;BA表示林分总断面积;bai表示第i个径阶的断面积;baj表示第j株林木的断面积;bamax表示断面积最大所在径阶的断面积;n表示林木总株数。Notes: pi is the proportion of basal area in diameter class i within diameter diversity index, or pi is the proportion of tree number in tree species i within species diversity index; S is the number of diameter classes within diameter diversity index, or S is the number of tree species within species diversity index; BA is stand basal area; bai is the basal area in the diameter class i; baj is the basal area of the tree; bamax is the basal area in the diameter class with the largest basal area; n is the total number of trees. 表 5 229个连续调查固定样地的多样性指数
Table 5 Diversity indices for 229 permanent sample plots inventory
类型 Type 多样性指数 Diversity index 建模数据 Calibration data 检验数据 Validation data ShaI 0.900 ± 0.069 (0.490, 0.979) 0.904 ± 0.077 (0.421, 0.979) SimI 0.861 ± 0.097 (0.383, 0.937) 0.874 ± 0.105 (0.265, 0.937) 直径多样性 Diameter diversity McI 0.903 ± 0.085 (0.394, 0.980) 0.909 ± 0.095 (0.323, 0.981) BerI 0.779 ± 0.122 (0.239, 0.901) 0.798 ± 0.125 (0.157, 0.906) GinI 0.543 ± 0.132 (0.142, 0.791) 0.573 ± 0.118 (0.105, 0.734) 树种多样性 Tree species diversity ShaI 0.947 ± 0.068 (0.588, 0.998) 0.957 ± 0.062 (0.617, 1.000) SimI 0.961 ± 0.051 (0.611, 0.988) 0.965 ± 0.045 (0.675, 0.986) McI 0.949 ± 0.081 (0.488, 0.998) 0.959 ± 0.076 (0.537, 1.000) BerI 0.903 ± 0.102 (0.385, 0.975) 0.917 ± 0.095 (0.440, 0.973) 表 6 参数b的组合模式
Table 6 Composition model of parameter b
表达式 Expression 说明 Description fx=1+cxx−ˉxˉx 参数标准化 Standard parameter b=b0fSD 含SD的参数b Parameter b including SD b=b0fSDfDD 含SD和DD的参数b Parameter b including SD and DD b=b0fDD 含DD的参数b Parameter b including DD b=b0fSDfDDfSPD 含SD、DD和SPD的参数b Parameter b including SD, DD and SPD b=b0fSDfSPD 含SD和SPD的参数b Parameter b including SD and SPD b=b0fDDfSPD 含DD和SPD的参数b Parameter b including DD and SPD b=b0fSPD 含SPD的参数b Parameter b including SPD 注:b0和cx表示参数,SD表示林分密度指标,DD表示直径多样性指数,SPD表示树种多样性指数,fx表示标准化函数,fSD表示标准化的林分密度指标,fDD表示标准化的直径多样性指数,fSPD表示标准化的树种多样性指数。Notes: b0 and cx denote parameters, SD denotes stand density index, DD denotes diameter diversity index, SPD denotes tree species diversity index, fx denotes standardize function, fSD denotes standardize stand density index, fDD denotes standardize diameter diversity index, fSPD denotes standardize species diversity index. 表 7 多样性代数差分方程
Table 7 Algebraic differential equations of diversity
模型 Model 方程 Equation 说明 Description ModeA Hm,ik=1.3+(Hm,ij−1.3)(1−exp(−b0fSDDg,ik)1−exp(−b0fSDDg,ij))rb0fSD+εik 含SD Including SD ModeB Hm,ik=1.3+(Hm,ij−1.3)(1−exp(−b0fSDfDDDg,ik)1−exp(−b0fSDfDDDg,ij))rb0fSDfDD+εik 含SD和DD Including SD and DD ModeC Hm,ik=1.3+(Hm,ij−1.3)(1−exp(−b0fDDDg,ik)1−exp(−b0fDDDg,ij))rb0fDD+εik 含DD Including DD ModeD Hm,ik=1.3+(Hm,ij−1.3)(1−exp(−b0fSDfDDfSPDDg,ik)1−exp(−b0fSDfDDfSPDDg,ij))rb0fSDfDDfSPD+εik 含SD、DD和SPD Including SD, DD and SPD ModeE Hm,ik=1.3+(Hm,ij−1.3)(1−exp(−b0fSDfSPDDg,ik)1−exp(−b0fSDfSPDDg,ij))rb0fSDfSPD+εik 含SD和SPD Including SD and SPD ModeF Hm,ik=1.3+(Hm,ij−1.3)(1−exp(−b0fDDfSPDDg,ik)1−exp(−b0fDDfSPDDg,ij))rb0fDDfSPD+εik 含DD和SPD Including DD and SPD ModeG Hm,ik=1.3+(Hm,ij−1.3)(1−exp(−b0fSPDDg,ik)1−exp(−b0fSPDDg,ij))rb0fSPD+εik 含SPD Including SPD 表 8 具有4次观测数据的6种数据结构类型
Table 8 Six different types of data structure with four measurements
typeA typeB typeC typeD typeE typeF (Hm,i1, Dg,i1), (Hm,i4, Dg,i4) (Hm,i1, Dg,i1), (Hm,i4, Dg,i4) (Hm,i1, Dg,i1), (Hm,i2, Dg,i2) (Hm,i1, Dg,i1), (Hm,i2, Dg,i2) (Hm,i1, Dg,i1), (Hm,i2, Dg,i2) (Hm,i1, Dg,i1), (Hm,i2, Dg,i2) (Hm,i4, Dg,i4), (Hm,i1 , Dg,i1) (Hm,i2, Dg,i2), (Hm,i3, Dg,i3) (Hm,i2, Dg,i2), (Hm,i1, Dg,i1) (Hm,i1, Dg,i1), (Hm,i3, Dg,i3) (Hm,i1, Dg,i1), (Hm,i3, Dg,i3) (Hm,i3, Dg,i3), (Hm,i4, Dg,i4) (Hm,i2, Dg,i2), (Hm,i3, Dg,i3) (Hm,i1, Dg,i1), (Hm,i4, Dg,i4) (Hm,i1, Dg,i1), (Hm,i4, Dg,i4) (Hm,i3, Dg,i3), (Hm,i2, Dg,i2) (Hm,i2, Dg,i2), (Hm,i3, Dg,i3) (Hm,i2, Dg,i2), (Hm,i1, Dg,i1) (Hm,i3, Dg,i3), (Hm,i4, Dg,i4) (Hm,i2, Dg,i2), (Hm,i4, Dg,i4) (Hm,i2, Dg,i2), (Hm,i3, Dg,i3) (Hm,i4, Dg,i4), (Hm,i3, Dg,i3) (Hm,i3, Dg,i3), (Hm,i4, Dg,i4) (Hm,i2, Dg,i2), (Hm,i4, Dg,i4) (Hm,i3, Dg,i3), (Hm,i1, Dg,i1) (Hm,i3, Dg,i3), (Hm,i2, Dg,i2) (Hm,i3, Dg,i3), (Hm,i4, Dg,i4) (Hm,i4, Dg,i4), (Hm,i1, Dg,i1) (Hm,i4, Dg,i4), (Hm,i2, Dg,i2) (Hm,i4, Dg,i4), (Hm,i3, Dg,i3) 注:typeA、typeB、typeC、typeD、typeE、typeF分别为非下降最长组合、最长组合、非重叠非下降组合、非重叠组合、非下降所有可能组合、所有可能组合,下同。Hm,i1、Hm,i2、Hm,i3、Hm,i4分别表示第 i 个样地的第1、2、3、4次林分平均高的观测数据;Dg,i1、Dg,i2、Dg,i3、Dg,i4分别表示第 i 个样地的第1、2、3、4次林分平均胸径的观测数据。Notes: typeA, typeB, typeC, typeD, typeE, typeF are the longest nondescending combination, the longest combination, the nonoverlapping and nondescending combination, the nonoverlapping combination, all possible nondescending combination, all possible combinations,the same below. Hm,i1、Hm,i2、Hm,i3、Hm,i4 represent the first, second, third and fourth observation data of stand mean height in the i-th sample plot; Dg,i1、Dg,i2、Dg,i3、Dg,i4 represent the observation data of the first, second, third and fourth of stand mean DBH in the i-th sample plot respectively. 表 9 5个模型评价指标
Table 9 Five model evaluating indices
模型评价指标 Model evaluating index 公式 Formula 调整决定系数 Adjusted coefficient of determination ( R2a )R2a=1−(1−R2)n−1n−k−1R2=1−n∑i=1(yi−ˆyi)2n∑i=1(yi−ˉy)2 均方根误差 Root mean square error (RMSE) RMSE=√n∑i=1(yi−ˆyi)2n−k−1 平均绝对误差 Mean absolute error (MAE) MAE=1nn∑i=1|yi−ˆyi| 相对平均绝对误差 Relative mean absolute error (RMAE) RMAE=1nn∑i=1|yi−ˆyi|ˆyi Akaike信息准则 Akaike information criterion (AIC) AIC=−logL+2k 注:yi表示观测值, ˆyi 表示估计值,ˉy 表示平均观测值,n表示观测样本数,k表示模型参数个数,L表示似然函数值。Notes: yi is observed value,ˆyi is estimated value,ˉy is mean observed value, n is observed sample quantity, k is the number of model parameters, L is the likelihood function value.表 10 建模数据的不同数据结构类型拟合效果
Table 10 Fitting performance for different data structure types of calibration data
数据结构类型
Data structure typeRa 2 RMSE MAE RMAE typeC 0.720 2.019 1.336 0.121 typeD 0.767 1.980 1.315 0.111 typeE 0.562 2.373 1.628 0.149 typeF 0.681 2.280 1.572 0.133 表 11 检验数据的不同数据结构类型拟合效果
Table 11 Fitting performance for different data structure types of validation data
数据结构类型
Data structure typeRMSE MAE RMAE typeC 1.850 1.189 0.087 typeD 1.809 1.165 0.084 typeE 2.162 1.479 0.106 typeF 2.087 1.436 0.102 表 12 不同数据结构类型的模型参数估计
Table 12 Model parameter estimates for different data structure types
数据结构类型 Data structure type 参数 Parameter 估计值 Estimate 标准差 Std. error t值 t value P值 P value typeC b 0.161 5 0.076 8 2.102 1 0.036 3 r 11.983 2 3.162 3 3.789 4 0.000 2 typeD b 0.165 7 0.046 2 3.586 2 0.000 4 r 14.420 4 2.350 7 6.134 4 0.000 0 typeE b 0.147 0 0.036 7 4.008 8 0.000 1 r 15.180 9 1.663 7 9.125 0 0.000 0 typeF b 0.156 6 0.023 2 6.736 6 0.000 0 r 17.442 6 1.301 6 13.400 9 0.000 0 表 13 建模数据的不同林分密度指标拟合效果
Table 13 Fitting performance for different stand density indices of calibration data
林分密度指标 Stand density index Ra 2 RMSE MAE RMAE AIC N 0.768 1.976 1.312 0.111 2 641.729 BA 0.769 1.973 1.316 0.113 2 639.754 SDIa 0.769 1.973 1.317 0.113 2 639.648 SDIr 0.769 1.973 1.316 0.113 2 639.383 CD 0.768 1.978 1.319 0.113 2 643.066 表 14 检验数据的不同林分密度指标拟合效果
Table 14 Fitting performance for different stand density indices of validation data
林分密度指标
Stand density indexRMSE MAE RMAE N 1.828 1.193 0.087 BA 1.829 1.178 0.086 SDIa 1.829 1.180 0.086 SDIr 1.825 1.178 0.086 CD 1.808 1.160 0.084 表 15 不同林分密度指标的模型参数估计
Table 15 Model parameter estimates for different stand density indices
林分密度指标 Stand density index 参数 Parameter 估计值 Estimate 标准差 Std. error t值 t value P值 P value N b0 0.163 2 0.031 4 5.192 6 0.000 0 r 16.757 4 2.543 3 6.588 9 0.000 0 cSD 1.387 3 0.167 0 8.307 4 0.000 0 BA b0 0.174 9 0.032 3 5.407 8 0.000 0 r 18.152 5 2.623 7 6.918 7 0.000 0 cSD 1.081 8 0.180 9 5.979 0 0.000 0 SDIa b0 0.165 7 0.029 8 5.555 6 0.000 0 r 17.725 9 2.438 1 7.270 3 0.000 0 cSD 1.225 8 0.182 6 6.712 8 0.000 0 SDIr b0 0.168 5 0.030 8 5.474 9 0.000 0 r 17.667 2 2.453 8 7.200 0 0.000 0 cSD 1.172 1 0.192 2 6.099 6 0.000 0 CD b0 0.172 4 0.036 3 4.756 2 0.000 0 r 16.061 2 2.440 0 6.582 3 0.000 0 cSD 1.506 9 0.322 4 4.673 5 0.000 0 注:cSD是标准化后的5个林分密度指标参数。Note: cSD is the five stand density index parameters after standardization. 表 16 建模数据的不同直径多样性指数拟合效果
Table 16 Fitting performance for different diameter diversity indices of calibration data
直径多样性指数
Diameter diversity indexRa 2 RMSE MAE RMAE AIC ShaI 0.772 1.959 1.308 0.111 2 631.775 SimI 0.771 1.964 1.306 0.111 2 634.669 MceI 0.772 1.963 1.308 0.111 2 634.009 BerI 0.772 1.961 1.304 0.111 2 633.108 GinI 0.769 1.972 1.312 0.113 2 639.897 表 17 检验数据的不同直径多样性指数拟合效果
Table 17 Fitting performance for different diameter diversity indices of validation data
直径多样性指数
Diameter diversity indexRa 2 RMSE MAE RMAE AIC ShaI 0.772 1.959 1.308 0.111 2 631.775 SimI 0.771 1.964 1.306 0.111 2 634.669 MceI 0.772 1.963 1.308 0.111 2 634.009 BerI 0.772 1.961 1.304 0.111 2 633.108 GinI 0.769 1.972 1.312 0.113 2 639.897 表 18 不同直径多样性指数的模型参数估计
Table 18 Model parameter estimates for different diameter diversity indices
直径多样性指数
Diameter diversity index参数
Parameter估计值
Estimate标准差
Std. errort值
t valueP值
P valueShaI b0 0.186 1 0.027 4 6.792 0 0.000 0 r 21.405 3 2.686 2 7.968 5 0.000 0 cSDIr 1.279 6 0.120 2 10.646 4 0.000 0 cDI 8.707 1 1.225 0 7.108 1 0.000 0 SimI b0 0.190 5 0.028 6 6.653 2 0.000 0 r 22.628 8 2.900 7 7.801 2 0.000 0 cSDIr 1.370 8 0.146 5 9.354 5 0.000 0 cDI 6.965 8 1.879 7 3.705 7 0.000 2 MceI b0 0.180 1 0.027 5 6.544 5 0.000 0 r 20.721 2 2.610 3 7.938 1 0.000 0 cSDIr 1.299 1 0.132 2 9.823 5 0.000 0 cDI 7.711 0 1.270 1 6.071 2 0.000 0 BerI b0 0.184 5 0.027 3 6.758 7 0.000 0 r 22.645 4 2.798 0 8.093 4 0.000 0 cSDIr 1.397 6 0.144 2 9.692 4 0.000 0 cDI 5.400 2 0.775 3 6.965 5 0.000 0 GinI b0 0.183 7 0.034 6 5.311 0 0.000 0 r 18.978 5 2.675 5 7.093 4 0.000 0 cSDIr 1.228 1 0.175 9 6.981 0 0.000 0 cDI 0.930 0 0.798 0 1.165 5 0.244 3 注:cSDIr是标准化后的林分密度指标SDIr参数,下同。cDI是标准化后的5个直径多样性指数参数。Note: cSDIr is the SDIr parameter of stand density index after standardization, the same below. cDI is the five diameter diversity index parameters after standardization. 表 19 建模数据的不同树种多样性指数拟合效果
Table 19 Fitting performance for different tree species diversity index of calibration data
树种多样性指数
Tree species diversity indexRa 2 RMSE MAE RMAE AIC ShaI 0.774 1.952 1.293 0.110 2 628.473 SimI 0.774 1.954 1.301 0.111 2 629.331 MceI 0.774 1.951 1.292 0.110 2 627.545 BerI 0.773 1.957 1.307 0.111 2 631.183 表 20 检验数据的不同树种多样性指数拟合效果
Table 20 Fitting performance for different tree species diversity index of validation data
树种多样性指数
Tree species diversity indexRMSE MAE RMAE ShaI 1.817 1.176 0.087 SimI 1.859 1.219 0.089 MceI 1.817 1.186 0.088 BerI 2.151 1.286 0.091 表 21 不同树种多样性指数的模型参数估计
Table 21 Model parameter estimates for different tree species diversity index
树种多样性指数
Tree species diversity index参数
Parameter估计值
Estimate标准差
Std. errort值
t valueP值
P valueShaI b0 0.317 2 0.064 0 4.957 9 0.000 0 r 21.774 6 3.520 6 6.184 8 0.000 0 cSDIr 0.594 5 0.296 4 2.005 5 0.045 3 cShaI −2.736 2 3.044 4 −0.898 8 0.369 1 cSP −24.003 0 5.118 3 −4.689 6 0.000 0 SimI b0 −0.037 3 0.019 9 −1.874 9 0.061 3 r −9.609 4 6.686 6 −1.437 1 0.151 2 cSDIr −1.993 7 0.482 0 −4.136 6 0.000 0 cShaI −1.692 0 2.139 2 −0.791 0 0.429 3 cSP 50.617 9 15.604 2 3.243 9 0.001 2 MceI b0 0.420 9 0.095 5 4.407 6 0.000 0 r 22.790 2 3.568 5 6.386 5 0.000 0 cSDIr 0.720 0 0.279 4 2.577 3 0.010 2 cShaI −2.313 5 3.029 4 −0.763 7 0.445 3 cSP −30.040 1 4.594 6 −6.538 2 0.000 0 BerI b0 0.178 9 0.026 7 6.690 3 0.000 0 r 21.947 4 2.934 8 7.478 3 0.000 0 cSDIr 1.033 2 0.211 3 4.890 9 0.000 0 cShaI 8.149 1 1.606 6 5.072 4 0.000 0 cSP 3.606 4 0.762 0 4.733 0 0.000 0 注:cShaI表示标准化后的直径多样性指数ShaI参数,cSP表示标准化后的4个树种多样性指数参数。Notes: cShaI refers to the diameter diversity index ShaI parameters after standardization, and cSP refers to the four tree species diversity index parameters after standardization. -
[1] Skovsgaard J P, Vanclay J K. Forest site productivity: a review of the evolution of dendrometric concepts for even-aged stands[J]. Forestry: An International Journal of Forest Research, 2008, 81(1): 13−31. doi: 10.1093/forestry/cpm041
[2] Skovsgaard J P, Vanclay J K. Forest site productivity: a review of spatial and temporal variability in natural site conditions[J]. Forestry: An International Journal of Forest Research, 2013, 86(3): 305−315. doi: 10.1093/forestry/cpt010
[3] Hägglund B. Evaluation of forest site productivity[J]. Forestry Abstracts, 1981, 42(11): 516−527.
[4] Rennolls K. “Top height”: its definition and estimation[J]. Commonwealth Forestry Review, 1978, 57(3): 215−219.
[5] Huang S M, Titus S J. An index of site productivity for uneven-aged or mixed-species stands[J]. Canadian Journal of Forest Research, 1993, 23(3): 558−562. doi: 10.1139/x93-074
[6] Palahí M, Pukkala T, Kasimiadis D, et al. Modelling site quality and individual-tree growth in pure and mixed Pinus brutia stands in northeast Greece[J]. Annals of Forest Science, 2008, 65(5): 501. doi: 10.1051/forest:2008022
[7] Nigh G D. The geometric mean regression line: a method for developing site index conversion equations for species in mixed stands[J]. Forest Science, 1995, 41(1): 84−98. doi: 10.1093/forestscience/41.1.84
[8] Johansson T. Site index conversion equations for Picea abies and five broadleaved species in Sweden: Alnus glutinosa, Alnus incana, Betula pendula, Betula pubescens and Populus tremula[J]. Scandinavian Journal of Forest Research, 2006, 21(1): 14−19. doi: 10.1080/02827580500526015
[9] Raulier F, Lambert M C, Pothier D, et al. Impact of dominant tree dynamics on site index curves[J]. Forest Ecology and Management, 2003, 184(1/3): 65−78.
[10] Ouzennou H, Pothier D, Raulier F. Adjustment of the age-height relationship for uneven-aged black spruce stands[J]. Canadian Journal of Forest Research, 2008, 38(7): 2003−2012. doi: 10.1139/X08-044
[11] Anyomi K A, Raulier F, Bergeron Y, et al. Spatial and temporal heterogeneity of forest site productivity drivers: a case study within the eastern boreal forests of Canada[J]. Landscape Ecology, 2014, 29(5): 905−918. doi: 10.1007/s10980-014-0026-y
[12] McCarthy J W, Weetman G. Stand structure and development of an insect-mediated boreal forest landscape[J]. Forest Ecology and Management, 2007, 241(1/3): 101−114.
[13] Boucher D, Gauthier S, De Grandpré L. Structural changes in coniferous stands along a chronosequence and a productivity gradient in the northeastern boreal forest of Québec[J]. Écoscience, 2006, 13(2): 172−180. doi: 10.2980/i1195-6860-13-2-172.1
[14] Vanclay J K. Site productivity assessment in rainforests: an objective approach using indicator species[M]//Mohd W R, Chan H T, Appanah S. Seminar on growth and yield in tropical mixed/moist forests. Kuala Lumpur: Forest Research Institute, 1989: 225−241.
[15] Meyer H A. A mathematical expression for height curves[J]. Journal of Forestry, 1940, 38(5): 415−420.
[16] Husch B, Miller C I, Beers T W. Forest mensuration [M]. New York: John Wiley & Sons, 1982.
[17] Lei X D, Tang M P, Lu Y C, et al. Forest inventory in China: status and challenges[J]. International Forestry Review, 2009, 11(1): 52−63. doi: 10.1505/ifor.11.1.52
[18] Zeng W S, Tomppo E, Healey S P, et al. The national forest inventory in China: history-results-international context[J]. Forest Ecosystems, 2015, 2(1): 1−16. doi: 10.1186/s40663-014-0025-0
[19] Pienaar L V, Shiver B D. An analysis and models of basal area growth in 45-year-old unthinned and thinned slash pine plantation plots[J]. Forest Science, 1984, 30(4): 933−942.
[20] Lanner R M. On the insensitivity of height growth to spacing[J]. Forest Ecology and Management, 1985, 13(3/4): 143−148.
[21] Bontemps J D, Bouriaud O. Predictive approaches to forest site productivity: recent trends, challenges and future perspectives[J]. Forestry: An International Journal of Forest Research, 2014, 87(1): 109−128. doi: 10.1093/forestry/cpt034
[22] 傅立国, 陈谭清, 郎楷永, 等. 中国高等植物[M]. 青岛: 青岛出版社, 2001: 240−254. Fu L G, Chen T Q, Lang K Y, et al. Higher plants of China[M]. Qingdao: Qingdao Publishing House, 2001: 240−254.
[23] 国家林业局. 第八次全国森林资源清查结果[J]. 林业资源管理, 2014(1):1−2. State Forestry Bureau. The 8th national forest inventory[J]. Forest Resources Management, 2014(1): 1−2.
[24] 郭斌. 栎属近缘种指纹图谱构建及遗传结构[J]. 北京林业大学学报, 2018, 40(5):10−18. Guo B. Construction of SSR fingerprint and research of genetic structure in relative Quercus species[J]. Journal of Beijing Forestry University, 2018, 40(5): 10−18.
[25] 官秀玲, 胡艳波. 我国栎类经营及其发展方向研究[J]. 西部林业科学, 2019, 48(2):146−150, 158. Guan X L, Hu Y B. Research on oak forest management orientation of China[J]. Journal of West China Forestry Science, 2019, 48(2): 146−150, 158.
[26] 盛炜彤. 我国应将天然次生林的经营放在重要位置[J]. 林业科技通讯, 2016(2):10−13. Sheng W T. China should put an important position for the management of natural secondary forests[J]. Forest Science and Technology, 2016(2): 10−13.
[27] 张晓红, 张会儒. 蒙古栎次生林垂直结构特征对目标树经营的响应[J]. 北京林业大学学报, 2019, 41(5):56−65. Zhang X H, Zhang H R. Response of vertical structure characteristics of natural secondary Quercus mongolica forest to crop tree release[J]. Journal of Beijing Forestry University, 2019, 41(5): 56−65.
[28] Reineke L H. Perfecting a stand-density index for even-aged forests[J]. Journal of Agricultural Research, 1933, 46(7): 627−638.
[29] Stage A R. A tree-by-tree measure of site utilization for grand fir related to stand density index[R]. Washington: U.S. Forest Service Research, 1968.
[30] Long J N, Daniel T W. Assessment of growing stock in uneven-aged stands[J]. Western Journal of Applied Forestry, 1990, 5(3): 93−96. doi: 10.1093/wjaf/5.3.93
[31] 张连金, 惠刚盈, 孙长忠. 不同林分密度指标的比较研究[J]. 福建林学院学报, 2011, 31(3):257−261. Zhang L J, Hui G Y, Sun C Z. Comparison of different stand density measures[J]. Journal of Fujian College of Forestry, 2011, 31(3): 257−261.
[32] Lexerød N L, Eid T. An evaluation of different diameter diversity indices based on criteria related to forest management planning[J]. Forest Ecology and Management, 2006, 222(1/3): 17−28.
[33] Wang M L, Borders B E, Zhao D H. Parameter estimation of base-age invariant site index models: which data structure to use?[J]. Forest Science, 2007, 53(5): 541−551.
[34] 倪成才, 于福平, 张玉学, 等. 差分生长模型的应用分析与研究进展[J]. 北京林业大学学报, 2010, 32(4):284−292. Ni C C, Yu F P, Zhang Y X, et al. Application analysis and recent advances of projection growth models[J]. Journal of Beijing Forestry University, 2010, 32(4): 284−292.
[35] Getis A, Aldstadt J. Constructing the spatial weights matrix using a local statistic[J]. Geographical Analysis, 2004, 36(2): 90−104. doi: 10.1111/j.1538-4632.2004.tb01127.x
-
期刊类型引用(1)
1. 徐媛,陈锦玲,陈玉梅,李璐璐,李惠敏,秦新民. 干旱胁迫下花生转录组与miRNA测序及相关基因的表达. 贵州农业科学. 2021(01): 1-9 . 百度学术
其他类型引用(3)