Loading [MathJax]/jax/output/SVG/jax.js
  • Scopus收录期刊
  • CSCD(核心库)来源期刊
  • 中文核心期刊
  • 中国科技核心期刊
  • F5000顶尖学术来源期刊
  • RCCSE中国核心学术期刊
高级检索

天然栎类阔叶混交林林分平均高与平均胸径关系模型

娄明华, 张会儒, 雷相东, 白超, 杨同辉

娄明华, 张会儒, 雷相东, 白超, 杨同辉. 天然栎类阔叶混交林林分平均高与平均胸径关系模型[J]. 北京林业大学学报, 2020, 42(9): 37-50. DOI: 10.12171/j.1000-1522.20190463
引用本文: 娄明华, 张会儒, 雷相东, 白超, 杨同辉. 天然栎类阔叶混交林林分平均高与平均胸径关系模型[J]. 北京林业大学学报, 2020, 42(9): 37-50. DOI: 10.12171/j.1000-1522.20190463
Lou Minghua, Zhang Huiru, Lei Xiangdong, Bai Chao, Yang Tonghui. Relationship model between stand mean height and mean DBH for natural Quercus spp. broadleaved mixed stands[J]. Journal of Beijing Forestry University, 2020, 42(9): 37-50. DOI: 10.12171/j.1000-1522.20190463
Citation: Lou Minghua, Zhang Huiru, Lei Xiangdong, Bai Chao, Yang Tonghui. Relationship model between stand mean height and mean DBH for natural Quercus spp. broadleaved mixed stands[J]. Journal of Beijing Forestry University, 2020, 42(9): 37-50. DOI: 10.12171/j.1000-1522.20190463

天然栎类阔叶混交林林分平均高与平均胸径关系模型

基金项目: 国家自然科学基金项目(31800539、31700563),宁波市科学技术局公益性计划项目(2019C10084)
详细信息
    作者简介:

    娄明华,博士,助理研究员。主要研究方向:森林可持续经营。Email:mhlou1987@163.com 地址:315040 浙江省宁波市鄞州区德厚街19号宁波市农业科学研究院

    责任作者:

    张会儒,研究员,博士生导师。研究方向:森林可持续经营。Email:huiru@ifrit.ac.cn 地址:100091 北京市海淀区香山路东小府1号中国林业科学研究院资源信息研究所

  • 中图分类号: S758.5

Relationship model between stand mean height and mean DBH for natural Quercus spp. broadleaved mixed stands

  • 摘要:
      目的  考虑天然混交林的林分密度、直径结构和树种结构,基于代数差分方程构建最适宜的林分平均高与平均胸径关系模型,为天然混交林的立地生产力估计与可持续经营提供理论依据。
      方法  以吉林省天然栎类阔叶混交林为研究对象,利用4期连续调查固定样地数据,基于Richards方程构建4种数据结构类型即typeC、typeD、typeE和typeF的基础代数差分方程,比较分析得出最优数据结构类型;基于最优数据结构类型,以5个林分密度指标即林木株数(N)、林分断面积(BA)、林分密度指数(SDIr)、可加林分密度指数(SDIa)和郁闭度(CD),5个直径多样性指数即Shannon均匀度指数(ShaI)、Simpson指数(SimI)、McIntosh均匀度指数(MceI)、Gini系数(GinI)和Berger-Parker指数(BerI),4个树种多样性指数即ShaI、SimI、MceI和BerI,构建并比较分析不同多样性代数差分方程的差异,得出最佳方程为最适宜林分平均高与平均胸径关系模型。
      结果  不同数据结构类型的建模效果由好到差排序:typeD > typeC > typeF > typeE。除了typeC,其他3个数据结构类型的模型参数br均显著不为零(P < 0.01),说明typeD拟合的模型参数检验效果最佳。林分密度指标SDIr的建模效果最好。无论使用哪个林分密度指标,其模型参数b0r和cSD均显著(P < 0.01),说明5个林分密度指标的模型参数检验效果均比较理想。直径多样性指数ShaI的建模效果最好。除了GinI,其他4个直径多样性指数的模型参数b0r、cSDIr和cDI均显著(P < 0.01),表明ShaI、SimI、MceI和BerI均为较理想的直径多样性指数。4个树种多样性指数的建模拟合效果和检验数据效果差别不大。BerI的模型参数b0r、cSDIr、cShaI和cSP均显著(P < 0.01),说明BerI是较理想的树种多样性指数。ShaI、SimI和MceI的模型参数b0r、cSDIr、cShaI和cSP均不能同时达到0.05显著水平,说明ShaI、SimI和MceI是不理想的树种多样性指数。
      结论  typeD是最优的数据结构类型,林分密度、直径多样性和树种多样性对模型均有影响。其中,林分密度指标SDIr、直径多样性指数ShaI和树种多样性指数BerI建立的多样性代数差分方程拟合效果最佳,为最适宜的天然栎类阔叶混交林林分平均高与平均胸径关系模型。
    Abstract:
      Objective  Considering stand density, diameter structure and tree species structure, the optimal model for stand mean height and mean DBH relationship was constructed using algebraic difference approach. It may provide a theoretical basis for site productivity estimation and sustainable management of natural mixed forests.
      Method  Base algebraic difference approaches were modeled with 4 different data structure types, i.e. typeC, typeD, typeE and typeF based on Richards model using 4 inventory data of permanent sample plots in natural Quercus spp. broadleaved mixed stands. The 4 different base algebraic difference approaches were comparatively analyzed to get the optimal data structure type. Algebraic difference approach of diversity indices was constructed based on the optimal data structure type using 5 different stand density indices, including tree number (N), stand basal area (BA), stand density index (SDIr), additive stand density index (SDIa) and canopy density (CD), and the 5 different diameter diversity indices including Shannon evenness index (ShaI), Simpson index (SimI), McIntosh evenness index (MceI), Gini coefficient (GinI) and Berger-Parker index (BerI), and the 4 different species diversity indices including ShaI, SimI, MceI and BerI. The algebraic difference approach of diversity indices was comparatively analyzed to obtain the optimize algebraic difference approaches, i.e. the optimize stand mean height and mean DBH relationship.
      Result  Model fitting effects of calibration data in different data structure types were sorted from best to worst, and the ranking was: typeD > typeC > typeF > typeE. Except for typeC, model coefficients b and r of the other three data structure types were significant (P < 0.01), indicating that the model fitting effects of typeD were the best. Model fitting effects of SDIr were the best. Model coefficients b0, r and cSD were significant (P < 0.01), regardless of which stand density index was used, indicating that model fitting effects of the 5 different stand density indices were reasonable. Model fitting effect of ShaI was the best. Except for GinI, model coefficients b0, r, cSDIr and cDI of the other 4 diameter diversity indices were significant (P < 0.01), indicating that model fitting effects of ShaI, SimI, MceI and BerI were reasonable. Model fitting and validation effects had little difference among the 4 species diversity indices. Model coefficients b0, r, cSDIr, cShaI and cSP of BerI were significant (P < 0.01), indicating that BerI was reasonable. However, model coefficients b0, r, cSDIr, cShaI and cSP of ShaI, SimI and MceI were not significant at the level of 0.05, indicating that ShaI, SimI and MceI were not reasonable.
      Conclusion  TypeD is the best data structure type, stand density, diameter diversity and species diversity were significant for algebraic difference approach. Moreover, the model fitting effects of algebraic difference approach within SDIr, ShaI and BerI are the best, which is served as the optimize stand mean height and mean DBH relationship in natural Quercus spp. broadleaved mixed stands.
  • 图  1   多次调查固定样地位置图

    Figure  1.   Location diagram of permanent sample plots for repeated surveying

    图  2   林分平均高与林分平均胸径的散点图

    Figure  2.   Scatter diagram of stand mean height and stand mean DBH

    图  3   多样性代数差分方程建模流程图

    ModeO代表基础代数差分方程,即公式(3)。Sig. test表示参数显著性检验,Sig.表示参数检验显著,Not Sig.表示参数检验不显著,None表示模型中不加入fSDfDDfSPD。 ModeO represents the basic algebraic difference equation, i.e. formula (3). Sig. test denotes significance test of parameters, Sig. denotes parameter test is significant, Not Sig. denotes parameter test is not significant, None denotes that fSD, fDD and fSPD are not added into the model.

    Figure  3.   Modeling flowchart of diversity algebraic differential equations

    图  4   不同数据结构类型的残差图

    Figure  4.   Residual plots for different data structure types

    表  1   229个连续调查固定样地统计结果

    Table  1   Summary statistics for 229 permanent sample plots inventory

    特征值 Characteristic value建模数据 Calibration data检验数据 Validation data
    连续调查2次 Continuously investigating twice 35 18
    连续调查3次 Continuously investigating three times 57 23
    连续调查4次 Continuously investigating four times 55 41
    总样地个数 Total number of sample plots 147 82
    林分年龄 Stand age 55 ± 31 (10, 152) 57 ± 28 (6, 149)
    林分平均高 Stand mean height/m 13.0 ± 4.7 (2.0, 24.0) 13.8 ± 3.9 (5.0, 22.2)
    林分平均直径 Stand mean diameter/cm 14.8 ± 4.9 (6.1, 28.9) 15.6 ± 4.2 (6.0, 25.9)
    林分优势直径 Stand dominant diameter/cm 28.6 ± 11.3 (6.9, 57.7) 30.6 ± 9.3 (6.8, 56.4)
    林木株数(N)/(株·hm−2) Tree number (N) /(plant·ha−1) 1 133 ± 483 (200, 2 717) 1 100 ± 433 (250, 2267)
    林分断面积(BA)/(m2·hm−2) Stand basal area (BA)/(m2·ha−1) 20.100 ± 11.700 (0.833, 53.833) 20.800 ± 10.350 (1.150, 57.133)
    注:小括号内的值表示范围,下同。连续调查是指前后两次调查的时间间隔为5年。Notes: values in parentheses denote scope, the same below. Continuously investigating refers to the time interval of 5 years between two surveys.
    下载: 导出CSV

    表  2   林分密度指标

    Table  2   Stand density indices

    林分密度指标
    Stand density index
    林分密度指数
    Stand density index (SDIr)
    可加林分密度指数
    Additive stand density index (SDIa)
    公式 Formula SDIr=n(DgD0)1.605,Dg=1nni=1d2i SDIa=ni=1(diD0)1.605
    注:n表示林木株数,di表示第i株林木的胸径,Dg表示林分平均胸径,D0表示标准直径。Notes: n is the number of trees, di is the DBH of tree i, Dg is stand mean DBH, D0 is standard diameter.
    下载: 导出CSV

    表  3   229个连续调查固定样地的林分密度指标

    Table  3   Stand density indices for 229 permanent sample plots inventory

    林分密度指标 Stand density index建模数据 Calibration data检验数据 Validation data
    林木株数(N)/(株·hm−2) Tree number(N)/(stem·ha−1) 1133 ± 483 (200, 2717) 1100 ± 433 (250, 2267)
    林分断面积(BA)/(m2·hm−2) Stand basal area(BA)/(m2·ha−1) 20.100 ± 11.700 (0.833, 53.833) 20.800 ± 10.350 (1.150, 57.133)
    SDIa 636.050 ± 315.833 (42.450, 1382.650) 651.817 ± 279.083 (57.117, 1522.033)
    SDIr 696.250 ± 355.717 (42.650, 1540.833) 717.633 ± 318.400 (58.650, 1797.983)
    郁闭度 Canopy density (CD) 0.8 ± 0.2 (0.2, 1.0) 0.8 ± 0.1 (0.3, 1.0)
    下载: 导出CSV

    表  4   5个多样性指数

    Table  4   Five diversity indices

    多样性指数 Diversity index公式 Formula适用类型 Applicable type
    均匀度指数 Shannon evenness index (ShaI) ShaI=Si=1pilnpilnS 直径多样性,树种多样性
    Diameter diversity , tree species diversity
    Simpson指数 Simpson index (SimI) SimI=1Si=1p2i 直径多样性,树种多样性
    Diameter diversity, tree species diversity
    McIntosh均匀度指数 McIntosh evenness index (MceI) MceI=BASi=1ba2iBABAS 直径多样性,树种多样性
    Diameter diversity, tree species diversity
    Berger-Parker指数 Berger-Parker index (BerI) BerI=1bamaxBA 直径多样性,树种多样性
    Diameter diversity, tree species diversity
    Gini系数 Gini coefficient (GinI) GinI=nj=1(2jn1)bajnj=1baj(n1) 直径多样性
    Diameter diversity
    注:pi在直径多样性指数中表示第i个径阶的断面积比例,在树种多样性指数中表示第i个树种的株数比例;S在直径多样性指数中表示径阶数,在树种多样性指数中表示树种数;BA表示林分总断面积;bai表示第i个径阶的断面积;baj表示第j株林木的断面积;bamax表示断面积最大所在径阶的断面积;n表示林木总株数。Notes: pi is the proportion of basal area in diameter class i within diameter diversity index, or pi is the proportion of tree number in tree species i within species diversity index; S is the number of diameter classes within diameter diversity index, or S is the number of tree species within species diversity index; BA is stand basal area; bai is the basal area in the diameter class i; baj is the basal area of the tree; bamax is the basal area in the diameter class with the largest basal area; n is the total number of trees.
    下载: 导出CSV

    表  5   229个连续调查固定样地的多样性指数

    Table  5   Diversity indices for 229 permanent sample plots inventory

    类型 Type多样性指数 Diversity index建模数据 Calibration data检验数据 Validation data
    ShaI0.900 ± 0.069 (0.490, 0.979)0.904 ± 0.077 (0.421, 0.979)
    SimI0.861 ± 0.097 (0.383, 0.937)0.874 ± 0.105 (0.265, 0.937)
    直径多样性 Diameter diversity McI0.903 ± 0.085 (0.394, 0.980)0.909 ± 0.095 (0.323, 0.981)
    BerI0.779 ± 0.122 (0.239, 0.901)0.798 ± 0.125 (0.157, 0.906)
    GinI0.543 ± 0.132 (0.142, 0.791)0.573 ± 0.118 (0.105, 0.734)
    树种多样性 Tree species diversityShaI0.947 ± 0.068 (0.588, 0.998)0.957 ± 0.062 (0.617, 1.000)
    SimI0.961 ± 0.051 (0.611, 0.988)0.965 ± 0.045 (0.675, 0.986)
    McI0.949 ± 0.081 (0.488, 0.998)0.959 ± 0.076 (0.537, 1.000)
    BerI0.903 ± 0.102 (0.385, 0.975)0.917 ± 0.095 (0.440, 0.973)
    下载: 导出CSV

    表  6   参数b的组合模式

    Table  6   Composition model of parameter b

    表达式 Expression说明 Description
    fx=1+cxxˉxˉx 参数标准化 Standard parameter
    b=b0fSD 含SD的参数b Parameter b including SD
    b=b0fSDfDD 含SD和DD的参数b Parameter b including SD and DD
    b=b0fDD 含DD的参数b Parameter b including DD
    b=b0fSDfDDfSPD 含SD、DD和SPD的参数b Parameter b including SD, DD and SPD
    b=b0fSDfSPD 含SD和SPD的参数b Parameter b including SD and SPD
    b=b0fDDfSPD 含DD和SPD的参数b Parameter b including DD and SPD
    b=b0fSPD 含SPD的参数b Parameter b including SPD
    注:b0cx表示参数,SD表示林分密度指标,DD表示直径多样性指数,SPD表示树种多样性指数,fx表示标准化函数,fSD表示标准化的林分密度指标,fDD表示标准化的直径多样性指数,fSPD表示标准化的树种多样性指数。Notes: b0 and cx denote parameters, SD denotes stand density index, DD denotes diameter diversity index, SPD denotes tree species diversity index, fx denotes standardize function, fSD denotes standardize stand density index, fDD denotes standardize diameter diversity index, fSPD denotes standardize species diversity index.
    下载: 导出CSV

    表  7   多样性代数差分方程

    Table  7   Algebraic differential equations of diversity

    模型 Model方程 Equation说明 Description
    ModeA Hm,ik=1.3+(Hm,ij1.3)(1exp(b0fSDDg,ik)1exp(b0fSDDg,ij))rb0fSD+εik 含SD Including SD
    ModeB Hm,ik=1.3+(Hm,ij1.3)(1exp(b0fSDfDDDg,ik)1exp(b0fSDfDDDg,ij))rb0fSDfDD+εik 含SD和DD Including SD and DD
    ModeC Hm,ik=1.3+(Hm,ij1.3)(1exp(b0fDDDg,ik)1exp(b0fDDDg,ij))rb0fDD+εik 含DD Including DD
    ModeD Hm,ik=1.3+(Hm,ij1.3)(1exp(b0fSDfDDfSPDDg,ik)1exp(b0fSDfDDfSPDDg,ij))rb0fSDfDDfSPD+εik 含SD、DD和SPD Including SD, DD and SPD
    ModeE Hm,ik=1.3+(Hm,ij1.3)(1exp(b0fSDfSPDDg,ik)1exp(b0fSDfSPDDg,ij))rb0fSDfSPD+εik 含SD和SPD Including SD and SPD
    ModeF Hm,ik=1.3+(Hm,ij1.3)(1exp(b0fDDfSPDDg,ik)1exp(b0fDDfSPDDg,ij))rb0fDDfSPD+εik 含DD和SPD Including DD and SPD
    ModeG Hm,ik=1.3+(Hm,ij1.3)(1exp(b0fSPDDg,ik)1exp(b0fSPDDg,ij))rb0fSPD+εik 含SPD Including SPD
    下载: 导出CSV

    表  8   具有4次观测数据的6种数据结构类型

    Table  8   Six different types of data structure with four measurements

    typeAtypeBtypeCtypeDtypeEtypeF
    (Hm,i1, Dg,i1), (Hm,i4, Dg,i4) (Hm,i1, Dg,i1), (Hm,i4, Dg,i4) (Hm,i1, Dg,i1), (Hm,i2, Dg,i2) (Hm,i1, Dg,i1), (Hm,i2, Dg,i2) (Hm,i1, Dg,i1), (Hm,i2, Dg,i2) (Hm,i1, Dg,i1), (Hm,i2, Dg,i2)
    (Hm,i4, Dg,i4), (Hm,i1 , Dg,i1) (Hm,i2, Dg,i2), (Hm,i3, Dg,i3) (Hm,i2, Dg,i2), (Hm,i1, Dg,i1) (Hm,i1, Dg,i1), (Hm,i3, Dg,i3) (Hm,i1, Dg,i1), (Hm,i3, Dg,i3)
    (Hm,i3, Dg,i3), (Hm,i4, Dg,i4) (Hm,i2, Dg,i2), (Hm,i3, Dg,i3) (Hm,i1, Dg,i1), (Hm,i4, Dg,i4) (Hm,i1, Dg,i1), (Hm,i4, Dg,i4)
    (Hm,i3, Dg,i3), (Hm,i2, Dg,i2) (Hm,i2, Dg,i2), (Hm,i3, Dg,i3) (Hm,i2, Dg,i2), (Hm,i1, Dg,i1)
    (Hm,i3, Dg,i3), (Hm,i4, Dg,i4) (Hm,i2, Dg,i2), (Hm,i4, Dg,i4) (Hm,i2, Dg,i2), (Hm,i3, Dg,i3)
    (Hm,i4, Dg,i4), (Hm,i3, Dg,i3) (Hm,i3, Dg,i3), (Hm,i4, Dg,i4) (Hm,i2, Dg,i2), (Hm,i4, Dg,i4)
    (Hm,i3, Dg,i3), (Hm,i1, Dg,i1)
    (Hm,i3, Dg,i3), (Hm,i2, Dg,i2)
    (Hm,i3, Dg,i3), (Hm,i4, Dg,i4)
    (Hm,i4, Dg,i4), (Hm,i1, Dg,i1)
    (Hm,i4, Dg,i4), (Hm,i2, Dg,i2)
    (Hm,i4, Dg,i4), (Hm,i3, Dg,i3)
    注:typeA、typeB、typeC、typeD、typeE、typeF分别为非下降最长组合、最长组合、非重叠非下降组合、非重叠组合、非下降所有可能组合、所有可能组合,下同。Hm,i1Hm,i2Hm,i3Hm,i4分别表示第 i 个样地的第1、2、3、4次林分平均高的观测数据;Dg,i1Dg,i2Dg,i3Dg,i4分别表示第 i 个样地的第1、2、3、4次林分平均胸径的观测数据。Notes: typeA, typeB, typeC, typeD, typeE, typeF are the longest nondescending combination, the longest combination, the nonoverlapping and nondescending combination, the nonoverlapping combination, all possible nondescending combination, all possible combinations,the same below. Hm,i1Hm,i2Hm,i3Hm,i4 represent the first, second, third and fourth observation data of stand mean height in the i-th sample plot; Dg,i1Dg,i2Dg,i3Dg,i4 represent the observation data of the first, second, third and fourth of stand mean DBH in the i-th sample plot respectively.
    下载: 导出CSV

    表  9   5个模型评价指标

    Table  9   Five model evaluating indices

    模型评价指标 Model evaluating index    公式 Formula
    调整决定系数 Adjusted coefficient of determination (R2a) R2a=1(1R2)n1nk1R2=1ni=1(yiˆyi)2ni=1(yiˉy)2
    均方根误差 Root mean square error (RMSE) RMSE=ni=1(yiˆyi)2nk1
    平均绝对误差 Mean absolute error (MAE) MAE=1nni=1|yiˆyi|
    相对平均绝对误差 Relative mean absolute error (RMAE) RMAE=1nni=1|yiˆyi|ˆyi
    Akaike信息准则 Akaike information criterion (AIC) AIC=logL+2k
    注:yi表示观测值,ˆyi表示估计值,ˉy表示平均观测值,n表示观测样本数,k表示模型参数个数,L表示似然函数值。Notes: yi is observed value, ˆyi is estimated value, ˉy is mean observed value, n is observed sample quantity, k is the number of model parameters, L is the likelihood function value.
    下载: 导出CSV

    表  10   建模数据的不同数据结构类型拟合效果

    Table  10   Fitting performance for different data structure types of calibration data

    数据结构类型
    Data structure type
    Ra 2RMSEMAERMAE
    typeC0.7202.0191.3360.121
    typeD0.7671.9801.3150.111
    typeE0.5622.3731.6280.149
    typeF0.6812.2801.5720.133
    下载: 导出CSV

    表  11   检验数据的不同数据结构类型拟合效果

    Table  11   Fitting performance for different data structure types of validation data

    数据结构类型
    Data structure type
    RMSEMAERMAE
    typeC1.8501.1890.087
    typeD1.8091.1650.084
    typeE2.1621.4790.106
    typeF2.0871.4360.102
    下载: 导出CSV

    表  12   不同数据结构类型的模型参数估计

    Table  12   Model parameter estimates for different data structure types

    数据结构类型 Data structure type参数 Parameter估计值 Estimate标准差 Std. errortt valuePP value
    typeCb0.161 50.076 82.102 10.036 3
    r11.983 23.162 33.789 40.000 2
    typeDb0.165 70.046 23.586 20.000 4
    r14.420 42.350 76.134 40.000 0
    typeEb0.147 00.036 74.008 80.000 1
    r15.180 91.663 79.125 00.000 0
    typeFb0.156 60.023 26.736 60.000 0
    r17.442 61.301 613.400 90.000 0
    下载: 导出CSV

    表  13   建模数据的不同林分密度指标拟合效果

    Table  13   Fitting performance for different stand density indices of calibration data

    林分密度指标 Stand density indexRa 2RMSEMAERMAEAIC
    N 0.768 1.976 1.312 0.111 2 641.729
    BA 0.769 1.973 1.316 0.113 2 639.754
    SDIa 0.769 1.973 1.317 0.113 2 639.648
    SDIr 0.769 1.973 1.316 0.113 2 639.383
    CD 0.768 1.978 1.319 0.113 2 643.066
    下载: 导出CSV

    表  14   检验数据的不同林分密度指标拟合效果

    Table  14   Fitting performance for different stand density indices of validation data

    林分密度指标
    Stand density index
    RMSEMAERMAE
    N 1.828 1.193 0.087
    BA 1.829 1.178 0.086
    SDIa 1.829 1.180 0.086
    SDIr 1.825 1.178 0.086
    CD 1.808 1.160 0.084
    下载: 导出CSV

    表  15   不同林分密度指标的模型参数估计

    Table  15   Model parameter estimates for different stand density indices

    林分密度指标 Stand density index参数 Parameter估计值 Estimate标准差 Std. errortt valuePP value
    N b0 0.163 2 0.031 4 5.192 6 0.000 0
    r 16.757 4 2.543 3 6.588 9 0.000 0
    cSD 1.387 3 0.167 0 8.307 4 0.000 0
    BA b0 0.174 9 0.032 3 5.407 8 0.000 0
    r 18.152 5 2.623 7 6.918 7 0.000 0
    cSD 1.081 8 0.180 9 5.979 0 0.000 0
    SDIa b0 0.165 7 0.029 8 5.555 6 0.000 0
    r 17.725 9 2.438 1 7.270 3 0.000 0
    cSD 1.225 8 0.182 6 6.712 8 0.000 0
    SDIr b0 0.168 5 0.030 8 5.474 9 0.000 0
    r 17.667 2 2.453 8 7.200 0 0.000 0
    cSD 1.172 1 0.192 2 6.099 6 0.000 0
    CD b0 0.172 4 0.036 3 4.756 2 0.000 0
    r 16.061 2 2.440 0 6.582 3 0.000 0
    cSD 1.506 9 0.322 4 4.673 5 0.000 0
    注:cSD是标准化后的5个林分密度指标参数。Note: cSD is the five stand density index parameters after standardization.
    下载: 导出CSV

    表  16   建模数据的不同直径多样性指数拟合效果

    Table  16   Fitting performance for different diameter diversity indices of calibration data

    直径多样性指数
    Diameter diversity index
    Ra 2RMSEMAERMAEAIC
    ShaI 0.772 1.959 1.308 0.111 2 631.775
    SimI 0.771 1.964 1.306 0.111 2 634.669
    MceI 0.772 1.963 1.308 0.111 2 634.009
    BerI 0.772 1.961 1.304 0.111 2 633.108
    GinI 0.769 1.972 1.312 0.113 2 639.897
    下载: 导出CSV

    表  17   检验数据的不同直径多样性指数拟合效果

    Table  17   Fitting performance for different diameter diversity indices of validation data

    直径多样性指数
    Diameter diversity index
    Ra 2RMSEMAERMAEAIC
    ShaI 0.772 1.959 1.308 0.111 2 631.775
    SimI 0.771 1.964 1.306 0.111 2 634.669
    MceI 0.772 1.963 1.308 0.111 2 634.009
    BerI 0.772 1.961 1.304 0.111 2 633.108
    GinI 0.769 1.972 1.312 0.113 2 639.897
    下载: 导出CSV

    表  18   不同直径多样性指数的模型参数估计

    Table  18   Model parameter estimates for different diameter diversity indices

    直径多样性指数
    Diameter diversity index
    参数
    Parameter
    估计值
    Estimate
    标准差
    Std. error
    t
    t value
    P
    P value
    ShaI b0 0.186 1 0.027 4 6.792 0 0.000 0
    r 21.405 3 2.686 2 7.968 5 0.000 0
    cSDIr 1.279 6 0.120 2 10.646 4 0.000 0
    cDI 8.707 1 1.225 0 7.108 1 0.000 0
    SimI b0 0.190 5 0.028 6 6.653 2 0.000 0
    r 22.628 8 2.900 7 7.801 2 0.000 0
    cSDIr 1.370 8 0.146 5 9.354 5 0.000 0
    cDI 6.965 8 1.879 7 3.705 7 0.000 2
    MceI b0 0.180 1 0.027 5 6.544 5 0.000 0
    r 20.721 2 2.610 3 7.938 1 0.000 0
    cSDIr 1.299 1 0.132 2 9.823 5 0.000 0
    cDI 7.711 0 1.270 1 6.071 2 0.000 0
    BerI b0 0.184 5 0.027 3 6.758 7 0.000 0
    r 22.645 4 2.798 0 8.093 4 0.000 0
    cSDIr 1.397 6 0.144 2 9.692 4 0.000 0
    cDI 5.400 2 0.775 3 6.965 5 0.000 0
    GinI b0 0.183 7 0.034 6 5.311 0 0.000 0
    r 18.978 5 2.675 5 7.093 4 0.000 0
    cSDIr 1.228 1 0.175 9 6.981 0 0.000 0
    cDI 0.930 0 0.798 0 1.165 5 0.244 3
    注:cSDIr是标准化后的林分密度指标SDIr参数,下同。cDI是标准化后的5个直径多样性指数参数。Note: cSDIr is the SDIr parameter of stand density index after standardization, the same below. cDI is the five diameter diversity index parameters after standardization.
    下载: 导出CSV

    表  19   建模数据的不同树种多样性指数拟合效果

    Table  19   Fitting performance for different tree species diversity index of calibration data

    树种多样性指数
    Tree species diversity index
    Ra 2RMSEMAERMAEAIC
    ShaI 0.774 1.952 1.293 0.110 2 628.473
    SimI 0.774 1.954 1.301 0.111 2 629.331
    MceI 0.774 1.951 1.292 0.110 2 627.545
    BerI 0.773 1.957 1.307 0.111 2 631.183
    下载: 导出CSV

    表  20   检验数据的不同树种多样性指数拟合效果

    Table  20   Fitting performance for different tree species diversity index of validation data

    树种多样性指数
    Tree species diversity index
    RMSEMAERMAE
    ShaI 1.817 1.176 0.087
    SimI 1.859 1.219 0.089
    MceI 1.817 1.186 0.088
    BerI 2.151 1.286 0.091
    下载: 导出CSV

    表  21   不同树种多样性指数的模型参数估计

    Table  21   Model parameter estimates for different tree species diversity index

    树种多样性指数
    Tree species diversity index
    参数
    Parameter
    估计值
    Estimate
    标准差
    Std. error
    t
    t value
    P
    P value
    ShaI b0 0.317 2 0.064 0 4.957 9 0.000 0
    r 21.774 6 3.520 6 6.184 8 0.000 0
    cSDIr 0.594 5 0.296 4 2.005 5 0.045 3
    cShaI −2.736 2 3.044 4 −0.898 8 0.369 1
    cSP −24.003 0 5.118 3 −4.689 6 0.000 0
    SimI b0 −0.037 3 0.019 9 −1.874 9 0.061 3
    r −9.609 4 6.686 6 −1.437 1 0.151 2
    cSDIr −1.993 7 0.482 0 −4.136 6 0.000 0
    cShaI −1.692 0 2.139 2 −0.791 0 0.429 3
    cSP 50.617 9 15.604 2 3.243 9 0.001 2
    MceI b0 0.420 9 0.095 5 4.407 6 0.000 0
    r 22.790 2 3.568 5 6.386 5 0.000 0
    cSDIr 0.720 0 0.279 4 2.577 3 0.010 2
    cShaI −2.313 5 3.029 4 −0.763 7 0.445 3
    cSP −30.040 1 4.594 6 −6.538 2 0.000 0
    BerI b0 0.178 9 0.026 7 6.690 3 0.000 0
    r 21.947 4 2.934 8 7.478 3 0.000 0
    cSDIr 1.033 2 0.211 3 4.890 9 0.000 0
    cShaI 8.149 1 1.606 6 5.072 4 0.000 0
    cSP 3.606 4 0.762 0 4.733 0 0.000 0
    注:cShaI表示标准化后的直径多样性指数ShaI参数,cSP表示标准化后的4个树种多样性指数参数。Notes: cShaI refers to the diameter diversity index ShaI parameters after standardization, and cSP refers to the four tree species diversity index parameters after standardization.
    下载: 导出CSV
  • [1]

    Skovsgaard J P, Vanclay J K. Forest site productivity: a review of the evolution of dendrometric concepts for even-aged stands[J]. Forestry: An International Journal of Forest Research, 2008, 81(1): 13−31. doi: 10.1093/forestry/cpm041

    [2]

    Skovsgaard J P, Vanclay J K. Forest site productivity: a review of spatial and temporal variability in natural site conditions[J]. Forestry: An International Journal of Forest Research, 2013, 86(3): 305−315. doi: 10.1093/forestry/cpt010

    [3]

    Hägglund B. Evaluation of forest site productivity[J]. Forestry Abstracts, 1981, 42(11): 516−527.

    [4]

    Rennolls K. “Top height”: its definition and estimation[J]. Commonwealth Forestry Review, 1978, 57(3): 215−219.

    [5]

    Huang S M, Titus S J. An index of site productivity for uneven-aged or mixed-species stands[J]. Canadian Journal of Forest Research, 1993, 23(3): 558−562. doi: 10.1139/x93-074

    [6]

    Palahí M, Pukkala T, Kasimiadis D, et al. Modelling site quality and individual-tree growth in pure and mixed Pinus brutia stands in northeast Greece[J]. Annals of Forest Science, 2008, 65(5): 501. doi: 10.1051/forest:2008022

    [7]

    Nigh G D. The geometric mean regression line: a method for developing site index conversion equations for species in mixed stands[J]. Forest Science, 1995, 41(1): 84−98. doi: 10.1093/forestscience/41.1.84

    [8]

    Johansson T. Site index conversion equations for Picea abies and five broadleaved species in Sweden: Alnus glutinosa, Alnus incana, Betula pendula, Betula pubescens and Populus tremula[J]. Scandinavian Journal of Forest Research, 2006, 21(1): 14−19. doi: 10.1080/02827580500526015

    [9]

    Raulier F, Lambert M C, Pothier D, et al. Impact of dominant tree dynamics on site index curves[J]. Forest Ecology and Management, 2003, 184(1/3): 65−78.

    [10]

    Ouzennou H, Pothier D, Raulier F. Adjustment of the age-height relationship for uneven-aged black spruce stands[J]. Canadian Journal of Forest Research, 2008, 38(7): 2003−2012. doi: 10.1139/X08-044

    [11]

    Anyomi K A, Raulier F, Bergeron Y, et al. Spatial and temporal heterogeneity of forest site productivity drivers: a case study within the eastern boreal forests of Canada[J]. Landscape Ecology, 2014, 29(5): 905−918. doi: 10.1007/s10980-014-0026-y

    [12]

    McCarthy J W, Weetman G. Stand structure and development of an insect-mediated boreal forest landscape[J]. Forest Ecology and Management, 2007, 241(1/3): 101−114.

    [13]

    Boucher D, Gauthier S, De Grandpré L. Structural changes in coniferous stands along a chronosequence and a productivity gradient in the northeastern boreal forest of Québec[J]. Écoscience, 2006, 13(2): 172−180. doi: 10.2980/i1195-6860-13-2-172.1

    [14]

    Vanclay J K. Site productivity assessment in rainforests: an objective approach using indicator species[M]//Mohd W R, Chan H T, Appanah S. Seminar on growth and yield in tropical mixed/moist forests. Kuala Lumpur: Forest Research Institute, 1989: 225−241.

    [15]

    Meyer H A. A mathematical expression for height curves[J]. Journal of Forestry, 1940, 38(5): 415−420.

    [16]

    Husch B, Miller C I, Beers T W. Forest mensuration [M]. New York: John Wiley & Sons, 1982.

    [17]

    Lei X D, Tang M P, Lu Y C, et al. Forest inventory in China: status and challenges[J]. International Forestry Review, 2009, 11(1): 52−63. doi: 10.1505/ifor.11.1.52

    [18]

    Zeng W S, Tomppo E, Healey S P, et al. The national forest inventory in China: history-results-international context[J]. Forest Ecosystems, 2015, 2(1): 1−16. doi: 10.1186/s40663-014-0025-0

    [19]

    Pienaar L V, Shiver B D. An analysis and models of basal area growth in 45-year-old unthinned and thinned slash pine plantation plots[J]. Forest Science, 1984, 30(4): 933−942.

    [20]

    Lanner R M. On the insensitivity of height growth to spacing[J]. Forest Ecology and Management, 1985, 13(3/4): 143−148.

    [21]

    Bontemps J D, Bouriaud O. Predictive approaches to forest site productivity: recent trends, challenges and future perspectives[J]. Forestry: An International Journal of Forest Research, 2014, 87(1): 109−128. doi: 10.1093/forestry/cpt034

    [22] 傅立国, 陈谭清, 郎楷永, 等. 中国高等植物[M]. 青岛: 青岛出版社, 2001: 240−254.

    Fu L G, Chen T Q, Lang K Y, et al. Higher plants of China[M]. Qingdao: Qingdao Publishing House, 2001: 240−254.

    [23] 国家林业局. 第八次全国森林资源清查结果[J]. 林业资源管理, 2014(1):1−2.

    State Forestry Bureau. The 8th national forest inventory[J]. Forest Resources Management, 2014(1): 1−2.

    [24] 郭斌. 栎属近缘种指纹图谱构建及遗传结构[J]. 北京林业大学学报, 2018, 40(5):10−18.

    Guo B. Construction of SSR fingerprint and research of genetic structure in relative Quercus species[J]. Journal of Beijing Forestry University, 2018, 40(5): 10−18.

    [25] 官秀玲, 胡艳波. 我国栎类经营及其发展方向研究[J]. 西部林业科学, 2019, 48(2):146−150, 158.

    Guan X L, Hu Y B. Research on oak forest management orientation of China[J]. Journal of West China Forestry Science, 2019, 48(2): 146−150, 158.

    [26] 盛炜彤. 我国应将天然次生林的经营放在重要位置[J]. 林业科技通讯, 2016(2):10−13.

    Sheng W T. China should put an important position for the management of natural secondary forests[J]. Forest Science and Technology, 2016(2): 10−13.

    [27] 张晓红, 张会儒. 蒙古栎次生林垂直结构特征对目标树经营的响应[J]. 北京林业大学学报, 2019, 41(5):56−65.

    Zhang X H, Zhang H R. Response of vertical structure characteristics of natural secondary Quercus mongolica forest to crop tree release[J]. Journal of Beijing Forestry University, 2019, 41(5): 56−65.

    [28]

    Reineke L H. Perfecting a stand-density index for even-aged forests[J]. Journal of Agricultural Research, 1933, 46(7): 627−638.

    [29]

    Stage A R. A tree-by-tree measure of site utilization for grand fir related to stand density index[R]. Washington: U.S. Forest Service Research, 1968.

    [30]

    Long J N, Daniel T W. Assessment of growing stock in uneven-aged stands[J]. Western Journal of Applied Forestry, 1990, 5(3): 93−96. doi: 10.1093/wjaf/5.3.93

    [31] 张连金, 惠刚盈, 孙长忠. 不同林分密度指标的比较研究[J]. 福建林学院学报, 2011, 31(3):257−261.

    Zhang L J, Hui G Y, Sun C Z. Comparison of different stand density measures[J]. Journal of Fujian College of Forestry, 2011, 31(3): 257−261.

    [32]

    Lexerød N L, Eid T. An evaluation of different diameter diversity indices based on criteria related to forest management planning[J]. Forest Ecology and Management, 2006, 222(1/3): 17−28.

    [33]

    Wang M L, Borders B E, Zhao D H. Parameter estimation of base-age invariant site index models: which data structure to use?[J]. Forest Science, 2007, 53(5): 541−551.

    [34] 倪成才, 于福平, 张玉学, 等. 差分生长模型的应用分析与研究进展[J]. 北京林业大学学报, 2010, 32(4):284−292.

    Ni C C, Yu F P, Zhang Y X, et al. Application analysis and recent advances of projection growth models[J]. Journal of Beijing Forestry University, 2010, 32(4): 284−292.

    [35]

    Getis A, Aldstadt J. Constructing the spatial weights matrix using a local statistic[J]. Geographical Analysis, 2004, 36(2): 90−104. doi: 10.1111/j.1538-4632.2004.tb01127.x

  • 期刊类型引用(1)

    1. 徐媛,陈锦玲,陈玉梅,李璐璐,李惠敏,秦新民. 干旱胁迫下花生转录组与miRNA测序及相关基因的表达. 贵州农业科学. 2021(01): 1-9 . 百度学术

    其他类型引用(3)

图(4)  /  表(21)
计量
  • 文章访问数:  2587
  • HTML全文浏览量:  970
  • PDF下载量:  114
  • 被引次数: 4
出版历程
  • 收稿日期:  2019-12-10
  • 修回日期:  2020-01-01
  • 网络出版日期:  2020-09-16
  • 发布日期:  2020-09-29

目录

    /

    返回文章
    返回