高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

六盘山华北落叶松林分蒸腾日内变化及其对环境因子的响应

马菁 郭建斌 刘泽彬 王彦辉 张紫优

马菁, 郭建斌, 刘泽彬, 王彦辉, 张紫优. 六盘山华北落叶松林分蒸腾日内变化及其对环境因子的响应[J]. 北京林业大学学报, 2020, 42(5): 1-11. doi: 10.12171/j.1000-1522.20190468
引用本文: 马菁, 郭建斌, 刘泽彬, 王彦辉, 张紫优. 六盘山华北落叶松林分蒸腾日内变化及其对环境因子的响应[J]. 北京林业大学学报, 2020, 42(5): 1-11. doi: 10.12171/j.1000-1522.20190468
Ma Jing, Guo Jianbin, Liu Zebin, Wang Yanhui, Zhang Ziyou. Diurnal variations of stand transpiration of Larix principis-rupprechtii forest and its response to environmental factors in Liupan Mountains of northwestern China[J]. Journal of Beijing Forestry University, 2020, 42(5): 1-11. doi: 10.12171/j.1000-1522.20190468
Citation: Ma Jing, Guo Jianbin, Liu Zebin, Wang Yanhui, Zhang Ziyou. Diurnal variations of stand transpiration of Larix principis-rupprechtii forest and its response to environmental factors in Liupan Mountains of northwestern China[J]. Journal of Beijing Forestry University, 2020, 42(5): 1-11. doi: 10.12171/j.1000-1522.20190468

六盘山华北落叶松林分蒸腾日内变化及其对环境因子的响应

doi: 10.12171/j.1000-1522.20190468
基金项目: 国家重点研发计划项目课题(2017YFC0504602),宁夏“十三五”重大科研项目(QCYL-16-12),国家林业和草原局宁夏六盘山森林生态定位站
详细信息
    作者简介:

    马菁,博士生。主要研究方向:森林水文。Email:Majing8977@126.com 地址:100083 北京市海淀区清华东路35号北京林业大学水土保持学院

    责任作者:

    郭建斌,教授,博士生导师。主要研究方向:森林水文和林业生态工程。Email:jianbinguo@bjfu.edu.cn 地址:同上

  • 中图分类号: S791.229;S716.3

Diurnal variations of stand transpiration of Larix principis-rupprechtii forest and its response to environmental factors in Liupan Mountains of northwestern China

  • 摘要:     目的   理解林木蒸腾日内变化及其对主要环境因子的响应规律,进一步阐释短时间尺度下环境条件调控森林蒸腾的机理。    方法   以宁夏六盘山香水河小流域华北落叶松人工林为研究对象,在2018年生长季(5—10月)连续监测样树的树干液流变化,并同步观测气象条件和土壤湿度,分析小时尺度的林分蒸腾对环境因子的响应,并建立多因素影响的蒸腾模型。    结果   (1)在小时尺度上,林分蒸腾量(T)对太阳辐射(Rs)和饱和水汽压差(VPD)的响应均呈二次多项式函数关系;随Rs和VPD的增加,T均先增加,当Rs和VPD分别达到666.7 W/m2和1.86 kPa后达到峰值,然后逐渐减小。(2)T对土壤可利用水分(REW)的响应符合趋于饱和的指数关系,T随REW的增加表现为先增加,当REW > 0.3后,T逐渐趋于稳定。(3)在确定T响应Rs、VPD和REW的类型并耦合形成蒸腾模型后,利用生长季内的奇数天小时观测值进行拟合参数,并用偶数天小时观测值进行验证,得到T响应多因素变化的耦合模型:T = (− 6.347 0 × 10− 5\begin{document}${R_{\rm{s}}^2}$\end{document}− 0.637 0Rs − 208.734 8) × (− 0.003 2VPD2 + 0.013 8VPD + 0.001 7) × (− 0.008 1 − 0.004 6(1 − exp(− 12.469 6REW))),该模型在校准阶段(R2 = 0.74,纳什效率系数(NSE)= 0.82)和验证阶段(R2 = 0.77,NSE = 0.84)均表现出较好的模拟效果。    结论   在小时尺度上,林分蒸腾量可以由耦合了太阳辐射、饱和水汽压差和土壤可利用水分影响的耦合模型进行较好的预测。本研究结果可为精确预测变化环境下的华北落叶松林分日内蒸腾提供理论基础,同时模型的构建方法可为其他区域和其他树种的林分蒸腾模型的建立提供参考依据。

     

  • 图  1  2018年生长季内环境因子变化

    Figure  1.  Variations of environmental factors in growth season of 2018

    图  2  典型晴天树干液流速率的日进程

    Figure  2.  Diurnal variations of sap flux density ($\scriptstyle \overline {J_{\rm{s}}} $) in typical sunny days

    图  3  不同月份内林分小时蒸腾的日内变化特征

    Figure  3.  Diurnal variations of stand hourly transpiration (T) in different months

    图  4  林分小时蒸腾对太阳辐射的响应

    Figure  4.  Response of stand hourly transpiration (T) to solar radiation

    图  5  林分小时蒸腾对饱和水汽压差的响应

    Figure  5.  Response of stand hourly transpiration (T) to vapor pressure deficit

    图  6  林分小时蒸腾对土壤可利用水分的响应

    Figure  6.  Response of stand hourly transpiration (T) to relative extractable water

    图  7  小时尺度林分蒸腾实测值与模拟值对比

    Figure  7.  Comparison between the measured and simulated stand hourly transpiration (T)

    表  1  研究样地基本信息

    Table  1.   Basic information of the study sample plot

    平均胸径
    Mean DBH/cm
    平均树高
    Mean tree height/m
    平均冠幅
    Mean crown width/m
    林分密度/(株·hm− 2
    Stand density/
    (tree·ha− 1)
    郁闭度Canopy density土壤密度
    Soil bulk density/
    (g·cm− 3)
    总孔隙度
    Total
    porosity/%
    毛管孔隙度
    Capillary porosity/%
    非毛管孔隙度
    Noncapillary porosity/%
    18.71 ± 4.0316.19 ± 2.343.27 ± 0.819070.720.9456.6540.5616.09
    下载: 导出CSV
  • [1] Liu Z B, Wang Y H, Tian A, et al. Intra-annual variation of stem radius of Larix principis-rupprechtii and its response to environmental factors in Liupan Mountains of northwest China[J]. Forests, 2017, 8(10): 382−397. doi: 10.3390/f8100382
    [2] 王艳兵. 六盘山半干旱区华北落叶松树干径向变化及对环境因子的响应[D]. 呼和浩特: 内蒙古农业大学, 2013.

    Wang Y B. A study on the stem diameter variations and its response to environment factors for Larix principis-rupprechtii plantation in the semi-arid area of Liupan Mountains, Northwest China[D]. Huhhot: Inner Mongolia Agricultural University, 2013.
    [3] Lin Y, Wang G X, Guo J Y, et al. Quantifying evapotranspiration and its components in a coniferous subalpine forest in Southwest China[J]. Hydrological Processes, 2012, 26(20): 3032−3040. doi: 10.1002/hyp.8321
    [4] Wang H L, Guan H D, Deng Z J, et al. Optimization of canopy conductance models from concurrent measurements of sap flow and stem water potential on drooping sheoak in South Australia[J]. Water Resources Research, 2014, 50(7): 6154−6167. doi: 10.1002/2013WR014818
    [5] Poyatos R, Granda V, Molowny-Horas R, et al. SAPFLUXNET: towards a global database of sap flow measurements[J]. Tree Physiology, 2016, 36(12): 1449−1455. doi: 10.1093/treephys/tpw110
    [6] Hong L, Guo J B, Liu Z B, et al. Time-lag effect between sap flow and environmental factors of Larix principis-rupprechtii Mayr[J/OL]. Forest, 2019, 10: 971 [2019−12−11]. https://www.mdpi.com/1999-4907/10/11/971.
    [7] 万艳芳. 祁 连山青海云杉林蒸腾特征及影响因素分析[D]. 兰州: 甘肃农业大学, 2017.

    Wan Y F. Characteristics of transpiration of Picea crassifolia forest and relevant factors analysis in the Qilian Mountains[D]. Lanzhou: Gansu Agricultural University, 2017.
    [8] 李振华, 王彦辉, 于澎涛, 等. 六盘山半干旱区华北落叶松林的生长季蒸散量和组分特征[J]. 生态环境学报, 2013, 22(2):222−228. doi: 10.3969/j.issn.1674-5906.2013.02.008

    Li Z H, Wang Y H, Yu P T, et al. The evapotranspiration and its partition in growing season for a stand of Larix principis-rupprechtii plantation in the semi-arid region of Liupan Mountains, NW China[J]. Ecology and Environmental Sciences, 2013, 22(2): 222−228. doi: 10.3969/j.issn.1674-5906.2013.02.008
    [9] 孙慧珍, 周晓峰, 康绍忠. 应 用热技术研究树干液流进展[J]. 应用生态学报, 2004, 15(6):1074−1078. doi: 10.3321/j.issn:1001-9332.2004.06.032

    Sun H Z, Zhou X F, Kang S Z. Research advance in application of heat technique in studying stem sap flow[J]. Chinese Journal of Applied Ecology, 2004, 15(6): 1074−1078. doi: 10.3321/j.issn:1001-9332.2004.06.032
    [10] Granier A, Biron P, Bréda N, et al. Transpiration of trees and forest stands: short and long-term monitoring using sap flow methods[J]. Global Change Biology, 1996, 2(3): 265−274. doi: 10.1111/j.1365-2486.1996.tb00078.x
    [11] 张静, 王力. 黄土塬区苹果园蒸散与环境因素的关系[J]. 林业科学, 2018, 54(3):29−38.

    Zhang J, Wang L. The relationship between the evapotranspiration and the environmental factors in the apple orchards in the loess tableland area[J]. Scientia Silvae Sinicae, 2018, 54(3): 29−38.
    [12] 李振华. 六盘山叠叠沟典型植被蒸散及水文要素的坡面尺度效应[D]. 北京: 中国林业科学研究院, 2014.

    Li Z H. The evapotranspiration of typical vegetation and the scale effect of the hydrologic features in slopes of Diediegou Watershed of Liupan Mountains[D]. Beijing: Chinese Academy of Forestry, 2014.
    [13] Liu Z B, Wang Y H, Tian A, et al. Modeling the response of daily evapotranspiration and its components of a larch plantation to the variation of weather, soil moisture and canopy leaf area index[J]. Journal of Geophysical Research: Atmospheres, 2018, 123: 7354−7374.
    [14] 王文杰, 孙伟, 邱岭, 等. 不同时间尺度下兴安落叶松树干液流密度与环境因子的关系[J]. 林业科学, 2012, 48(1):77−85. doi: 10.11707/j.1001-7488.20120113

    Wang W J, Sun W, Qiu L, et al. Relations between stem sap flow density of Larix gmelinii and environmental factors under different temporal scale[J]. Scientia Silvae Sinicae, 2012, 48(1): 77−85. doi: 10.11707/j.1001-7488.20120113
    [15] 张可慧. 全球气候变暖对京津冀地区极端天气气候事件的影响及防灾减灾对策[J]. 干旱区资源与环境, 2011(10):125−128.

    Zhang K H. The impacts of global climate change on extreme weather events in Beijing-Tianjin-Hebei area and the countermeasures for disaster prevention[J]. Journal of Arid Land Resources and Environment, 2011(10): 125−128.
    [16] 张桐. 六盘山坡面土壤物理性质时空变化及尺度效应[D]. 北京: 北京林业大学, 2016.

    Zhang T. Spatio-temporal variation and scale effect of soil physical properties on slope in the forest areas of Liupan Mountains, Northwest China[D]. Beijing: Beijing Forestry University, 2016.
    [17] 刘延惠. 六盘山香水河小流域典型植被生长固碳及耗水特征[D]. 北京: 中国林业科学研究院, 2011.

    Liu Y H. The characteristics of growth and carbon sequestration and water consumption in the small watershed of Xiangshuihe, Liupan Mountains[D]. Beijing: Chinese Academy of Forestry, 2011.
    [18] Campbell G S, Norman J M. An introduction to environmental biophysics[M]. 2nd ed. New York: Springer-Verlag, 1998.
    [19] 韩新生, 王彦辉, 于澎涛, 等. 六盘山半干旱区华北落叶松林土壤水分时空变化与影响因素[J]. 水土保持学报, 2019, 33(1):113−119.

    Han X S, Wang Y H, Yu P T, et al. Temporal and spatial variation and influencing factors of soil moisture in Larix principis-rupprechtii plantation in semiarid Liupan Mountains, Northwest China[J]. Journal of Soil and Water Conservation, 2019, 33(1): 113−119.
    [20] 刘泽彬, 王彦辉, 徐丽宏, 等. 六盘山华北落叶松林坡面的土壤水分时间稳定性[J]. 水土保持学报, 2017,33(1):153−159,165.

    Liu Z B, Wang Y H, Xu L H, et al. Temporal stability of soil moisture on a slope covered by Larix principis-rupprechtii plantation in Liupan Mountains[J]. Journal of Soil and Water Conservation, 2017,33(1): 153−159,165.
    [21] Matsushita M, Takata K, Hitsuma G, et al. A novel growth model evaluating age-size effect on long-term trends in tree growth[J]. Functional Ecology, 2015, 29(10): 1250−1259. doi: 10.1111/1365-2435.12416
    [22] Mccuen R H, Knight Z, Cutter A G. Evaluation of the Nash-Sutcliffe efficiency index[J]. Journal of Hydrologic Engineering, 2006, 11(6): 597−602. doi: 10.1061/(ASCE)1084-0699(2006)11:6(597)
    [23] Goldstein G, Andrade J L, Meinzer F C, et al. Stem water storage and diurnal patterns of water use in tropical forest canopy trees[J]. Plant, Cell and Environment, 1998, 21(4): 397−406. doi: 10.1046/j.1365-3040.1998.00273.x
    [24] 聂立水, 李吉跃, 翟洪波. 油松、栓皮栎树干液流速率比较[J]. 生态学报, 2005, 25(8):106−112.

    Nie L S, Li J Y, Zhai H B. Study of the rate of stem sap flow in Pinus tabuliformis and Quercus variabilis using the TDP method[J]. Acta Ecologica Sinica, 2005, 25(8): 106−112.
    [25] 吴旭. 黄 土丘陵区油松, 沙棘耗水特征及生理响应研究[D]. 西安: 西北农林科技大学, 2016.

    Wu X. Water consumption characteristics and physiological response of in the region of loess hilly: Pinus tabuliformis and Hippophae rhamnoides[D]. Xi’an: Northwest A&F University, 2016.
    [26] 刘建立, 程丽莉, 余新晓. 乔木蒸腾耗水的影响因素及研究进展[J]. 世界林业研究, 2009, 22(4):35−40.

    Liu J L, Cheng L L, Yu X X. Influencing factors of water consumption from tree transpiration[J]. World Forestry Research, 2009, 22(4): 35−40.
    [27] Meinzer F C, Hinckley M, Ceulemans R. Apparent response of stomata to transpiration and humidity in a hybrid poplar canopy[J]. Plant, Cell and Environment, 1997, 20(10): 1301−1308. doi: 10.1046/j.1365-3040.1997.d01-18.x
    [28] Al-Yahyai R. Soil water depletion, growth, physiology, and yield of carambola trees in krome soil[D]. Gainesville: University of Florida, 2004.
    [29] 张雷, 孙鹏森, 刘世荣. 树干液流对环境变化响应研究进展[J]. 生态学报, 2009, 29(10):442−452.

    Zhang L, Sun P S, Liu S R. A review on water use responses of tree/forest stand to environmental changes by using sap flow techniques[J]. Acta Ecologica Sinica, 2009, 29(10): 442−452.
    [30] 贾国栋, 余新晓, 朱建刚, 等. 北京山区刺槐、栓皮栎生长旺季液流特性及影响因子[J]. 水土保持通报, 2010, 30(5):50−56.

    Jia G D, Yu X X, Zhu J G, et al. Sap flow characteristics and influencing factors of Robinia pseudoacacia and Quercus variabilis in rapid growth season in mountain area of Beijing City[J]. Bulletin of Soil and Water Conservation, 2010, 30(5): 50−56.
    [31] 韩磊. 黄土半干旱区主要造林树种蒸腾耗水及冠层蒸腾模拟研究[D]. 北京: 北京林业大学, 2011.

    Han L. Characteristics and modeling of canopy transpiration of main tree species in semi-arid region of Chinese Loess Plateau[D]. Beijing: Beijing Forestry University, 2011.
    [32] 陈立欣. 树木/林分蒸腾环境响应及其生理控制[D]. 北京: 北京林业大学, 2013.

    Chen L X. Environmental response and biophysical control over transpiration by trees/stands[D]. Beijing: Beijing Forestry University, 2013.
    [33] 马玲, 饶兴权, 赵平, 等. 马占相思整树蒸腾的日变化和季节变化特征[J]. 北京林业大学学报, 2007, 29(1):71−77.

    Ma L, Rao X Q, Zhao P, et al. Diurnal and seasonal changes in whole-tree transpiration of Acacia mangium[J]. Journal of Beijing Forestry University, 2007, 29(1): 71−77.
    [34] Naithani K J, Ewers B E, Pendall E. Sap flux-scaled transpiration and stomatal conductance response to soil and atmospheric drought in a semi-arid sagebrush ecosystem[J]. Journal of Hydrology (Amsterdam), 2012, 464−465: 176−185. doi: 10.1016/j.jhydrol.2012.07.008
    [35] 韩路, 王海珍, 徐雅丽, 等. 灰胡杨蒸腾速率对气孔导度和水汽压差的响应[J]. 干旱区资源与环境, 2016, 30(8):193−197.

    Han L, Wang H Z, Xu Y l, et al. Responses of transpiration rate of Populus pruinosa to stomatal conductance and vapor pressure deficient[J]. Journal of Arid Land Resources and Environment, 2016, 30(8): 193−197.
    [36] 贾国栋, 陈立欣, 李瀚之, 等. 北方土石山区典型树种耗水特征及环境影响因子[J]. 生态学报, 2018, 38(10):3441−3452.

    Jia G D, Chen L X, Li H Z, et al. The effect of environmental factors on plant water consumption characteristics in a northern rocky mountainous area[J]. Acta Ecologica Sinica, 2018, 38(10): 3441−3452.
    [37] Fletcher A L, Sinclair T R, Allen L H. Transpiration responses to vapor pressure deficit in well watered ‘slow-wilting’ and commercial soybean[J]. Environmental and Experimental Botany, 2007, 61(2): 145−151. doi: 10.1016/j.envexpbot.2007.05.004
    [38] 李新宇, 李延明, 孙林, 等. 银杏蒸腾耗水与环境因子的关系研究[J]. 北京林业大学学报, 2014, 36(4):23−29.

    Li X Y, Li Y M, Sun L, et al. Characteristics of transpiration water consumption and its relationship with environmental factors in Ginkgo biloba[J]. Journal of Beijing Forestry University, 2014, 36(4): 23−29.
    [39] 朱丽薇, 赵平, 蔡锡安, 等. 荷木人工林蒸腾与冠层气孔导度特征及对环境因子的响应[J]. 热带亚热带植物学报, 2010,18(6):599−606.

    Zhu L W, Zhao P, Cai X A, et al. Characteristics of transpiration and canopy stomatal conductance of Schima superba plantation and their responses to environmental factors[J]. Journal of Tropical and Subtropical Botany, 2010,18(6): 599−606.
    [40] 牛丽, 岳广阳, 赵哈林, 等. 利用液流法估算樟子松和小叶锦鸡儿人工林蒸腾耗水[J]. 北京林业大学学报, 2008, 30(6):1−8.

    Niu L, Yue G Y, Zhao H L, et al. Evaluating transpiration from Pinus sylvestris var. mongolica and Caragama microphylla using sap flow method[J]. Journal of Beijing Forestry University, 2008, 30(6): 1−8.
    [41] Sala A, Tenhunen J D. Simulations of canopy net photosynthesis and transpiration in Quercus ilex L. under the influence of seasonal drought[J]. Agricultural and Forest Meteorology, 1996, 78(3−4): 203−222.
    [42] Orlandini S, Bellesi S, Bindi M. Influence of water deficit stress on leaf area development and transpiration of Sangiovese grapevines grown in pots[J]. American Journal of Enology & Viticulture, 2005, 56(1): 68−72.
    [43] Lagergren F, Lindroth A. Transpiration response to soil moisture in pine and spruce trees in Sweden[J]. Agricultural and Forest Meteorology, 2002, 112: 67−85. doi: 10.1016/S0168-1923(02)00060-6
    [44] 刘泽彬. 六盘山坡面华北落叶松林水文影响的时空变化及尺度转换[D]. 北京: 中国林业科学研究院, 2018: 117−120.

    Liu Z B. Spatio-temporal variations and scale transition of hydrological impact of Larix principis-rupprechtii plantation on a slope of Liupan Mountains, China[D]. Beijing: Chinese Academy of Forestry, 2018: 117−120.
    [45] Zeppel M J B, Murray B R, Barton C, et al. Seasonal responses of xylem sap velocity to VPD and solar radiation during drought in a stand of native trees in temperate Australia[J]. Functional Plant Biology, 2004, 31(5): 461−470. doi: 10.1071/FP03220
    [46] 李仙岳, 杨培岭, 任树梅, 等. 基于叶面积与冠层辐射的果树蒸腾预测模型[J]. 生态学报, 2009, 29(5):2312−2319. doi: 10.3321/j.issn:1000-0933.2009.05.016

    Li X Y, Yang P L, Ren S M, et al. The model of prediction of transpiration for fruit tree based on leaf area and canopy radiation[J]. Acta Ecologica Sinica, 2009, 29(5): 2312−2319. doi: 10.3321/j.issn:1000-0933.2009.05.016
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  1718
  • HTML全文浏览量:  876
  • PDF下载量:  100
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-12-18
  • 修回日期:  2019-12-31
  • 网络出版日期:  2020-03-05
  • 刊出日期:  2020-05-25

目录

    /

    返回文章
    返回