高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氮磷添加和干旱对高寒草甸优势植物叶片化学计量的影响

符义稳 田大栓 牛书丽 赵垦田

符义稳, 田大栓, 牛书丽, 赵垦田. 氮磷添加和干旱对高寒草甸优势植物叶片化学计量的影响[J]. 北京林业大学学报, 2020, 42(5): 115-123. doi: 10.12171/j.1000-1522.20190469
引用本文: 符义稳, 田大栓, 牛书丽, 赵垦田. 氮磷添加和干旱对高寒草甸优势植物叶片化学计量的影响[J]. 北京林业大学学报, 2020, 42(5): 115-123. doi: 10.12171/j.1000-1522.20190469
Fu Yiwen, Tian Dashuan, Niu Shuli, Zhao Kentian. Effects of nitrogen, phosphorus addition and drought on leaf stoichiometry in dominant species of alpine meadow[J]. Journal of Beijing Forestry University, 2020, 42(5): 115-123. doi: 10.12171/j.1000-1522.20190469
Citation: Fu Yiwen, Tian Dashuan, Niu Shuli, Zhao Kentian. Effects of nitrogen, phosphorus addition and drought on leaf stoichiometry in dominant species of alpine meadow[J]. Journal of Beijing Forestry University, 2020, 42(5): 115-123. doi: 10.12171/j.1000-1522.20190469

氮磷添加和干旱对高寒草甸优势植物叶片化学计量的影响

doi: 10.12171/j.1000-1522.20190469
基金项目: 国家重点基础研究发展计划(2017YFA0604801),西藏农牧学院研究生创新计划项目(YJS2018-01)
详细信息
    作者简介:

    符义稳。主要研究方向:高原生态修复与可持续发展。Email:648890270@qq.com 地址:860000西藏林芝市巴宜区育才西路100号

    责任作者:

    赵垦田,教授,博士生导师。主要研究方向:高原生态修复与可持续发展。 Email:zhaokt@sina.com 地址:同上

  • 中图分类号: S812.4

Effects of nitrogen, phosphorus addition and drought on leaf stoichiometry in dominant species of alpine meadow

  • 摘要:     目的   全球变化背景下,土壤氮和磷有效性及含水量发生显著变化,进而对植物生长和生理过程产生影响。但是,目前同时考虑土壤氮、磷和水分三因素交互作用对植物生长和生理性状的研究还很少,特别是对高寒草甸植物的研究。本研究旨在揭示氮富集、磷富集、干旱及其交互作用对高寒草甸优势植物生长、叶片氮磷含量及其化学计量的影响,为高寒草甸生态系统管理提供科学依据。    方法   基于川西北高寒草甸氮添加(10 g/(m 2 ·a))、磷添加(10 g/(m 2·a))与干旱(减雨50%)控制实验,通过测定垂穗披碱草、发草和草玉梅地上生物量、叶片氮含量(N)、磷(P)含量以及N:P比例,分析不同处理及其交互作用对3种植物生物量和叶片养分性状的影响。    结果   对于植物生长,氮添加均显著增加3种植物地上生物量,但是磷添加和干旱及不同处理之间的交互作用对植物生物量没有显著影响。对于叶片养分,氮添加显著增加3种植物叶片氮含量和N:P比例,磷添加也增加植物叶片磷含量但降低叶片N:P比例。干旱增加垂穗披碱草与发草的叶片氮含量,对叶片磷含量和N:P比例影响不显著。氮添加与干旱处理之间的交互作用显著增加垂穗披碱草与发草叶片氮含量和N:P比。氮添加与磷添加之间的交互作用对3种植物叶片养分性状没有影响。    结论   本研究表明高寒草甸植物生长和养分性状对养分富集、干旱及其交互作的响应格局存在很大差异。氮输入主要影响植物生长,而氮磷养分和干旱及它们之间复杂的交互作用均改变植物养分和化学计量平衡。这些结果指示出未来需要深入研究高寒草甸植物生理过程对全球变化交互作用的响应机理。

     

  • 图  1  研究样地位置与小区布置示意图

    CK. 对照;+N. 氮添加;+P. 磷添加;D. 干旱(减雨50%);N + P. 氮磷同时添加;N + D. 氮添加和减雨50%。下同。CK, control; +N, nitrogen addition; +P, phosphorus addition; D, drought (50% rainfall reduction); N + P, nitrogen and phosphorus adding simultaneously; N + D, nitrogen addition and drought treatment. The same below.

    Figure  1.  Sketch map of the location of research sample plots and layout of experimental plots

    图  2  3种植物地上生物量对氮添加(+ N)、磷添加(+ P)、干旱(D)、氮磷同时添加(N + P)、氮和干旱同时处理(N + D)的响应

    *表示处理与对照差异显著(P < 0.05)。* indicates a significant difference between treatment and control (P < 0.05).

    Figure  2.  Responses of aboveground biomass in three species to nitrogen addition (+ N), phosphorus addition (+ P), drought (D) , nitrogen and phosphorus adding simultaneously (N + P), and nitrogen addition and drought simultaneously (N + D)

    图  3  3种植物叶片氮、磷含量及N:P比例对氮添加(+ N)、磷添加(+ P)、干旱(D)、氮磷同时添加(N + P)、氮和干旱同时处理(N + D)的响应

    *表示处理与对照相比差异显著(P < 0.05),黑色柱子表示交互作用显著,虚线表示与交互项比较的2个处理的平均值。* indicates a significant difference between treatment and control (P < 0.05). Black bar indicates a significant interaction effect, and the dashed line indicates the average of the two treatments compared with the interaction item.

    Figure  3.  Responses of leaf nitrogen, phosphorus concentration and N:P ratio in three plant species to nitrogen addition (+ N), phosphorus addition (+ P), drought (D), nitrogen and phosphorus adding simultaneously (N + P), and nitrogen addition and drought simultaneously (N + D)

    图  4  土壤含水量与速效氮或速效磷之间的关系

    Figure  4.  Relationship between soil available nitrogen or phosphorus and soil moisture

    图  5  土壤含水量与3种植物叶片氮含量、磷含量或N:P比例之间关系

    Figure  5.  Relationship between leaf nitrogen, phosphorus concentrations or their ratios in three species and soil moisture

    表  1  氮添加(+ N)、磷添加(+ P)、干旱(D)及其交互作用(N × P,N × D)对植物生物量、叶片氮含量、磷含量和N:P比例影响的三因素方差分析

    Table  1.   Three-way ANOVA on the effects of nitrogen addition (+ N), phosphorus addition (+ P), drought (D) and their interactions (N × P, N × D) on plant biomass, leaf nitrogen concentration, phosphorus concentration and N:P ratios

    物种 Species指标 Indexdf+ N+ PDN × PN × D
    垂穗披碱草
    Elymus nutans
    生物量 Biomass 1 14.501 1** 1.059 4 0.068 4 0.765 8 0.151 0
    氮含量 Nitrogen content 1 17.853 8*** 1.166 6 9.793 2** 1.511 7 4.198 7*
    磷含量 Phosphorus content 1 3.550 0 93.236 8*** 0.279 5 0.152 9 1.117 3
    N:P 1 31.713 9*** 85.326 3*** 3.112 7 3.829 9 9.121 1**
    发草
    Deschampsia caespitosa
    生物量 Biomass 1 54.514 0*** 0.550 5 3.326 9 0.307 1 0.410 3
    氮含量 Nitrogen content 1 17.213 7*** 0.037 2 12.443 2** 0.990 2 5.689 5*
    磷 含量Phosphorus content 1 0.293 0 26.904 9*** 0.273 2 0.107 6 1.845 0
    N:P 1 5.572 1* 69.735 5*** 0.001 9 0.245 9 6.550 4*
    草玉梅
    Anemone rivularis
    生物量 Biomass 1 10.190 5* 0.688 7 0.238 8 0.074 9 0.060 0
    氮含量 Nitrogen content 1 4.584 5* 2.286 1 1.747 6 0.099 6 0.106 8
    磷含量 Phosphorus content 1 2.995 6 9.581 3** 0.268 8 0.053 9 3.304 0
    N:P 1 15.580 5*** 24.599 6*** 4.304 1 0.140 3 1.695 2
    注:*表示在P < 0.05水平上差异显著;**表示在P < 0.01水平上差异显著;***表示在P < 0.001水平上差异显著。Notes: *, **, *** represent significant difference at P < 0.05, P < 0.01 and P < 0.001 level, respectively.
    下载: 导出CSV
  • [1] Stevens C J, Dise N B, Mountford J O, et al. Impact of nitrogen deposition on the species richness of grasslands[J]. Science, 2004, 303: 1876−1879. doi: 10.1126/science.1094678
    [2] Clark C M, Tilman D. Loss of plant species after chronic low-level nitrogen deposition to prairie grasslands[J]. Nature, 2008, 451: 712−717. doi: 10.1038/nature06503
    [3] Knapp A K, Beier C, Briske D D, et al. Consequences of more extreme precipitation regimes for terrestrial ecosystems[J]. Bioscience, 2008, 58(9): 811−821. doi: 10.1641/B580908
    [4] Elser J J, Bracken M E S, Cleland E E, et al. Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems[J]. Ecology Letters, 2007, 10(12): 1135−1142. doi: 10.1111/j.1461-0248.2007.01113.x
    [5] Sardans J, Rivas-Ubach A, Peñuelas J. The C:N:P stoichiometry of organisms and ecosystems in a changing world: a review and perspectives[J]. Perspectives in Plant Ecology, Evolution and Systematics, 2012, 14(1): 33−47. doi: 10.1016/j.ppees.2011.08.002
    [6] Cox P M, Betts R, Jones C D, et al. Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model[J]. Nature, 2000, 408: 184−187. doi: 10.1038/35041539
    [7] Wright I J, Westoby M. Nutrient concentration, resorption and lifespan: leaf traits of Australian sclerophyll species[J]. Functional Ecology, 2003, 17(1): 10−19. doi: 10.1046/j.1365-2435.2003.00694.x
    [8] Craine J M, Tilman D, Wedin D, et al. Functional traits, productivity and effects on nitrogen cycling of 33 grassland species[J]. Functional Ecology, 2002, 16(5): 563−574.
    [9] Cernusak L A, Winter K, Turner B L. Leaf nitrogen to phosphorus ratios of tropical trees: experimental assessment of physiological and environmental controls[J]. New Phytologist, 2010, 185(3): 770−779. doi: 10.1111/j.1469-8137.2009.03106.x
    [10] Matzek V, Vitousek P M. N: P stoichiometry and protein: RNA ratios in vascular plants: an evaluation of the growth-rate hypothesis[J]. Ecology Letters, 2009, 12(8): 765−771. doi: 10.1111/j.1461-0248.2009.01310.x
    [11] Niklas K J, Owens T, Reich P B, et al. Nitrogen/phosphorus leaf stoichiometry and the scaling of plant growth[J]. Ecology Letters, 2005, 8(6): 636−642. doi: 10.1111/j.1461-0248.2005.00759.x
    [12] Baldwin D S, Mitchell A M. The effects of drying and re-flooding on the sediment and soil nutrient dynamics of lowland river-floodplain systems: a synthesis[J]. Regulated Rivers: Research & Management, 2000, 16(5): 457−467.
    [13] Heidari M, Karami V. Effects of different mycorrhiza species on grain yield, nutrient uptake and oil content of sunflower under water stress[J]. Journal of the Saudi Society of Agricultural Sciences, 2014, 13(1): 9−13. doi: 10.1016/j.jssas.2012.12.002
    [14] Ali Q, Haider M Z, Iftikhar W, et al. Drought tolerance potential of Vigna mungo L. lines as deciphered by modulated growth, antioxidant defense, and nutrient acquisition patterns[J]. Brazilian Journal of Botany, 2016, 39(3): 801−812. doi: 10.1007/s40415-016-0282-y
    [15] Koerselman W, Meuleman A F M. The vegetation N: P ratio: a new tool to detect the nature of nutrient limitation[J]. Journal of Applied Ecology, 1996, 33(6): 1441−1450. doi: 10.2307/2404783
    [16] Aerts R, Chapin Ⅲ F S. The mineral nutrition of wild plants revisited: a re-evaluation of processes and patterns[J]. Advances in Ecological Research, 1999, 30: 1−67.
    [17] Stevens M H H, Shirk R, Steiner C E. Water and fertilizer have opposite effects on plant species richness in a mesic early successional habitat[J]. Plant Ecology, 2006, 183(1): 27−34. doi: 10.1007/s11258-005-9003-5
    [18] Sterner R W, Elser J J. Ecological stoichiometry : the biology of elements from molecules to the biosphere[M]. Princeton: Princeton University Press, 2002.
    [19] Gǜsewell S. N:P ratios in terrestrial plants: variation and functional significance[J]. New Phytologist, 2004, 164: 243−266. doi: 10.1111/j.1469-8137.2004.01192.x
    [20] 宾振钧, 王静静, 张文鹏, 等. 氮肥添加对青藏高原高寒草甸6个群落优势种生态化学计量学特征的影响[J]. 植物生态学报, 2014, 38(3):231−237. doi: 10.3724/SP.J.1258.2014.00020

    Bin Z J, Wang J J, Zhang W P, et al. Effects of N addition on ecological stoichiometric characteristics in six dominant plant species of alpine meadow on the Qinghai-Xizang Plateau, China[J]. Chinese Journal of Plant Ecology, 2014, 38(3): 231−237. doi: 10.3724/SP.J.1258.2014.00020
    [21] 王长庭, 王根绪, 刘伟, 等. 施肥梯度对高寒草甸群落结构、功能和土壤质量的影响[J]. 生态学报, 2013, 33(10):3103−3113. doi: 10.5846/stxb201202200232

    Wang C T, Wang G X, Liu W, et al. Effects of fertilization gradients on plant community structure and soil characteristics in alpine meadow[J]. Acta Ecologica Sinica, 2013, 33(10): 3103−3113. doi: 10.5846/stxb201202200232
    [22] Dong J, Cui X, Wang S, et al. Changes in biomass and quality of alpine steppe in response to N & P fertilization in the Tibetan Plateau[J/OL]. PLoS One, 2016, 11(5): e0156146 [2019−04−14]. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0156146.
    [23] Wang J, Wang Z, Zhang X, et al. Response of Kobresia pygmaea and Stipa purpurea grassland communities in northern Tibet to nitrogen and phosphate addition[J]. Mountain Research and Development, 2015, 35(1): 78−87. doi: 10.1659/MRD-JOURNAL-D-11-00104.1
    [24] Yang Y, Gao Y, Wang S, et al. The microbial gene diversity along an elevation gradient of the Tibetan grassland[J]. The ISME Journal, 2014, 8(2): 430. doi: 10.1038/ismej.2013.146
    [25] Wang C, Long R, Wang Q, et al. Fertilization and litter effects on the functional group biomass, species diversity of plants, microbial biomass, and enzyme activity of two alpine meadow communities[J]. Plant and Soil, 2010, 331(1−2): 377−389. doi: 10.1007/s11104-009-0259-8
    [26] Tang L, Han W, Chen Y, et al. Resorption proficiency and efficiency of leaf nutrients in woody plants in eastern China[J]. Journal of Plant Ecology, 2013, 6(5): 408−417. doi: 10.1093/jpe/rtt013
    [27] Lü X T, Han X G. Nutrient resorption responses to water and nitrogen amendment in semi-arid grassland of Inner Mongolia, China[J]. Plant and Soil, 2010, 327(1−2): 481−491. doi: 10.1007/s11104-009-0078-y
    [28] Zhao G, Shi P, Wu J, et al. Foliar nutrient resorption patterns of four functional plants along a precipitation gradient on the Tibetan Changtang Plateau[J]. Ecology and Evolution, 2017, 7(18): 7201−7212. doi: 10.1002/ece3.3283
    [29] 张方月. 高寒草甸生态系统碳循环对降雨梯度的响应及机理研究[D]. 北京: 中国科学院地理科学与资源研究所, 2018.

    Zhang F Y. Responses of ecosystem carbon cycle to precipitation gradient in an alpine meadow [D]. Beijing: Institute of Geographic Sciences and Natural Resources Research, 2018.
    [30] Borer E T, Harpole W S, Adler P B, et al. Finding generality in ecology: a model for globally distributed experiments[J]. Methods in Ecology and Evolution, 2014, 5(1): 65−73. doi: 10.1111/2041-210X.12125
    [31] Smith M, Sala O, Phillips R. Drought-Net: a global network to assess terrestrial ecosystem sensitivity to drought[EB/OL]. [2019−03−14]. http://asm2015.lternet.edu/working-groups/drought-net-global-network-assess-terrestrial-ecosystem-sensitivity-drought.
    [32] Güsewell S. Responses of wetland graminoids to the relative supply of nitrogen and phosphorus[J]. Plant Ecology, 2005, 176(1): 35−55. doi: 10.1007/s11258-004-0010-8
    [33] Chapin Ⅲ F S, Shaver G R, Giblin A E, et al. Responses of arctic tundra to experimental and observed changes in climate[J]. Ecology, 1995, 76(3): 694−711. doi: 10.2307/1939337
    [34] Shaver G R, Bret-Harte M S, Jones M H, et al. Species composition interacts with fertilizer to control long-term change in tundra productivity[J]. Ecology, 2001, 82(11): 3163−3181. doi: 10.1890/0012-9658(2001)082[3163:SCIWFT]2.0.CO;2
    [35] Mack M C, Schuur E A G, Bret-Harte M S, et al. Ecosystem carbon storage in arctic tundra reduced by long-term nutrient fertilization[J]. Nature, 2004, 431: 440−443. doi: 10.1038/nature02887
    [36] DeMalach N, Zaady E, Kadmon R. Contrasting effects of water and nutrient additions on grassland communities: a global meta-analysis[J]. Global Ecology and Biogeography, 2017, 26(8): 983−992. doi: 10.1111/geb.12603
    [37] Niklaus P A, Leadley P W, Stöcklin J, et al. Nutrient relations in calcareous grassland under elevated CO2[J]. Oecologia, 1998, 116(1−2): 67−75. doi: 10.1007/s004420050564
    [38] Han W, Luo Y, Du G. Effects of clipping on diversity and above-ground biomass associated with soil fertility on an alpine meadow in the eastern region of the Qinghai-Tibetan Plateau[J]. New Zealand Journal of Agricultural Research, 2007, 50(3): 361−368. doi: 10.1080/00288230709510304
    [39] Chaves M M, Maroco J P, Pereira J S. Understanding plant responses to drought:from genes to the whole plant[J]. Functional Plant Biology, 2003, 30(3): 239−264. doi: 10.1071/FP02076
    [40] Klein J A, Harte J, Zhao X Q. Experimental warming causes large and rapid species loss, dampened by simulated grazing, on the Tibetan Plateau[J]. Ecology Letters, 2004, 7(12): 1170−1179. doi: 10.1111/j.1461-0248.2004.00677.x
    [41] Bedia J, Busqué J. Productivity, grazing utilization, forage quality and primary production controls of species-rich alpine grasslands with N ardus stricta in northern S pain[J]. Grass and Forage Science, 2013, 68(2): 297−312. doi: 10.1111/j.1365-2494.2012.00903.x
    [42] Li H, Zhang F, Li Y, et al. Thirty-year variations of above-ground net primary production and precipitation-use efficiency of an alpine meadow in the north-eastern Qinghai-Tibetan Plateau[J]. Grass and Forage Science, 2016, 71(2): 208−218. doi: 10.1111/gfs.12165
    [43] He J S, Wang L, Flynn D F B, et al. Leaf nitrogen: phosphorus stoichiometry across Chinese grassland biomes[J]. Oecologia, 2008, 155(2): 301−330.
    [44] Henry H A L, Cleland E E, Field C B, et al. Interactive effects of elevated CO2, N deposition and climate change on plant litter quality in a California annual grassland[J]. Oecologia, 2005, 142(3): 465−473. doi: 10.1007/s00442-004-1713-1
    [45] Xia J, Wan S. Global response patterns of terrestrial plant species to nitrogen addition[J]. New Phytologist, 2008, 179(2): 428−439. doi: 10.1111/j.1469-8137.2008.02488.x
    [46] Li J, Yang C, Liu X, et al. Inconsistent stoichiometry response of grasses and forbs to nitrogen and water additions in an alpine meadow of the Qinghai-Tibet Plateau[J]. Agriculture, Ecosystems & Environment, 2019, 279: 178−186.
    [47] Liu P, Huang J, Han X, et al. Differential responses of litter decomposition to increased soil nutrients and water between two contrasting grassland plant species of Inner Mongolia, China[J]. Applied Soil Ecology, 2006, 34(2−3): 266−275. doi: 10.1016/j.apsoil.2005.12.009
    [48] Wang C, Wan S, Xing X, et al. Temperature and soil moisture interactively affected soil net N mineralization in temperate grassland in northern China[J]. Soil Biology and Biochemistry, 2006, 38(5): 1101−1110. doi: 10.1016/j.soilbio.2005.09.009
    [49] 范丙全, 胡春芳. 灌溉施肥对壤质潮土硝态氮淋溶的影响[J]. 植物营养与肥料学报, 1998, 4(1):16−21. doi: 10.3321/j.issn:1008-505X.1998.01.003

    Fan B Q, Hu C F. Effects of irrigation and fertilization on nitrate leaching in loamy fluvo-aquic soil[J]. Plant Nutrition and Fertilizer Science, 1998, 4(1): 16−21. doi: 10.3321/j.issn:1008-505X.1998.01.003
    [50] Scholefield D, Tyson K C, Garwood E A, et al. Nitrate leaching from grazed grassland lysimeters: effects of fertilizer input, field drainage, age of sward and patterns of weather[J]. Journal of Soil Science, 1993, 44(4): 601−613. doi: 10.1111/j.1365-2389.1993.tb02325.x
    [51] Ding K, Zhong L, Xin X P, et al. Effect of grazing on the abundance of functional genes associated with N cycling in three types of grassland in Inner Mongolia[J]. Journal of Soils and Sediments, 2015, 15(3): 683−693. doi: 10.1007/s11368-014-1016-z
    [52] Liu H, Mi Z, Lin L, et al. Shifting plant species composition in response to climate change stabilizes grassland primary production[J]. Proceedings of the National Academy of Sciences, 2018, 115(16): 4051−4056. doi: 10.1073/pnas.1700299114
    [53] Luo X, Mazer S J, Guo H, et al. Nitrogen: phosphorous supply ratio and allometry in five alpine plant species[J]. Ecology and Evolution, 2016, 6(24): 8881−8892. doi: 10.1002/ece3.2587
    [54] Zhang J, Yan X, Su F, et al. Long-term N and P additions alter the scaling of plant nitrogen to phosphorus in a Tibetan alpine meadow[J]. Science of the Total Environment, 2018, 625: 440−448. doi: 10.1016/j.scitotenv.2017.12.292
    [55] Mamolos A P, Vasilikos C V, Veresoglou D S. Vegetation in contrasting soil water sites of upland herbaceous grasslands and N: P ratios as indicators of nutrient limitation[J]. Plant and Soil, 2005, 270(1): 355−369. doi: 10.1007/s11104-004-1793-z
    [56] Rejmánková E, Macek P, Epps K. Wetland ecosystem changes after three years of phosphorus addition[J]. Wetlands, 2008, 28(4): 914−927. doi: 10.1672/07-150.1
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  1605
  • HTML全文浏览量:  763
  • PDF下载量:  101
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-12-18
  • 修回日期:  2020-02-10
  • 网络出版日期:  2020-03-06
  • 刊出日期:  2020-05-25

目录

    /

    返回文章
    返回