高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

水曲柳节子时空分布特征与变色规律研究

关追追 张彦东

关追追, 张彦东. 水曲柳节子时空分布特征与变色规律研究[J]. 北京林业大学学报, 2020, 42(8): 53-60. doi: 10.12171/j.1000-1522.20200004
引用本文: 关追追, 张彦东. 水曲柳节子时空分布特征与变色规律研究[J]. 北京林业大学学报, 2020, 42(8): 53-60. doi: 10.12171/j.1000-1522.20200004
Guan Zhuizhui, Zhang Yandong. Spatial and temporal distribution characteristics and discoloration law of Fraxinus mandshurica knot[J]. Journal of Beijing Forestry University, 2020, 42(8): 53-60. doi: 10.12171/j.1000-1522.20200004
Citation: Guan Zhuizhui, Zhang Yandong. Spatial and temporal distribution characteristics and discoloration law of Fraxinus mandshurica knot[J]. Journal of Beijing Forestry University, 2020, 42(8): 53-60. doi: 10.12171/j.1000-1522.20200004

水曲柳节子时空分布特征与变色规律研究

doi: 10.12171/j.1000-1522.20200004
基金项目: 国家重点研发项目(2017YFD0600605)
详细信息
    作者简介:

    关追追。主要研究方向:人工林定向培育。Email:guanzhui9402@163.com 地址:150040 黑龙江省哈尔滨市香坊区和兴路26号东北林业大学林学院

    责任作者:

    张彦东,教授,博士生导师。主要研究方向:树木栽培生理学。Email:zhyd63@163.com 地址:同上

  • 中图分类号: S757.1

Spatial and temporal distribution characteristics and discoloration law of Fraxinus mandshurica knot

  • 摘要:   目的  为了解水曲柳节子时空分布特征和变色规律,并建立节子变色长度的预测模型。  方法  在49年生的水曲柳和长白落叶松人工混交林中,选取16株水曲柳样木,采用油锯对节子进行解剖,并在实验室内利用20倍放大镜测量节子的属性。  结果  (1)水曲柳节子径向生长的第1 ~ 5年形成的节子数量最多,占98.1%;第6 ~ 15年形成的死节数量较多,占94.1%;第11 ~ 20年完全愈合的节子数量较多,占73.6%;(2)在垂直分布上,89.5%的节子分布在树干高度10.0 m以下,10.5%的节子分布在树干10.1 ~ 14.0 m的范围;(3)节子变色长度随着节子直径的增加而逐渐增大,当节子直径大于15.00 mm时,变色长度明显增大;(4)节子变色长度随着生角度的增加而显著减小(P < 0.05),但会随着死节半径和节子愈合时间的增加而显著增大(P < 0.05);(5)通过逐步回归分析,筛选出节子直径(KD)、节子总半径(TRK)和节子愈合时间(OT)3个影响节子变色的关键因子,建立了节子变色长度多元回归模型:YDL = 1.557XKD + 0.382XTRK + 1.140XOT - 7.523,相关性达到极显著水平。  结论  自然整枝条件下,水曲柳节子易发生变色,节子直径、节子总半径以及节子愈合时间是决定节子变色长度的关键因子。在节子直径超过15.00 mm时,变色长度明显增大,因此,当水曲柳枝条直径超过15.00 mm时应及时修枝。

     

  • 图  1  节子剖面

    $\scriptstyle \overline {{\rm{AB}}} $:活节半径;$\scriptstyle \overline {{\rm{BC}}} $:死节半径;$\scriptstyle \overline {{\rm{AC}}} $:节子总半径;$\scriptstyle \overline {{\rm{DE}}} $:节子直径;∠AFG:节子着生角度;FH:节子髓心;AF:树干髓心;YE:节子形成年份;Y1:节子开始愈合的年份;Y2:节子径向生长的最后年份;YD:节子死亡年份,YD =(Y1 + Y2)/2;YO:节子完全愈合年份;$\scriptstyle \overline {{\rm{GH}}} $:节子变色长度。其中,线段FH与DE相互垂直,G点是线段DE的中点,灰色区域表示死节和变色部分。节子剖面图参考文献[7]。$\scriptstyle \overline {{\rm{AB}}} $:radius of live knot;$\scriptstyle \overline {{\rm{BC}}} $:radius of dead knot;$\scriptstyle \overline {{\rm{AC}}} $: total radius of knot;$\scriptstyle \overline {{\rm{DE}}} $:knot diameter;∠AFG:insertion angle of knot;FH:knot pith;AF:stem pith;YE:emergencing year of knot;Y1:the year of knot occlusion beginning;Y2:the last year of radial growth of knot; YD:death year of knot,YD =(Y1 + Y2)/2;YO:completely occluding year of knot;$\scriptstyle \overline {{\rm{GH}}} $:discoloration length of knot. Among which, the line segment FH is perpendicular to DE, and the G spot is the midpoint of line segment DE. The grey area represents the dead knot and discoloration part. Knot profile refers to reference [7].

    Figure  1.  Knot profile

    图  2  水曲柳节子的时间分布

    Figure  2.  Time distribution of F. mandshurica knots

    图  3  水曲柳节子的垂直分布

    Figure  3.  Vertical distribution of F. mandshurica knots

    图  4  节子直径对变色长度的影响

    不同小写字母表示不同节子直径间差异显著(P < 0.05)。下同。Different lowercase letters mean the difference among varied knot diameters is significant (P < 0.05). The same below.

    Figure  4.  Effects of KD on DL

    图  5  节子着生角度对变色长度的影响

    Figure  5.  Effects of IA on DL

    图  6  死节半径对节子变色长度的影响

    Figure  6.  Effects of DKR on DL

    图  7  节子愈合时间对变色长度的影响

    Figure  7.  Effects of OT on DL

    图  8  节子变色长度模型的残差分布

    Figure  8.  Residual distribution of DL model

    表  1  水曲柳人工林样地和样木因子统计表

    Table  1.   Statistics in sample plots and sample tree factors for Fraxinus mandshurica plantation

    因子 Factor变量 Variable最小值 ~ 最大值 Min. − Max.平均值 Mean标准差 SD
    样地因子
    Sample plot factor
    树高 Tree height/m 7.40 ~ 31.90 18.36 4.01
    胸径 DBH/cm 8.32 ~ 25.01 15.29 3.40
    冠幅 Crown width/m 1.50 ~ 9.31 4.42 1.34
    冠长 Crown length/m 1.70 ~ 21.20 9.10 3.67
    冠基 Crown base/m 3.10 ~ 15.20 9.26 2.32
    样木因子
    Sample tree factor
    树高 Tree height/m 14.40 ~ 26.00 19.54 3.10
    胸径 DBH/cm 8.38 ~ 24.63 15.84 3.55
    冠幅 Crown width/m 2.00 ~ 5.80 4.23 0.98
    冠长 Crown length/m 4.70 ~ 18.40 9.85 3.54
    冠基 Crown base/m 3.10 ~ 14.60 9.68 3.09
    注:样地因子的样本数为312株,样木因子的样本数为16株。Notes:the sample numbers of sample plot factors and sample tree factors are 312 and 16, respectively.
    下载: 导出CSV

    表  2  水曲柳人工林节子属性统计表

    Table  2.   Statistics in knot variables for F. mandshurica plantation n = 372

    节子属性 Knot variable最小值 ~ 最大值 Min. − Max.平均值 Mean标准差 SD
    节子着生高度 Insertion height of knot (IH) /m 0.5 ~ 14.6 5.7 3.2
    节子着生角度 Insertion angle of knot (IA))/(°) 16 ~ 86 52 13
    节子直径 Knot diameter (KD) /mm 2.45 ~ 28.43 9.43 4.98
    死节半径 Radius of dead knot (DKR) /mm 3.76 ~ 50.57 17.54 7.06
    节子形成年份/a Emergencing year of knot (YE) /year 1 ~ 9 2 1
    节子死亡年份/a Death year of knot (YD) /year 4 ~ 27 10 3
    节子完全愈合年份/a Completely occluding year of knot (YO)/year 6 ~ 34 17 5
    节子愈合时间/a Occlusion time of knot (OT) /year 1 ~ 17 7 3
    节子变色长度 Discoloration length of knot (DL)/mm 5.08 ~ 116.77 30.93 18.68
    下载: 导出CSV

    表  3  节子变色长度模型参数估计值和拟合统计量

    Table  3.   Estimated parameter values and fitted statistics values of DL model

    参数
    Parameter
    估计值
    Estimated value
    SDt
    t value
    P残差平方和
    Residual sum of squares
    R2
    a0 − 7.523 2.397 − 3.138 0.002 57 715.334 0.556
    a1 1.557 0.186 8.374 0.000
    a2 0.382 0.088 4.348 0.000
    a3 1.140 0.312 3.648 0.000
    注:a0是常数,a1a2a3分别是模型中节子直径、节子总半径和节子愈合时间的参数。Notes:a0 is constant, a1, a2 and a3 are the parameters of KD, TRK and OT, respectively in the model.
    下载: 导出CSV
  • [1] Sohngen B, Mendelsohn R, Sedjo R. A global model of climate change impacts on timber markets[J]. Journal of Agricultural and Resource Economics, 2001, 26(2): 326−343.
    [2] Mäkinen H. Effect of stand density on the branch development of silver birch (<italic>Betula pendula</italic> Roth) in central Finland[J]. Trees, 2002, 16(4): 346−353. doi: 10.1007/s00468-002-0162-x
    [3] Alcorn P J, Bauhus J, Thomas D S, et al. Photosynthetic response to green crown pruning in young plantation-grown <italic>Eucalyptus pilularis</italic> and <italic>E. cloeziana</italic>[J]. Forest Ecology and Management, 2008, 255(11): 3827−3838. doi: 10.1016/j.foreco.2008.03.030
    [4] Lowell E C, Maguire D A, Briggs D G, et al. Effects of silviculture and genetics on branch/knot attributes of coastal pacific northwest Douglas-fir and implications for wood quality:a synthesis[J]. Forests, 2014, 5(7): 1717−1736. doi: 10.3390/f5071717
    [5] Vestøl G I, Høibø O A. Prediction of knot diameter in <italic>Picea abies</italic> (L.) Karst[J]. Holz Als Roh-Und Werkstoff, 2001, 59(1−2): 129−136.
    [6] Hein S, Spiecker H. Comparative analysis of occluded branch characteristics for <italic>Fraxinus excelsior</italic> and <italic>Acer pseudoplatanus</italic> with natural and artificial pruning[J]. Canadian Journal of Forest Research, 2007, 37(8): 1414−1426. doi: 10.1139/X06-308
    [7] Hein S. Knot attributes and occlusion of naturally pruned branches of <italic>Fagus sylvatica</italic>[J]. Forest Ecology and Management, 2008, 256(12): 2046−2057. doi: 10.1016/j.foreco.2008.07.033
    [8] Wang C S, Zhao Z G, Hein S, et al. Effect of planting density on knot attributes and branch occlusion of <italic>Betula alnoides</italic> under natural pruning in southern China[J]. Forests, 2015, 6(12): 1343−1361.
    [9] Hemery G, Spiecker H, Aldinger E, et al. COST Action E42 : growing valuable broadleaved tree species[R/OL]. Berlin: ResearchGate, 2008[2019−12−25]. https://www.researchgate.net/publication/235710146.
    [10] Oosterbaan A, Hochbichler E, Nicolescu V N, et al. Silvicultural principles, goals and measures in growing valuable broadleaved tree species[J]. Die Bodenkultur, 2009, 60(3): 45−51.
    [11] Gerrand A M, Neilsen W A, Medhurst J L. Thinning and pruning eucalypt plantations for sawlog production in Tasmania[J]. Tasforests, 1997, 9: 15−34.
    [12] Wardlaw T J, Neilsen W A. Decay and other defects associated with pruned branches of <italic>Eucalyptus nitens</italic>[J]. Tasforests, 1999, 11: 49−57.
    [13] Wiseman D, Smethurst P, Pinkard L, et al. Pruning and fertiliser effects on branch size and decay in two <italic>Eucalyptus nitens</italic> plantations[J]. Forest Ecology and Management, 2006, 225(1): 123−133.
    [14] Sandi M, Sandi W, Nicolescu V N. Wood discoloration in relation to wound size in northern red oak (<italic>Quercus rubra</italic> L.) trees subject to artificial pruning[J]. Spanish Journal of Rural Development, 2012, 3(1): 53−60.
    [15] Metzler B. Quantitative assessment of fungal colonization in Norway spruce after green pruning[J]. Forest Pathology, 1997, 27(1): 1−11. doi: 10.1111/j.1439-0329.1997.tb00848.x
    [16] Dănescu A, Ehring A, Bauhus J, et al. Modelling discoloration and duration of branch occlusion following green pruning in <italic>Acer pseudoplatanus</italic> and <italic>Fraxinus excelsior</italic>[J]. Forest Ecology and Management, 2015, 335: 87−98. doi: 10.1016/j.foreco.2014.09.027
    [17] Wang C S, Hein S, Zhao Z G, et al. Branch occlusion and discoloration of <italic>Betula alnoides</italic> under artificial and natural pruning[J]. Forest Ecology and Management, 2016, 375: 200−210. doi: 10.1016/j.foreco.2016.05.027
    [18] Mäkinen H, Ojansuu R, Sairanen P, et al. Predicting branch characteristics of Norway spruce (<italic>Picea abies</italic> (L.) Karst.) from simple stand and tree measurements[J]. Forestry, 2003, 76(5): 525−546. doi: 10.1093/forestry/76.5.525
    [19] Petruncio M, Briggs D, Barbour R J. Predicting pruned branch stub occlusion in young, coastal Douglas-fir[J]. Canadian Journal of Forest Research, 1997, 27(7): 1074−1082. doi: 10.1139/x97-037
    [20] Trincado G, Burkhart H E. A framework for modeling the dynamics of first-order branches and spatial distribution of knots in loblolly pine trees[J]. Canadian Journal of Forest Research, 2009, 39(39): 566−579. doi: 10.1139/X08-189
    [21] Grotta A T, Gartner B L, Radosevich S R. Influence of species proportion and timing of establishment on stem quality in mixed red alder and Douglas-fir plantations[J]. Canadian Journal of Forest Research, 2004, 34(4): 863−873. doi: 10.1139/x03-259
    [22] 陈东升, 孙晓梅, 李凤日, 等. 落叶松人工林节子内部特征变化规律研究[J]. 北京林业大学学报, 2015, 37(2):16−23.

    Chen D S, Sun X M, Li F R, et al. Changes of the internal characteristics of knots in larch plantation[J]. Journal of Beijing Forestry University, 2015, 37(2): 16−23.
    [23] Qin G M, Hao J, Yang J C, et al. Branch occlusion and discoloration under the natural pruning of Mytilaria laosensis[J/OL]. Forests, 2019, 10(10): 892 [2019−12−10]. https://www.researchgate.net/publication/336403320.
    [24] 范志强, 沈海龙, 王庆成, 等. 水曲柳幼林适生立地条件研究[J]. 林业科学, 2002, 38(2):38−43. doi: 10.3321/j.issn:1001-7488.2002.02.008

    Fan Z Q, Shen H L, Wang Q C, et al. Study on the site conditions suitable for young plantation of <italic>Fraxinus mandshurica</italic>[J]. Scientia Silvae Sinicae, 2002, 38(2): 38−43. doi: 10.3321/j.issn:1001-7488.2002.02.008
    [25] 郝玉琢, 王树力. 水曲柳人工纯林与混交林土壤生态化学计量特征的比较[J]. 东北林业大学学报, 2018, 46(3):54−58.

    Hao Y Z, Wang S L. Soil ecological stoichiometric characteristics between pure <italic>Fraxinus mandshurica</italic> plantation and mixed <italic>F. mandshurica</italic> plantation[J]. Journal of Northeast Forestry University, 2018, 46(3): 54−58.
    [26] 那萌, 刘婷岩, 张彦东, 等. 林分密度对水曲柳人工林碳储量的影响[J]. 北京林业大学学报, 2017, 39(1):20−26.

    Na M, Liu T Y, Zhang Y D, et al. Effects of stock density on carbon storage in <italic>Fraxinus mandshurica</italic> plantations[J]. Journal of Beijing Forestry University, 2017, 39(1): 20−26.
    [27] 郝建, 蒙明君, 黄德卫, 等. 格木人工林节子的分布特征及预测模型[J]. 南京林业大学学报(自然科学版), 2017, 41(3):100−104.

    Hao J, Meng M J, Huang D W, et al. Distribution and statistical analysis of knots in <italic>Erythrophleum fordii</italic> plantations[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2017, 41(3): 100−104.
    [28] Hein S, Weiskittel A R, Kohnle U. Effect of wide spacing on tree growth, branch and sapwood properties of young Douglas-fir (<italic>P</italic>s<italic>eudotsuga menziesii</italic> (Mirb.) Franco) in south-western Germany[J]. European Journal of Forest Research, 2008, 127(6): 481−493.
    [29] Weiskittel A R, Maguire D A, Monserud R A. Response of branch growth and mortality to silvicultural treatments in coastal Douglas-fir plantations: implications for predicting tree growth[J]. Forest Ecology and Management, 2007, 251(3):182-194.
    [30] 王春胜. 西南桦人工中幼林密度效应和修枝研究[D]. 北京: 中国林业科学研究院, 2015.

    Wang C S. Studies on the effect of planting density and artificial pruning on young and middle aged Betula alnoides plantation[D]. Beijing: Chinese Academy of Forestry, 2015.
    [31] Forrester D I, Baker T G. Growth responses to thinning and pruning in <italic>Eucalyptus globulus</italic>, <italic>Eucalyptus nitens</italic>, and <italic>Eucalyptus grandis</italic> plantations in southeastern Australia[J]. Canadian Journal of Forest Research, 2012, 42(1): 75−87. doi: 10.1139/x11-146
    [32] Forrester D I, Collopy J J, Beadle C L, et al. Effect of thinning, pruning and nitrogen fertiliser application on light interception and light-use efficiency in a young <italic>Eucalyptus nitens</italic> plantation[J]. Forest Ecology and Management, 2013, 288: 21−30.
    [33] Wang C S, Zeng J, Hein S, et al. Crown and branch attributes of mid-aged <italic>Betula alnoides</italic> plantations in response to planting density[J]. Scandinavian Journal of Forest Research, 2017, 32(8): 679−687. doi: 10.1080/02827581.2016.1261936
    [34] Wang C S, Tang C, Hein S, et al. Branch development of five-year-old Betula alnoides plantations in response to planting density[J/OL]. Forests, 2018, 9(1): 42[2019−12−10]. https://www.sci-hub.pl/10.3390/f9010042.
    [35] 王志海, 尹光天, 杨锦昌, 等. 不同造林密度对米老排人工林枝条发育的影响[J]. 林业科学研究, 2019, 32(2):78−86.

    Wang Z H, Yin G T, Yang J C, et al. Effects of planting density on branch development of <italic>Mytilaria laosensis</italic> plantations[J]. Forest Research, 2019, 32(2): 78−86.
  • 加载中
图(8) / 表(3)
计量
  • 文章访问数:  687
  • HTML全文浏览量:  267
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-01-05
  • 修回日期:  2020-04-15
  • 网络出版日期:  2020-07-15
  • 刊出日期:  2020-09-07

目录

    /

    返回文章
    返回