Precipitation redistribution characteristics and its correlation analysis of Pinus densiflora and Quercus mongolica forests in the Liaodong Peninsula of northeastern China
-
摘要:目的 降雨再分配是森林生态系统重要的水文过程,分析辽东半岛地区赤松和蒙古栎林降雨再分配特征,为区域典型林分的生态水文分析及模型建立提供参考。方法 以辽宁仙人洞国家级自然保护区内的赤松和蒙古栎林为调查观测对象,选择林外降雨量(POF)、林内穿透雨量(TF)、树干径流量(SF)和树冠截留量(IF)为指标,应用回归分析法建立林外降雨量与各类指标的关系方程,并分析2种林分的降雨特征及其变化规律。结果 (1)赤松林穿透雨量、树冠截留量和树干径流量分别为388.5、215.3、66.5 mm,占林外降雨量的57.96%、32.12%、9.92%;蒙古栎林穿透雨量、树冠截留量和树干径流量分别为421.7、119.0、55.5 mm,占林外降雨量的70.73%、19.96%、9.31%。(2)低强度降雨时,赤松和蒙古栎林的初始迟滞时长1 h左右,而中等和高强度降雨时,迟滞时长较短,明显小于1 h。且赤松林的树冠截留迟滞时间较长,迟滞作用更强,截留效果更好。(3)林外降雨量与穿透雨量、树干径流量呈极显著线性正相关(P < 0.001),赤松林和蒙古栎林产生穿透雨l、树干茎流量的最小降雨量分别为4.2、5.8和2.0、2.5 mm。(4)赤松和蒙古栎林的树冠截留量与林外降雨量呈极显著(P < 0.001)二次函数关系,树冠截留作用与林外降雨同时产生。当林外降雨量分别大于90.0、70.0 mm时,赤松和蒙古栎林的树冠截留量分别在10.0、7.0 mm左右。(5)林外降雨量与树冠截留率呈极显著负相关(P < 0.001)的幂函数关系,当林外降雨量分别大于90.0、70.0 mm时,赤松和蒙古栎林的树冠截留率趋于平稳,降低到20%和10%左右。结论 降雨再分配过程中,赤松林的树干径流量、截留量和截留率大于蒙古栎林,而赤松林穿透雨量小于蒙古栎林,赤松林降雨再分配作用强于蒙古栎林。林内穿透雨存在迟滞效应,迟滞时长受降雨强度和林分类型影响,且赤松林的迟滞时长大于蒙古栎林。林外降雨量与树干径流量、穿透雨量、树冠截留量呈极显著正相关,与树干径流量、穿透雨量呈线性函数关系,与树冠截留量呈二次函数关系,与树冠截留率呈极显著负相关的幂函数关系。Abstract:Objective Precipitation redistribution is an important hydrological process in forest ecosystems. Analyzing the precipitation redistribution characteristics of Pinus densiflora and Quercus mongolica can provide a reference for the analysis of ecological hydrological parameters and model establishment of typical forest stands in eastern Liaoning Province of northeastern China.Method Taking the Pinus densiflora and Quercus mongolica forests in the Xianrendong Nature Reserve as the survey and observation objects, the selection of precipitation outside the forest (POF), throughfall (TF), stem flow (SF) and canopy interception (IF) were used as indicators. The regression analysis method was used to establish the equations of POF and various indicators, and the precipitation characteristics and their changes of the two forests were analyzed.Result (1) In the Pinus densiflora forest, TF, IF and SF were 388.5, 215.3 and 66.5 mm, accounting for 57.96%, 32.12% and 9.92% of the POF, respectively. In the Quercus mongolica forest, TF, IF, and SF were 421.7, 119.0 and 55.5 mm, accounting for 70.73%, 19.96% and 9.31% of the POF, respectively. (2) At low intensity precipitation, the initial lag time of Pinus densiflora and Quercus mongolica forest was about 1 h, while for medium and high intensity rainfall, the lag time was shorter, significantly less than 1 h; and the canopy interception time of the Pinus densiflora forest was longer, the hysteresis was stronger, and the interception effect was better. (3) The rainfall outside the forest was significantly and linearly positively correlated with the penetration rainfall and stem flow (P < 0.001). The minimum rainfall producing TF and SF by Pinus densiflora forest and Quercus mongolica forest was 4.2 , 5.8 mm and 2.0, 2.5 mm. respectively. (4) The canopy interception of Pinus densiflora and Quercus mongolica showed a significant quadratic function relationship with rainfall (P < 0.001). Canopy interception occurs simultaneously with rain outside the forest. When the rainfall was greater than 90.0 and 70 mm, the canopy interception of Pinus densiflora and Quercus mongolica tended to be stable at about 10 and 7 mm, respectively. (5) The rainfall outside the forest had a very significant negative correlation with canopy interception rate (P < 0.001), showing a power function relationship. When the rainfall outside the forest was greater than 90.0 and 70 mm, the canopy interception rates of Pinus densiflora and Quercus mongolica forest tended to be stable, decreasing to about 20% and 10%, respectively.Conclusion In the process of precipitation redistribution, the SF and IF of the Pinus densiflora forest is greater than Quercus mongolica forest, while the TF of Pinus densiflora forest is smaller than Quercus mongolica forest. Redistribution of Pinus densiflora forest is stronger. There is a significant delay in TF in the forest, the lag time is affected by rainfall intensity and stand type, and the lag time of Pinus densiflora forest is greater than Quercus mongolica forest. The POF is significantly positively correlated with SF, TF and IF, and it has a linear function relationship with tree SF and TF. It has a quadratic function relationship with the IF. There is a significant negative correlation between the POF and canopy interception rate, and it is a power function relationship.
-
Keywords:
- Liaodong Peninsula /
- precipitation redistribution /
- change trend /
- correlation
-
-
图 1 赤松和蒙古栎林降雨再分配特征
POF为林外降雨量,TF为穿透雨量,SF为树干径流量,IF为树冠截留量。图1B中内圈代表蒙古栎林,外圈代表赤松林。POF is precipitation outside the forest, TF is throughfall, SF is stem flow, IF is canopy interception. In Fig. 1B, the inner ring is Quercus mongolica forest and the outer ring is Pinus densiflora forest.
Figure 1. Characteristics of precipitation redistribution in Pinus densiflora and Quercus mongolica forests
表 1 典型林分立地条件和林分特征
Table 1 Site conditions and characteristics of typical forest stands
林分特征 Stand characteristics 林分类型 Stand type 赤松 Pinus densiflora 蒙古栎 Quercus mongolica 海拔 Elevation/m 421 458 坡度 Slope/(°) 26 28 坡向 Slope aspect 西南 Southwest 南 South 坡位 Slope position 中 Middle 中 Middle 土壤类型 Soil type 棕壤 Brown soil 棕壤 Brown soil 土壤厚度 Soil thickness/cm 80 60 林龄/a Forest age/year 86 84 平均胸径 Average DBH/cm 24.66 ± 13.28 24.40 ± 2.13 平均树高 Mean tree height/m 12.91 ± 4.37 12.53 ± 1.67 平均冠幅 Mean crown diameter (CD)/m 6.22 ± 3.49 4.97 ± 0.69 树种组成 Tree species composition 10赤松 10 Pinus densiflora 9蒙古栎 9 Quercus mongolica 1麻栎 1 Quercus acutissima 表 2 研究区域降雨特征统计
Table 2 Statistical characteristics of rainfall in the study area
林分类型
Stand type总降雨次数
Total number of rainfall有效降雨次数
Number of effective rainfall降雨量 Precipitation/mm 最大 Max. 最小 Min. 平均 Average 蒙古栎林 Quercus mongolica forest 109 82 130.4 0.1 7.3 赤松林 Pinus densiflora forest 105 78 156.4 0.1 7.2 -
[1] Crockford R H, Richardson D P. Partitioning of rainfall into throughfall, stemflow and interception effect of forest type, ground cover and climate[J]. Hydrological Processes, 2000, 14(16−17): 2903−2920. doi: 10.1002/1099-1085(200011/12)14:16/17<2903::AID-HYP126>3.0.CO;2-6.
[2] 陈书军, 陈存根, 曹田健, 等. 降雨特征及小气候对秦岭油松林降雨再分配的影响[J]. 水科学进展, 2013, 24(4):513−521. Chen S J, Chen C G, Cao T J, et al. Effects of rainfall characteristics and micrometeorology on rainfall redistribution within Chinese red pine forest[J]. Advances in Water Science, 2013, 24(4): 513−521.
[3] Owens M K, Lyons R K, Alejandro C L. Rainfall partitioning within semiarid juniper communities: effects of event size and canopy cover[J]. Hydrological Processes, 2006, 20(15): 3179−3189. doi: 10.1002/hyp.6326.
[4] Pérez-Suárez M, Arredondo-Moreno J T, Huber-Sannwald E, et al. Forest structure, species traits and rain characteristics influences on horizontal and vertical rainfall partitioning in a semiarid pine-oak forest from Central Mexico[J]. Ecohydrology, 2014, 7(2): 532−543. doi: 10.1002/eco.1372.
[5] 孙忠林, 王传宽, 王兴昌, 等. 两种温带落叶阔叶林降雨再分配格局及其影响因子[J]. 生态学报, 2014, 34(14):3978−3986. Sun Z L, Wang C K, Wang X C, et al. Rainfall redistribution patterns and their influencing factors of two temperate deciduous forests[J]. Acta Ecologica Sinica, 2014, 34(14): 3978−3986.
[6] 王云霓, 王晓江, 高孝威, 等. 内蒙古大青山白茬子沟小流域典型森林植被的冠层降水再分配特征[J]. 内蒙古林业科技, 2017, 43(4):6−9. doi: 10.3969/j.issn.1007-4066.2017.04.002 Wang Y N, Wang X J, Gao X W, et al. Canopy precipitation redistribution of typical forest vegetation in Baichazigou Watershed, Daqing Mountains of Inner Mongolia[J]. Journal of Inner Mongolia Forestry Science & Technology, 2017, 43(4): 6−9. doi: 10.3969/j.issn.1007-4066.2017.04.002
[7] 陈书军, 陈存根, 邹伯才, 等. 秦岭天然次生油松林冠层降雨再分配特征及延滞效应[J]. 生态学报, 2012, 32(4):1142−1150. doi: 10.5846/stxb201012271854. Chen S J, Chen C G, Zou B C, et al. Time lag effects and rainfall redistribution traits of the canopy of natural secondary Pinus tabulaeformison precipitation in the Qinling Mountains, China[J]. Acta Ecological Sinica, 2012, 32(4): 1142−1150. doi: 10.5846/stxb201012271854.
[8] Carlyle-Moses D E. Throughfall, stemflow, and canopy interception loss fluxes in a semi-arid Sierra Madre Oriental matorral community[J]. Journal of Arid Environments, 2004, 58(2): 181−202. doi: 10.1016/S0140-1963(03)00125-3.
[9] 鲜靖苹, 张家洋, 胡海波. 森林冠层水文研究进展[J]. 西北林学院学报, 2014, 29(3):96−104. doi: 10.3969/j.issn.1001-7461.2014.03.20. Xian J P, Zhang J Y, Hu H B. Forest canopy hydrology: a review[J]. Journal of Northwest Forestry University, 2014, 29(3): 96−104. doi: 10.3969/j.issn.1001-7461.2014.03.20.
[10] Guevara E A, González S E, Véliz C C, et al. Rainfall interception and distribution patterns of gross precipitation around an isolated Ficus benjamina tree in an urban area[J]. Journal of Hydrology, 2007, 333(2−4): 532−541. doi: 10.1016/j.jhydrol.2006.09.017
[11] 李佳, 饶良懿, 鲁绍伟, 等. 北京密云油松与刺槐林降雨再分配过程研究[J]. 广东农业科学, 2012, 39(12):169−174. doi: 10.3969/j.issn.1004-874X.2012.12.053. Li J, Rao L Y, Lu S W, et al. Pine and locust forest on rainfall redistribution in Miyun of Beijing[J]. Guangdong Agricultural Sciences, 2012, 39(12): 169−174. doi: 10.3969/j.issn.1004-874X.2012.12.053.
[12] 高儒学, 高华端, 孙泉忠, 等. 关岭县蚂蝗田小流域降雨年内分配特征研究[J]. 水土保持研究, 2017, 24(2):152−155. Gao R X, Gao H D, Sun Q Z, et al. Study on annual distribution characteristics of rainfall in mahuangtian catchment of Guanling County[J]. Research of Soil and Water Conservation, 2017, 24(2): 152−155.
[13] Staelens J, Schrijver A D, Verheyen K, et al. Rainfall partitioning into throughfall, stemflow, and interception within a single beech (Fagus sylvatica L.) canopy: influence of foliation, rain event characteristics, and meteorology[J]. Hydrological Processes, 2008, 22(1): 33−45. doi: 10.1002/hyp.6610.
[14] 宗桦. 森林乔木冠层雨水再分配特征及机制研究综述[J]. 世界林业研究, 2019, 32(1):31−38. Zong H. A review of characteristics and mechanisms of rainfall interception and redistribution in forest canopy[J]. World Forestry Research, 2019, 32(1): 31−38.
[15] Aydin M, Sen S G, Celik S. Throughfall, stemflow, and interception characteristics of coniferous forest ecosystems in the western black sea region of Turkey (Daday example)[J/OL]. Environmental Monitoring and Assessment, 2018, 190(5): 316 (2018−04−30)[2019−03−18]. https://doi.org/10.1007/s10661-018-6657-8.
[16] 赵明扬, 孙长忠, 康磊. 降雨再分配的回归模型差异性分析:以黄土高原半干旱区油松人工林为例[J]. 中南林业科技大学学报, 2013, 33(5):85−90. Zhao M Y, Sun C Z, Kang L. Difference analysis of rainfall redistribution of Pinus tabulaeformis artificial forests in Loess Plateau[J]. Journal of Central South University of Forestry & Technology, 2013, 33(5): 85−90.
[17] Fathizadeh O, Attarod P, Pypker T, et al. Seasonal variability of rainfall interception and canopy storage capacity under individual oak (Quercus brantii) trees of western Iran[J]. Journal of Agricultural Science and Technology, 2013, 15(1): 175−188.
[18] 江淼华, 吕茂奎, 胥超, 等. 亚热带米槠次生林和杉木人工林林冠截留特征比较[J]. 水土保持学报, 2017, 31(1):119−124, 129. Jiang M H, Lü M K, Xu C, et al. Study on the canopy interception of secondary forest of Castanopsis carlesii and Chinese fir plantation in subtropical China[J]. Journal of Soil and Water Conservation, 2017, 31(1): 119−124, 129.
[19] 邱治军, 周光益, 吴仲民, 等. 粤北杨东山常绿阔叶次生林林冠截留特征[J]. 林业科学, 2011, 47(6):157−161. doi: 10.11707/j.1001-7488.20110623. Qiu Z J. Zhou G Y, Wu Z M, et al. Characteristics of the canopy interception in an evergreen broad-leaved secondary forest in Yangdongshan, North Guangdong[J]. Scientia Silvae Sinicae, 2011, 47(6): 157−161. doi: 10.11707/j.1001-7488.20110623.
[20] 梁文俊, 丁国栋, 臧荫桐, 等. 华北土石山区油松林对降雨再分配的影响[J]. 水土保持研究, 2012, 19(4):77−80. Liang W J, Ding G D, Zang Y T, et al. Study on effect of Pinus tabulaeformis plantation on rainfall redistribution processes in the mountainous area of North China[J]. Research of Soil and Water Conservation, 2012, 19(4): 77−80.
[21] 艾长江, 高光耀, 袁川, 等. 陕北黄土高原柠条灌丛穿透雨特征与影响因素[J]. 生态学报, 2018, 38(17):6063−6073. Ai C J, Gao G Y, Yuan C, et al. Throughfall and its influential factors of a typical xerophytic shrub (Caragana korshinskii) in northern Shaanxi in the Loess Plateau of China[J]. Acta Ecologica Sinica, 2018, 38(17): 6063−6073.
[22] 张梅. 辽东半岛仙人洞自然保护区植物区系多样性分析[J]. 西北植物学报, 2014, 34(8):1693−1698. doi: 10.7606/j.issn.1000-4025.2014.08.1693 Zhang M. Plant floristic diversity in xianrendong natural reserve from Liaodong Peninsula[J]. Acta Botanica Boreali-Occidentalia Sinica, 2014, 34(8): 1693−1698. doi: 10.7606/j.issn.1000-4025.2014.08.1693
[23] 郭凤, 陈建刚, 杨军, 等. 植草沟对北京市道路地表径流的调控效应[J]. 水土保持通报, 2015, 35(3):182−187. Guo F, Chen J G, Yang J, et al. Regulatory effect of grassed swales on road surface runoff in Beijing City[J]. Bulletin of Soil & Water Conservation, 2015, 35(3): 182−187.
[24] 杨会侠, 温亮, 李淳, 等. 辽东山区人工红松林降雨截留分配效应[J]. 吉林林业科技, 2017, 46(2):12−15. Yang H X, Wen L, Li C, et al. The rainfall retention distribution effect of artificial Pinus koraiensis forest in Liaodong mountain area[J]. Journal of Jilin Forestry Science and Technology, 2017, 46(2): 12−15.
[25] 冯亚琦, 郭娜, 蔡体久, 等. 蒙古栎林对大气降雨的再分配规律[J]. 森林工程, 2017, 33(5):24−28, 34. Feng Y Q, Guo N, Cai T J, et al. Rainfall redistribution of mongolian oak plantation in Harbin[J]. Forest Engineering, 2017, 33(5): 24−28, 34.
[26] 石磊, 盛后财, 满秀玲, 等. 兴安落叶松林降雨再分配及其穿透雨的空间异质性[J]. 南京林业大学学报(自然科学版), 2017, 41(2):90−96. Shi L, Sheng H C, Man X L, et al. Rainfall redistribution and the spatial heterogeneity of throughfall in Larix gmelinii forest, northeast China[J]. Journal of Nanjing Forestry University (Natural Science Edition), 2017, 41(2): 90−96.
[27] 董玲玲, 康峰峰, 韩海荣, 等. 辽河源3种林分降雨再分配特征及其影响因素[J]. 水土保持学报, 2018, 32(4):147−152. Dong L L, Kang F F, Han H S, et al. Traitsand influencing factors of rainfall redistribution in three types of forest in Liaoheyuan[J]. Journal of Soil and Water Conservation, 2018, 32(4): 147−152.
[28] 陈丽华, 杨新兵, 鲁绍伟, 等. 华北土石山区油松人工林耗水分配规律[J]. 北京林业大学学报, 2008, 30(9):182−187. Chen L H, Yang X B, Lu S W, et al. Distribution of water consumption of Pinus tabulaeformis plantation in rocky mountain areas in northern China[J]. Journal of Beijing Forestry University, 2008, 30(9): 182−187.
[29] 刘玉杰, 满秀玲, 盛后财. 大兴安岭北部兴安落叶松林穿透雨延滞效应[J]. 应用生态学报, 2015, 26(11):3285−3292. Liu Y J, Man X L, Sheng H C. Time lag effects of throughfall in natural Larix gmelinii forest in the north of Great Xing ’an Mountains, China[J]. Chinese Journal of Applied Ecology, 2015, 26(11): 3285−3292.
[30] 周秋文, 马龙生, 颜红, 等. 贵州省喀斯特阔叶林降雨截留分配特征[J]. 水土保持通报, 2016, 36(6):321−325. Zhou Q W, Ma L S, Yan H, et al. Distribution characteristics of rainfall interception by broadleaved forest in typical karst area of Guizhou Province[J]. Bulletin of Soil and Water Conservation, 2016, 36(6): 321−325.
[31] Holwerda F, Bruijnzeel L A, Muñoz-Villers L E, et al. Rainfall and cloud water interception in mature and secondary lower montane cloud forests of central Veracruz, Mexico[J]. Journal of Hydrology, 2010, 384(1−2): 84−96. doi: 10.1016/j.jhydrol.2010.01.012.
[32] Levia D F, Frost E E. A review and evaluation of stemflow literature in the hydrologic and biogeochemical cycles of forested and agricultural ecosystems[J]. Journal of Hydrology (Amsterdam), 2003, 274(1−4): 1−29. doi: 10.1016/S0022-1694(02)00399-2.
[33] 王艳萍, 王力, 卫三平. Gash模型在黄土区人工刺槐林冠降雨截留研究中的应用[J]. 生态学报, 2012, 32(17):5445−5453. doi: 10.5846/stxb201203190374. Wang Y P, Wang L, Wei S P. Modeling canopy rainfall interception of a replanted Robinia pseudoacacia forest in the Loess Plateau[J]. Acta Ecologica Sinica, 2012, 32(17): 5445−5453. doi: 10.5846/stxb201203190374.
[34] Macinnis-Ng C M O, Flores E E, Henry M, et al. Throughfall and stemflow vary seasonally in different land-use types in a lower montane tropical region of Panama[J]. Hydrological Processes, 2014, 26(4): 2174−2184.
[35] 万艳芳, 刘贤德, 王顺利, 等. 祁连山青海云杉林冠降雨再分配特征及影响因素[J]. 水土保持学报, 2016, 30(5):224−229. Wan Y F, Liu X D, Wang S L, et al. Rainfall canopy partitioning and its influencing factors of Picea crassifolia forest in the Qilian Mountains[J]. Journal of Soil and Water Conservation, 2016, 30(5): 224−229.
[36] 张宁, 郭宾良, 张国强, 等. 沿坝地区天然次生林对降雨再分配的影响[J]. 水土保持研究, 2015, 22(6):104−107, 114. Zhang N, Guo B L , Zhang G Q, et al. Study on effect of natural secondary forest on rainfall redistribution processes along the dam area[J]. Research of Soil and Water Conservation, 2015, 22(6): 104−107, 114.
[37] 何常清, 薛建辉, 吴永波, 等. 岷江上游亚高山川滇高山栎林的降雨再分配[J]. 应用生态学报, 2008, 19(9):1871−1876. He C Q, Xue J H, Wu Y B, et al. Rainfall redistribution in subalpine Quercus aquifolioides forest in upper reaches of Minjiang River[J]. Chinese Journal of Applied Ecology, 2008, 19(9): 1871−1876.
[38] 温远光, 刘世荣. 我国主要森林生态系统类型降水截留规律的数量分析[J]. 林业科学, 1995, 31(4):289−298. Wen Y G, Liu S R. Quantitative analysis of the characteristics of rainfall interception of main forest ecosystems China[J]. Scientia Silvae Sinicae, 1995, 31(4): 289−298.
[39] 任世奇, 项东云, 肖文发, 等. 广西南宁桉树人工林降雨再分配特征[J]. 生态学杂志, 2017, 36(6):1473−1480. Ren S Q, Xiang D Y, Xiao W F, et al. Rainfall redistribution of eucalypt plantation in Nanning, Guangxi, China[J]. Chinese Journal of Ecology, 2017, 36(6): 1473−1480.
-
期刊类型引用(12)
1. 孙凡,马彦广,刘占民,杨博宁,王辉丽,李伟. 油松高世代种子园亲本选择策略研究. 北京林业大学学报. 2024(04): 28-39 . 本站查看
2. 吕寻,李万峰,胡勐鸿,戴小芬,成红梅,委霞. 日本落叶松种子园和优树自由授粉家系选择与利用研究. 西南林业大学学报(自然科学). 2024(03): 1-9 . 百度学术
3. 冯健,张金博,杨圆圆,杜超群,徐柏松,曹颖,姚飞. 基于生长性状和SSR遗传多样性分析的红松第二代优树选择研究. 西南林业大学学报(自然科学). 2024(04): 1-7 . 百度学术
4. 胡勐鸿,吕寻,戴小芬,李宗德,李万峰. 日本落叶松无性系种子园和优树半同胞家系苗期比较. 东北林业大学学报. 2024(12): 10-17 . 百度学术
5. 向华,向文明,向明. 我国用材林优树选择技术研究进展. 湖南林业科技. 2021(02): 89-96 . 百度学术
6. 康向阳. 林木遗传育种研究进展. 南京林业大学学报(自然科学版). 2020(03): 1-10 . 百度学术
7. 邓乐平,黄婷,王哲,吴惠姗,李晓华,廖仿炎,李义良,郭文冰,赵奋成. 湿地松改良种子园无性系的遗传评价及新一轮育种亲本选择. 林业与环境科学. 2020(04): 1-7 . 百度学术
8. 杜超群,赵虎,袁慧,侯义梅,朱于勤,许业洲. 日本落叶松种子园母树生长及种实性状评价. 森林与环境学报. 2019(01): 32-36 . 百度学术
9. 王芳,王元兴,王成录,张伟娜,刘卫胜,陆志民,杨雨春. 红松优树半同胞子代家系生长、结实及抗病虫能力的变异特征. 应用生态学报. 2019(05): 1679-1686 . 百度学术
10. 金星,于忠峰,苗海伟,于国斌,朱瑞,张丽杰. 辽宁地区油松花粉形态及生活力的测定. 分子植物育种. 2019(15): 5115-5119 . 百度学术
11. 康向阳. 关于林木育种策略的思考. 北京林业大学学报. 2019(12): 15-22 . 本站查看
12. 苗禹博,朱晓梅,李志娟,贾凤岭,李伟. 不同世代樟子松育种资源遗传评价. 北京林业大学学报. 2017(12): 71-78 . 本站查看
其他类型引用(4)