• Scopus收录期刊
  • CSCD(核心库)来源期刊
  • 中文核心期刊
  • 中国科技核心期刊
  • F5000顶尖学术来源期刊
  • RCCSE中国核心学术期刊
高级检索

辽东半岛赤松和蒙古栎林降雨再分配特征及其相关性分析

李连强, 杨会侠, 丁国泉, 李淳

李连强, 杨会侠, 丁国泉, 李淳. 辽东半岛赤松和蒙古栎林降雨再分配特征及其相关性分析[J]. 北京林业大学学报, 2020, 42(11): 47-55. DOI: 10.12171/j.1000-1522.20200009
引用本文: 李连强, 杨会侠, 丁国泉, 李淳. 辽东半岛赤松和蒙古栎林降雨再分配特征及其相关性分析[J]. 北京林业大学学报, 2020, 42(11): 47-55. DOI: 10.12171/j.1000-1522.20200009
Li Lianqiang, Yang Huixia, Ding Guoquan, Li Chun. Precipitation redistribution characteristics and its correlation analysis of Pinus densiflora and Quercus mongolica forests in the Liaodong Peninsula of northeastern China[J]. Journal of Beijing Forestry University, 2020, 42(11): 47-55. DOI: 10.12171/j.1000-1522.20200009
Citation: Li Lianqiang, Yang Huixia, Ding Guoquan, Li Chun. Precipitation redistribution characteristics and its correlation analysis of Pinus densiflora and Quercus mongolica forests in the Liaodong Peninsula of northeastern China[J]. Journal of Beijing Forestry University, 2020, 42(11): 47-55. DOI: 10.12171/j.1000-1522.20200009

辽东半岛赤松和蒙古栎林降雨再分配特征及其相关性分析

基金项目: 林业公益性行业科研专项(201404303-04)
详细信息
    作者简介:

    李连强。主要研究方向:森林生态学。Email:1164629835@qq.com 地址:118003 辽宁省丹东市元宝区金山开发区古城路150号辽宁省森林经营研究所

    责任作者:

    杨会侠,教授级高级工程师。主要研究方向:森林生态。Email:yhx-s@163.com 地址:同上

  • 中图分类号: S715.2

Precipitation redistribution characteristics and its correlation analysis of Pinus densiflora and Quercus mongolica forests in the Liaodong Peninsula of northeastern China

  • 摘要:
      目的  降雨再分配是森林生态系统重要的水文过程,分析辽东半岛地区赤松和蒙古栎林降雨再分配特征,为区域典型林分的生态水文分析及模型建立提供参考。
      方法  以辽宁仙人洞国家级自然保护区内的赤松和蒙古栎林为调查观测对象,选择林外降雨量(POF)、林内穿透雨量(TF)、树干径流量(SF)和树冠截留量(IF)为指标,应用回归分析法建立林外降雨量与各类指标的关系方程,并分析2种林分的降雨特征及其变化规律。
      结果  (1)赤松林穿透雨量、树冠截留量和树干径流量分别为388.5、215.3、66.5 mm,占林外降雨量的57.96%、32.12%、9.92%;蒙古栎林穿透雨量、树冠截留量和树干径流量分别为421.7、119.0、55.5 mm,占林外降雨量的70.73%、19.96%、9.31%。(2)低强度降雨时,赤松和蒙古栎林的初始迟滞时长1 h左右,而中等和高强度降雨时,迟滞时长较短,明显小于1 h。且赤松林的树冠截留迟滞时间较长,迟滞作用更强,截留效果更好。(3)林外降雨量与穿透雨量、树干径流量呈极显著线性正相关(P < 0.001),赤松林和蒙古栎林产生穿透雨l、树干茎流量的最小降雨量分别为4.2、5.8和2.0、2.5 mm。(4)赤松和蒙古栎林的树冠截留量与林外降雨量呈极显著(P < 0.001)二次函数关系,树冠截留作用与林外降雨同时产生。当林外降雨量分别大于90.0、70.0 mm时,赤松和蒙古栎林的树冠截留量分别在10.0、7.0 mm左右。(5)林外降雨量与树冠截留率呈极显著负相关(P < 0.001)的幂函数关系,当林外降雨量分别大于90.0、70.0 mm时,赤松和蒙古栎林的树冠截留率趋于平稳,降低到20%和10%左右。
      结论  降雨再分配过程中,赤松林的树干径流量、截留量和截留率大于蒙古栎林,而赤松林穿透雨量小于蒙古栎林,赤松林降雨再分配作用强于蒙古栎林。林内穿透雨存在迟滞效应,迟滞时长受降雨强度和林分类型影响,且赤松林的迟滞时长大于蒙古栎林。林外降雨量与树干径流量、穿透雨量、树冠截留量呈极显著正相关,与树干径流量、穿透雨量呈线性函数关系,与树冠截留量呈二次函数关系,与树冠截留率呈极显著负相关的幂函数关系。
    Abstract:
      Objective  Precipitation redistribution is an important hydrological process in forest ecosystems. Analyzing the precipitation redistribution characteristics of Pinus densiflora and Quercus mongolica can provide a reference for the analysis of ecological hydrological parameters and model establishment of typical forest stands in eastern Liaoning Province of northeastern China.
      Method  Taking the Pinus densiflora and Quercus mongolica forests in the Xianrendong Nature Reserve as the survey and observation objects, the selection of precipitation outside the forest (POF), throughfall (TF), stem flow (SF) and canopy interception (IF) were used as indicators. The regression analysis method was used to establish the equations of POF and various indicators, and the precipitation characteristics and their changes of the two forests were analyzed.
      Result  (1) In the Pinus densiflora forest, TF, IF and SF were 388.5, 215.3 and 66.5 mm, accounting for 57.96%, 32.12% and 9.92% of the POF, respectively. In the Quercus mongolica forest, TF, IF, and SF were 421.7, 119.0 and 55.5 mm, accounting for 70.73%, 19.96% and 9.31% of the POF, respectively. (2) At low intensity precipitation, the initial lag time of Pinus densiflora and Quercus mongolica forest was about 1 h, while for medium and high intensity rainfall, the lag time was shorter, significantly less than 1 h; and the canopy interception time of the Pinus densiflora forest was longer, the hysteresis was stronger, and the interception effect was better. (3) The rainfall outside the forest was significantly and linearly positively correlated with the penetration rainfall and stem flow (P < 0.001). The minimum rainfall producing TF and SF by Pinus densiflora forest and Quercus mongolica forest was 4.2 , 5.8 mm and 2.0, 2.5 mm. respectively. (4) The canopy interception of Pinus densiflora and Quercus mongolica showed a significant quadratic function relationship with rainfall (P < 0.001). Canopy interception occurs simultaneously with rain outside the forest. When the rainfall was greater than 90.0 and 70 mm, the canopy interception of Pinus densiflora and Quercus mongolica tended to be stable at about 10 and 7 mm, respectively. (5) The rainfall outside the forest had a very significant negative correlation with canopy interception rate (P < 0.001), showing a power function relationship. When the rainfall outside the forest was greater than 90.0 and 70 mm, the canopy interception rates of Pinus densiflora and Quercus mongolica forest tended to be stable, decreasing to about 20% and 10%, respectively.
      Conclusion  In the process of precipitation redistribution, the SF and IF of the Pinus densiflora forest is greater than Quercus mongolica forest, while the TF of Pinus densiflora forest is smaller than Quercus mongolica forest. Redistribution of Pinus densiflora forest is stronger. There is a significant delay in TF in the forest, the lag time is affected by rainfall intensity and stand type, and the lag time of Pinus densiflora forest is greater than Quercus mongolica forest. The POF is significantly positively correlated with SF, TF and IF, and it has a linear function relationship with tree SF and TF. It has a quadratic function relationship with the IF. There is a significant negative correlation between the POF and canopy interception rate, and it is a power function relationship.
  • 装饰胶膜纸具有花纹美观、表面性能优良、价格便宜、耐高温和耐污染腐蚀等优点,是目前用量最大的人造板饰面材料,其中以三聚氰胺–甲醛树脂作为浸渍胶黏剂生产的浸渍胶膜纸产量最大。然而三聚氰胺浸渍胶膜纸干燥后,纸张脆性增加,在异型表面上使用受限[12]。预油漆纸柔韧性较好,在一定程度上弥补了这种缺陷。预油漆纸通常是将装饰原纸经树脂浸渍干燥之后(预浸胶纸),进行印刷或者不印刷,再经过涂布表层涂料等工艺加工制成。目前,尽管国内预油漆纸相对于三聚氰胺浸渍胶膜纸市场占有比较少,欧美、日本等国家的预油漆纸在装饰和家具行业占有相当大的比例。因此,以预油漆纸作为装饰优美弧线和工艺造型的表面装饰材料应用有较广阔的市场发展空间[3]

    目前,国内预油漆纸浸渍用胶黏剂大部分使用脲醛树脂,并且为了增加纸层间的结合强度,会加入少量三聚氰胺–甲醛树脂,这样会造成甲醛释放等环保问题[3]。丙烯酸酯树脂具有耐腐蚀性、耐碱性和耐热性,且低气味等特点,作为预油漆纸浸渍用胶黏剂具有较好的潜力,但因其表面耐磨性差、透射率低和寿命短,使用常受到限制[4],所以需要对树脂进行改性处理。常用的改性方法是添加一些高强度的助剂,其中纳米纤维素表面含有大量羟基并且具有比表面积大、质轻、模量高、透明和环境友好等特性,被广泛用作聚合物的增强助剂。研究发现加入纳米纤维素增强了丙烯酸酯聚合物的机械强度、耐候性和耐热性等[5]。Zhu等[6]利用纳米纤维素增强水性丙烯酸酯胶黏剂浸渍装饰原纸,发现纳米纤维素的加入增加了预浸胶纸的表面结合强度和耐磨性能。本研究团队前期首先对纳米纤维素季铵化改性,目的是为了减少纳米纤维素因表面丰富的羟基自身产生团聚,并且将带正电荷的N+引入到纳米纤维素中,与带负电荷结构单元形成静电相互作用达到增强的效果。另外,相比其他疏水化改性方法,例如双醛改性,季铵化纳米纤维素不易氧化,易于保存[5]。研究发现利用改性纳米纤维素增强的丙烯酸酯胶黏剂制备的预浸胶纸游离甲醛排放量可控制到0.1 mg/L,并且具有较好的防水性能[7]。本研究在前期对原纸经季铵化纳米纤维素增强的丙烯酸酯浸渍胶黏剂和预浸胶纸研究基础上[7],补充了未经纳米纤维素增强丙烯酸酯浸渍处理的预浸胶纸性能,再对预浸胶纸进行表层涂布水性丙烯酸酯类涂料制备的预油漆纸进行性能分析和表征,并对预油漆纸贴面的纤维板进行表面性能分析。旨在为高附加值无醛预油漆纸产品开发和利用提供理论数据支撑,以满足现代装饰行业对多功能产品的需求。

    预油漆纸原纸(定量约50 g/m2)和桉树纸浆均购自浙江夏王纸业有限公司。对桉树纸浆酸化预处理后,再进行高压均质化处理后获取纤维素纳米纤维,具体过程详见参考文献[7]。纳米纤维素直径7 ~ 13 nm、长度500 ~ 2 000 nm,纤维素表面官能团主要为羟基基团,具有亲水性。季铵化纳米纤维素增强水性丙烯酸酯乳液(实验室自制),利用N-(2-3-环氧丙基)三甲基氯化铵对纳米纤维素进行改性后增强水性丙烯酸酯乳液,具体制备过程详见参考文献[7]。其中,浸渍用水性丙烯酸酯乳液固含15%,纳米纤维素添加质量占浸渍用水性丙烯酸酯乳液质量的2.5%;水性双组分丙烯酸酯类涂料,主剂A为水性羟基丙烯酸树脂,固化剂B为水性异氰酸酯,A组分和B组分的质量比为100∶28.5,A + B组分固含为35.4%,购自科思创聚合物(中国)有限公司。中密度纤维板,气干密度0.8 g/cm3,E0级,购自广西丰林木业集团股份有限公司。贴面用胶黏剂为水性聚氨酯树脂,固含约35%,牌号1654,购自万华化学集团股份有限公司。

    使用挤压式线棒手动涂布器(型号为Lonroy,OSP-20,购自日本OSG公司)将改性后的季铵化纳米纤维素增强丙烯酸酯乳液作为胶黏剂浸渍到原纸上,浸渍量为17 g/m2,然后采用热风干燥固化(干燥温度150 ℃,干燥时间40 s)后制备预浸胶纸。直接用丙烯酸酯乳液作为胶黏剂浸渍到原纸上制备未添加改性季铵化纳米纤维素的预浸胶纸,浸渍量、干燥温度和时间同上。在预浸胶纸表面利用辊涂机(型号为LC-LWA-WS240,上海立岑机械设备有限公司)直接涂饰丙烯酸酯类涂料,涂布量为15 g/m2,采用热风干燥固化(干燥温度120 ℃,干燥时间120 s)后制备预油漆纸。

    板材表面辊涂聚氨酯胶黏剂后,采用热压方式将预油漆纸粘贴在纤维板表面,热压温度150 ℃,热压时间1 min,热压压力0.6 MPa,施胶量分别为90、120和150 g/m2。以上试样制备过程见图1

    图  1  预油漆纸和预油漆纸饰面板试样制备过程图
    Figure  1.  Preparation process diagram of pre-painted paper and pre-painted paper decorative panel samples

    通过质量测量分别对原纸、预浸胶纸和预油漆纸进行定量分析。参照GB/T 12914—2008《纸和纸板抗张强度的测定》测试原纸、预浸胶纸和预油漆纸3种纸的抗拉强度和裂断时伸长率,试件宽度为(15.0 ± 0.1) mm,最短长度不小于250 mm。参照GB/T 17657—2022《人造板及饰面人造板理化性能试验方法》干燥器法测试甲醛释放量,试件长度(150 ± 1) mm,宽度(50 ± 1) mm。采用超景深显微镜(VHX-6000,基恩士)观察原纸、预浸胶纸和预油漆纸表面微观构造。设置光谱分辨率为 4 cm−1,扫描次数 36次/s,在 500 ~ 4 000 cm−1 范围内,利用傅里叶变换红外光谱仪(FTIR 8000,日本岛津公司),采用衰减全反射红外光谱法测试化学基团变化。采用X射线光电子能谱仪(X-ray photoelectron spectroscopy, XPS;Thermo escalab 250XI,美国热电)分析3种纸的表面官能团变化,X射线激发源为单色Al Ka(hv = 1 486.6 eV),功率150 W,能量透过能为20 eV。采用同步热分析仪(STA 449 F3/F5,德国耐驰)测试3种纸的热稳定性,获得热重(thermo-gravimetry,TG)和微分热重(derivative thermogravimetry,DTG)曲线图。N2为载气,升温速率10 ℃/min,测试范围 25 ~ 600 ℃。

    参照GB/T 15102—2017《浸渍胶膜纸饰面纤维板和刨花板》测试表面胶合强度、表面耐水蒸汽(沸腾的水蒸汽作用1 h)、耐污染腐蚀(丙酮、黑咖啡、鞋油、H2O2(30%)、NaOH(25%))。参照GB/T 37005—2018 《油漆饰面人造板》测试表面硬度、表面耐干热(温度180 ℃,20 min)、表面耐湿热(温度70 ℃)、抗冲击性能(冲击高度100 mm)、表面耐磨性能(使用180目砂布条磨100转,计算磨耗值,并观察漆膜是否磨透)。

    图2为未添加季铵化纳米纤维素的预浸胶纸、预油漆纸和折叠180°后预油漆纸。预油漆纸可任意角度折叠,折叠180°后,预油漆纸可恢复到原来状态,并且无裂痕,表明其材质柔软,可用于异面包覆。与预油漆纸对比,未添加季铵化纳米纤维素的预浸胶纸表面有明显小斑点,可能是由于未改性的丙烯酸酯乳液对于原纸的填充效果不理想,未充分浸透和覆盖原纸孔隙。

    图  2  未添加季铵化纳米纤维素的预浸胶纸(a)、预油漆纸(b)和折叠180°后预油漆纸(c)照片
    Figure  2.  Photos of impregnated paper without quaternized nanocellulose (a), finish foil (b), and finish foil after folding 180° (c)

    原纸、预浸胶纸和预油漆纸定量分别为51、68和83 g/m2,预浸胶纸、预油漆纸质量分别增加了35.1%和64.5%。利用超景深显微镜观察原纸、预浸胶纸和预油漆纸表面形貌(图3)。预浸胶纸是原纸经过改性后的季铵化纳米纤维素增强丙烯酸酯乳液作为胶黏剂浸渍处理,观察发现胶黏剂渗透进入原纸内部,其中部分纤维间的孔隙被填补,起到填充作用,并且胶黏剂在加热后固化与纸层纤维之间形成交联,增强了预浸胶纸层间强度[2,6]。预油漆纸表面经过涂料涂饰后,原纸中纤维素进一步被遮盖,表明涂料主要覆盖原纸表面,并且无明显的气泡、缩孔等缺陷产生,表明涂料与预浸胶纸相容性较好,能够起到表面装饰的效果。同时,观察发现预油漆纸表面出现肉眼不可见的透明小泡,这可能与漆膜干燥工艺、基材性能、辊涂次数和漆膜厚度有关。

    图  3  超景深显微镜下表面微观构造形貌图
    Figure  3.  Topography of surface microstructure by ultra-depth microscope

    利用接触角测试评估了水与装饰纸表面或界面的相互作用(表1)。由于纤维素纤维的亲水性,水完全渗入到原纸内部,几乎无接触角,原纸的耐水性较差。使用丙烯酸酯胶黏剂和涂料处理后的预油漆纸接触角为82.54°,疏水性能显著提高。主要原因是丙烯酸酯胶黏剂填充,并在加热之后固化,完全覆盖在原纸纤维表面,形成了疏水膜,并且涂漆对原纸木纤维结构具有掩盖作用,进一步隔绝了水分对纸的浸润作用[8]

    表  1  原纸、预浸胶纸和预油漆纸拉伸性能、接触角和甲醛释放量
    Table  1.  Tensile properties, water contact angle and formaldehyde emission of the base paper, impregnated paper and finish foil
    类型
    Type
    抗张强度
    Tensile strength/(kN·m−1)
    断裂伸长率
    Elongation at break/%
    表面接触角
    Surface contact angle/(°)
    甲醛释放量
    Formaldehyde emission
    value/(mg·L−1)
    纵向
    Longitudinal
    横向
    Transverse
    纵向
    Longitudinal
    横向
    Transverse
    原纸 Base paper 0.87 (4.18%) 0.57 (7.49%) 6.37 (6.35%) 24.40 (10.10%) ND 0.10
    预浸胶纸 Impregnated paper 3.52 (8.10%) 2.63 (8.47%) 28.83 (7.71%) 75.30 (12.29%) 71.37 0.10
    预油漆纸 Finish foil 3.64 (32.31%) 3.27 (7.3%) 20.60 (53.07%) 88.67 (6.72%) 82.54 0.12
    注:纵向指平行于纤维长度方向,横向指垂直于纤维长度方向;括号内数值代表变异系数。ND表示水已被原纸完全吸收,稳定后无法测量。Notes: longitudinal refers to the direction parallel to fiber length, and transverse refers to the direction perpendicular to fiber length. The values in parentheses represent the coefficient of variation. ND indicates that the water has been completely absorbed by the base paper. Moreover, it cannot be measured after stabilization.
    下载: 导出CSV 
    | 显示表格

    原纸经过胶黏剂处理后纤维间交织结合力增加,纵横向抗张强度和断裂伸长率均明显增加,预浸胶纸的强度和柔韧性明显增加(表1),其主要原因为:改性纳米纤维素、浸渍胶黏剂中甲基丙烯酸酯与原纸纤维素之间的相互作用形成了一个密集的氢键结合网络,结构单元之间形成了较多的交联位点,从而增强了预浸胶纸的强度和柔韧性[9]。预浸胶纸涂饰丙烯酸酯类涂料后,预油漆纸的抗张强度和断裂伸长率变化不明显(表1)。预浸胶纸浸胶后相比原纸质量增加了35.1%,表面和内部孔隙已被胶黏剂大量填满,整体形成致密结构,所以辊涂涂料的预油漆纸强度变化较小。预油漆纸的断裂伸长率明显高于周晓剑等[10]利用三聚氰胺–甲醛树脂制备胶膜纸的断裂伸长率(1.0%),表明预油漆纸具有较优的柔韧性。

    利用干燥器法测得预浸胶纸和预油漆纸的甲醛释放量分别为0.10和0.12 mg/L,达到国内外干燥器法甲醛释放量最严等级—日本F系列星级认证中F☆☆☆☆级(甲醛释放量 ≤ 0.3 mg/L)的要求。预油漆纸中少量的甲醛释放可能主要来源于原纸中木质原料热分解释放的甲醛,以及胶黏剂或涂料生产原料中降解产生的甲醛[11]。三聚氰胺–甲醛树脂浸渍胶膜纸的甲醛释放量一般大于0.30 mg/L[8],主要原因是为保证三聚氰胺–甲醛树脂浸渍胶膜纸在热压贴面过程中能够顺利粘贴,胶膜纸保留了部分游离甲醛。相比三聚氰胺–甲醛树脂浸渍胶膜纸,预油漆纸的甲醛释放量较低,并且热压贴面时一般以聚氨酯、热熔胶等作为胶黏剂,预油漆纸作为表面装饰层的整体体系甲醛含量低,所以预油漆纸在对环保要求较高的房屋装饰和家具产品中更具有应用潜力。但目前丙烯酸酯类原料成本较高,这也是利用丙烯酸酯类原料制备预油漆纸在生产应用中面临的主要问题。

    通过XPS分析原纸、预浸胶纸和预油漆纸表面化学结构的变化情况和元素含量的变化。原纸中主要成分为纤维素, XPS分析(表2)得到原纸C、O比例与纤维素元素组成比例一致[12]。研究发现预浸胶纸和预油漆纸C元素含量增加(表2),主要是由于预浸胶纸是原纸经过季铵化纳米纤维素改性的丙烯酸酯胶黏剂处理,预油漆纸也是经过丙烯酸酯胶黏剂和涂料处理,都含有大量C元素的聚合物,渗透到纸表面。另外,预油漆纸中Si元素增加(表2),可能是由于涂料中添加了含有硅氧烷类助剂。图4为 C元素特征峰 C1s分峰图,原纸、预浸胶纸和预油漆纸C1s的分峰结果列于表2中。其中的C元素中结合态C1对应结合能和成键类型分别为284.7 ~ 284.9 eV和C−C或C−H,C2对应286.3 ~ 286.5 eV和C−O或C−OH,C3对应288.1 ~ 288.5 eV和O−C−O或C=O,C4对应288.7 ~ 289.4 eV和O−C=O,C5对应为285.2 eV和C=C,C6对应287.2 eV和C=O[12]。预浸胶纸和预油漆纸中的C2含量降低,表明原纸中纤维素的羟基被丙烯酸酯胶黏剂以及丙烯酸酯类涂料大量覆盖。预浸胶纸和预油漆纸C4比例增加,主要是由于胶黏剂和涂料中含有大量的酯键。预浸胶纸和预油漆纸中的C1明显增加,表明原纸经过丙烯酸酯胶黏剂和涂料处理后表面疏水性能提高。

    表  2  原纸、预浸胶纸和预油漆纸不同元素和C元素不同结合态的相对含量
    Table  2.  Relative contents of different elements and C elements of base paper, impregnated paper and finish foil
    类型
    Type
    元素百分比 Element percentage/%C1s分峰值百分比 Deconvoluted C1s peak percentage/%
    CONSiTiC1C2C3C4C5C6
    原纸 Base paper44.3648.391.304.851.0928.5742.5411.410017.49
    预浸胶纸 Impregnated paper78.1519.941.330.390.2067.7415.5205.2911.440
    预油漆纸 Finish foil62.1227.301.359.080.1462.7328.312.646.7700
    下载: 导出CSV 
    | 显示表格
    图  4  原纸(a)、预浸胶纸(b)和预油漆纸(c)C1s分峰图
    Figure  4.  C1s peak splitting plot of base paper (a), impregnated paper (b) and finish foil (c)

    通过红外光谱对原纸、预浸胶纸和预油漆纸的表面化学变化进行分析,结果如图5所示。与原纸相比,预浸胶纸和预油漆纸在波长1 724 cm−1左右处出现丙烯酸酯的C=O伸缩振动峰;预油漆纸中,809和1 511 cm−1 分别对应丙烯酸酯类涂料的C−H伸缩振动和C=C键伸缩振动,2 800 ~ 3 000 cm−1处的吸收峰是饱和C−H伸缩振动峰,3 310 cm−1左右处的峰是丙烯酸酯类涂料中异氰酸中N−H键伸缩振动峰[13]。原纸经过改性处理后出现新的吸收峰,说明丙烯酸酯胶黏剂或涂料起到填充作用。另外,预油漆纸中1 110 cm−1处的吸收峰为O−H缔合吸收带消失,说明原纸中羟基与游离异氰酸酯可能发生了化学结合。与原纸中1 018 ~ 1 064 cm−1处的C−O−C双吸收峰对比,预浸胶纸和预油漆纸的此处峰发生变化,可能是由于原纸中纤维素C−O−C与丙烯酸酯中酯键或羟基发生了化学反应。

    图  5  原纸、预浸胶纸和预油漆纸红外光谱图
    Figure  5.  Infrared spectrum of base paper, impregnated paper and finish foil

    图6显示原纸中纤维素的主要热解失重段为 260 ~ 360 ℃[14],在该温度范围内纤维素的质量损失率约为43%,预浸胶纸和预油漆纸在此温度范围内也是主要热解失重段,质量损失率分别为44%和37%。预油漆纸中丙烯酸酯和纤维素共热解对原纸纤维素热解有一定影响。预浸胶纸和预油漆纸在360 ~ 420 ℃经历另一次失重,质量损失率分别为11%和21%,在此温度范围内丙烯酸酯出现最大化热解[15],质量损失率不同与丙烯酸酯在原纸中含量不同有关。从总的质量损失率分析,与原纸相比,预浸胶纸和预油漆纸表现出热稳定性能略微下降。原纸、预浸胶纸和预油漆纸均在347 ℃左右分解速率最快,纤维素大量发生裂解,分解为小分子物质,并伴随着挥发分的析出。预浸胶纸和预油漆纸在407 ℃分解较快,表明此温度下丙烯酸酯中化学基团发生断裂后会放出小分子的有机物,同时表现为质量的减少。

    图  6  原纸、预浸胶纸和预油漆纸TG和DTG曲线
    Figure  6.  TG and DTG curves of base paper, impregnated paper and finish foil

    表3显示:在设定的不同施胶量情况下,除了板材表面胶合强度受到施胶量影响外,其他表面性能影响不大;施胶量为120 g/m2时,表面胶合强度可以满足标准要求,并且随着施胶量的继续增加表面胶合强度呈减小趋势,与部分胶黏剂被挤出有关。预油漆纸饰面板的抗冲击性能、耐干热性能、耐湿热性能、耐水蒸气性能和耐污染腐蚀性能均满足标准要求。并且,表面耐干热性能在GB/T 37005—2018《油漆饰面人造板》中要求在70 ℃条件下测试20 min,而本试验在180 ℃条件下测试20 min,在更严格的条件下饰面板仍能有较好的耐干热性能。但是,预油漆纸饰面板表面耐磨性能和硬度未能达到标准要求,可能与原纸克重和丙烯酸酯涂料种类有关,并且丙烯酸酯涂料中未添加耐磨成份,一定程度上影响漆膜硬度和耐磨性能,后期将从原料筛选和改性方面做进一步研究。

    表  3  预油漆纸饰面板表面性能
    Table  3.  Surface properties of decorative panels with finish foil
    测试项目
    Test item
    施胶量Loading of gule/(g·m−2标准指标Standard indicator
    90120150
    耐磨性能
    Abrasion resistance
    0.07 g,漆膜磨透
    0.07 g, grind through for coating film
    0.07 g,漆膜磨透
    0.07 g, grind through for coating film
    0.08 g,漆膜磨透
    0.08 g, grind through for coating film
    ≤ 0.15 g,且漆膜未磨透
    ≤ 0.15 g, and no grind through for coating film
    表面胶合强度
    Surface bonding strength/MPa
    0.540.740.67≥ 0.60
    表面硬度
    Surface hardness
    BBB≥ 1H
    耐水蒸气
    Water resistance
    4级 Grade 44级 Grade 44级 Grade 4达到4级以上 Grade 4 or above
    耐污染腐蚀性能
    Resistance to pollution corrosion
    丙酮
    Acetone
    5级 Grade 55级 Grade 55级 Grade 5达到4级以上 Grade 4 or above
    黑咖啡
    Black coffee
    5级 Grade 55级 Grade 55级 Grade 5达到4级以上 Grade 4 or above
    鞋油
    Shoe polish
    4级 Grade 44级 Grade 44级 Grade 4达到4级以上 Grade 4 or above
    H2O25级 Grade 55级 Grade 55级 Grade 5达到4级以上 Grade 4 or above
    NaOH5级 Grade 55级 Grade 55级 Grade 5达到4级以上 Grade 4 or above
    抗冲击性能
    Impact resistance
    轻微凹痕,凹痕直径 9 ~ 9.5 mm
    Slight dent, dent diameter 9−9.5 mm
    凹痕直径 ≤ 10 mm,表面无开裂、
    剥离 Dent diameter ≤ 10 mm, no cracking or peeling
    耐湿热性能
    Resistance to damp heat
    无褪色、变色、鼓泡和其他缺陷
    No fading, discoloration, bubbling or other defects
    无褪色、变色、鼓泡和其他缺陷
    No fading, discoloration, bubbling or other defects
    耐干热性能
    Resistance to dry heat
    无褪色、变色、鼓泡和其他缺陷
    No fading, discoloration, bubbling or other defects
    无褪色、变色、鼓泡和其他缺陷
    No fading, discoloration, bubbling orother defects
    下载: 导出CSV 
    | 显示表格

    (1) 通过季铵化纳米纤维素增强丙烯酸酯乳液浸渍和表层涂布丙烯酸酯类涂料的处理方式对预油漆纸整体性能进行改进,研究发现预油漆纸具有较好的抗拉伸性能,同时表现出优异的柔韧性,甲醛释放量达到国内外干燥器法甲醛释放量最严等级—日本标准F星级认证中F☆☆☆☆级要求,更适应于在环保要求高的装修和家具异类造型中使用。

    (2)与原纸相比,预油漆纸表面C元素含量和化学结构发生变化,并且预油漆纸的热稳定性能略微下降。季铵化纳米纤维素增强丙烯酸酯乳液作为浸渍胶黏剂和丙烯酸酯类涂料的涂饰层对原纸的改性有填充作用,同时与原纸中的纤维素也存在化学结合。

    (3)预油漆纸饰面板制备中选用聚氨酯类胶黏剂时,施胶量120 g/m2就可以满足标准对于表面胶合强度要求。预油漆纸饰面板抗冲击性能、耐热性能、耐水性能和耐污染腐蚀性能均能满足GB/T 15102—2017《浸渍胶膜纸饰面纤维板和刨花板》和GB/T 37005—2018《油漆饰面人造板》的要求,但表面耐磨性能和硬度需进一步增强。

  • 图  1   赤松和蒙古栎林降雨再分配特征

    POF为林外降雨量,TF为穿透雨量,SF为树干径流量,IF为树冠截留量。图1B中内圈代表蒙古栎林,外圈代表赤松林。POF is precipitation outside the forest, TF is throughfall, SF is stem flow, IF is canopy interception. In Fig. 1B, the inner ring is Quercus mongolica forest and the outer ring is Pinus densiflora forest.

    Figure  1.   Characteristics of precipitation redistribution in Pinus densiflora and Quercus mongolica forests

    图  2   典型林分类型的单次降雨特征

    POF为林外降雨量,TF为穿透雨量。POF is precipitation outside the forest, TF is throughfall.

    Figure  2.   Single rainfall characteristics of typical forest types

    图  3   典型林分穿透雨量、树干径流量与林外降雨量之间的相关性

    TF为穿透雨量,SF为树干径流量。TF is throughfall, SF is stem flow.

    Figure  3.   Correlations between TF, SF and POF in typical stand

    图  5   不同林分树冠截留率与林外降雨量的相关性

    Figure  5.   Correlations between canopy interception rate and POF in different stands

    图  4   典型林分树冠截留量与林外降雨量的相关性

    Figure  4.   Correlations between canopy interception and POF in typical stands

    表  1   典型林分立地条件和林分特征

    Table  1   Site conditions and characteristics of typical forest stands

    林分特征 Stand characteristics林分类型 Stand type
    赤松 Pinus densiflora蒙古栎 Quercus mongolica
    海拔 Elevation/m 421 458
    坡度 Slope/(°) 26 28
    坡向 Slope aspect 西南 Southwest 南 South
    坡位 Slope position 中 Middle 中 Middle
    土壤类型 Soil type 棕壤 Brown soil 棕壤 Brown soil
    土壤厚度 Soil thickness/cm 80 60
    林龄/a Forest age/year 86 84
    平均胸径 Average DBH/cm 24.66 ± 13.28 24.40 ± 2.13
    平均树高 Mean tree height/m 12.91 ± 4.37 12.53 ± 1.67
    平均冠幅 Mean crown diameter (CD)/m 6.22 ± 3.49 4.97 ± 0.69
    树种组成 Tree species composition 10赤松 10 Pinus densiflora 9蒙古栎 9 Quercus mongolica 1麻栎 1 Quercus acutissima
    下载: 导出CSV

    表  2   研究区域降雨特征统计

    Table  2   Statistical characteristics of rainfall in the study area

    林分类型
    Stand type
    总降雨次数
    Total number of rainfall
    有效降雨次数
    Number of effective rainfall
    降雨量 Precipitation/mm
    最大 Max.最小 Min.平均 Average
    蒙古栎林 Quercus mongolica forest10982130.40.17.3
    赤松林 Pinus densiflora forest10578156.40.17.2
    下载: 导出CSV
  • [1]

    Crockford R H, Richardson D P. Partitioning of rainfall into throughfall, stemflow and interception effect of forest type, ground cover and climate[J]. Hydrological Processes, 2000, 14(16−17): 2903−2920. doi: 10.1002/1099-1085(200011/12)14:16/17<2903::AID-HYP126>3.0.CO;2-6.

    [2] 陈书军, 陈存根, 曹田健, 等. 降雨特征及小气候对秦岭油松林降雨再分配的影响[J]. 水科学进展, 2013, 24(4):513−521.

    Chen S J, Chen C G, Cao T J, et al. Effects of rainfall characteristics and micrometeorology on rainfall redistribution within Chinese red pine forest[J]. Advances in Water Science, 2013, 24(4): 513−521.

    [3]

    Owens M K, Lyons R K, Alejandro C L. Rainfall partitioning within semiarid juniper communities: effects of event size and canopy cover[J]. Hydrological Processes, 2006, 20(15): 3179−3189. doi: 10.1002/hyp.6326.

    [4]

    Pérez-Suárez M, Arredondo-Moreno J T, Huber-Sannwald E, et al. Forest structure, species traits and rain characteristics influences on horizontal and vertical rainfall partitioning in a semiarid pine-oak forest from Central Mexico[J]. Ecohydrology, 2014, 7(2): 532−543. doi: 10.1002/eco.1372.

    [5] 孙忠林, 王传宽, 王兴昌, 等. 两种温带落叶阔叶林降雨再分配格局及其影响因子[J]. 生态学报, 2014, 34(14):3978−3986.

    Sun Z L, Wang C K, Wang X C, et al. Rainfall redistribution patterns and their influencing factors of two temperate deciduous forests[J]. Acta Ecologica Sinica, 2014, 34(14): 3978−3986.

    [6] 王云霓, 王晓江, 高孝威, 等. 内蒙古大青山白茬子沟小流域典型森林植被的冠层降水再分配特征[J]. 内蒙古林业科技, 2017, 43(4):6−9. doi: 10.3969/j.issn.1007-4066.2017.04.002

    Wang Y N, Wang X J, Gao X W, et al. Canopy precipitation redistribution of typical forest vegetation in Baichazigou Watershed, Daqing Mountains of Inner Mongolia[J]. Journal of Inner Mongolia Forestry Science & Technology, 2017, 43(4): 6−9. doi: 10.3969/j.issn.1007-4066.2017.04.002

    [7] 陈书军, 陈存根, 邹伯才, 等. 秦岭天然次生油松林冠层降雨再分配特征及延滞效应[J]. 生态学报, 2012, 32(4):1142−1150. doi: 10.5846/stxb201012271854.

    Chen S J, Chen C G, Zou B C, et al. Time lag effects and rainfall redistribution traits of the canopy of natural secondary Pinus tabulaeformison precipitation in the Qinling Mountains, China[J]. Acta Ecological Sinica, 2012, 32(4): 1142−1150. doi: 10.5846/stxb201012271854.

    [8]

    Carlyle-Moses D E. Throughfall, stemflow, and canopy interception loss fluxes in a semi-arid Sierra Madre Oriental matorral community[J]. Journal of Arid Environments, 2004, 58(2): 181−202. doi: 10.1016/S0140-1963(03)00125-3.

    [9] 鲜靖苹, 张家洋, 胡海波. 森林冠层水文研究进展[J]. 西北林学院学报, 2014, 29(3):96−104. doi: 10.3969/j.issn.1001-7461.2014.03.20.

    Xian J P, Zhang J Y, Hu H B. Forest canopy hydrology: a review[J]. Journal of Northwest Forestry University, 2014, 29(3): 96−104. doi: 10.3969/j.issn.1001-7461.2014.03.20.

    [10]

    Guevara E A, González S E, Véliz C C, et al. Rainfall interception and distribution patterns of gross precipitation around an isolated Ficus benjamina tree in an urban area[J]. Journal of Hydrology, 2007, 333(2−4): 532−541. doi: 10.1016/j.jhydrol.2006.09.017

    [11] 李佳, 饶良懿, 鲁绍伟, 等. 北京密云油松与刺槐林降雨再分配过程研究[J]. 广东农业科学, 2012, 39(12):169−174. doi: 10.3969/j.issn.1004-874X.2012.12.053.

    Li J, Rao L Y, Lu S W, et al. Pine and locust forest on rainfall redistribution in Miyun of Beijing[J]. Guangdong Agricultural Sciences, 2012, 39(12): 169−174. doi: 10.3969/j.issn.1004-874X.2012.12.053.

    [12] 高儒学, 高华端, 孙泉忠, 等. 关岭县蚂蝗田小流域降雨年内分配特征研究[J]. 水土保持研究, 2017, 24(2):152−155.

    Gao R X, Gao H D, Sun Q Z, et al. Study on annual distribution characteristics of rainfall in mahuangtian catchment of Guanling County[J]. Research of Soil and Water Conservation, 2017, 24(2): 152−155.

    [13]

    Staelens J, Schrijver A D, Verheyen K, et al. Rainfall partitioning into throughfall, stemflow, and interception within a single beech (Fagus sylvatica L.) canopy: influence of foliation, rain event characteristics, and meteorology[J]. Hydrological Processes, 2008, 22(1): 33−45. doi: 10.1002/hyp.6610.

    [14] 宗桦. 森林乔木冠层雨水再分配特征及机制研究综述[J]. 世界林业研究, 2019, 32(1):31−38.

    Zong H. A review of characteristics and mechanisms of rainfall interception and redistribution in forest canopy[J]. World Forestry Research, 2019, 32(1): 31−38.

    [15]

    Aydin M, Sen S G, Celik S. Throughfall, stemflow, and interception characteristics of coniferous forest ecosystems in the western black sea region of Turkey (Daday example)[J/OL]. Environmental Monitoring and Assessment, 2018, 190(5): 316 (2018−04−30)[2019−03−18]. https://doi.org/10.1007/s10661-018-6657-8.

    [16] 赵明扬, 孙长忠, 康磊. 降雨再分配的回归模型差异性分析:以黄土高原半干旱区油松人工林为例[J]. 中南林业科技大学学报, 2013, 33(5):85−90.

    Zhao M Y, Sun C Z, Kang L. Difference analysis of rainfall redistribution of Pinus tabulaeformis artificial forests in Loess Plateau[J]. Journal of Central South University of Forestry & Technology, 2013, 33(5): 85−90.

    [17]

    Fathizadeh O, Attarod P, Pypker T, et al. Seasonal variability of rainfall interception and canopy storage capacity under individual oak (Quercus brantii) trees of western Iran[J]. Journal of Agricultural Science and Technology, 2013, 15(1): 175−188.

    [18] 江淼华, 吕茂奎, 胥超, 等. 亚热带米槠次生林和杉木人工林林冠截留特征比较[J]. 水土保持学报, 2017, 31(1):119−124, 129.

    Jiang M H, Lü M K, Xu C, et al. Study on the canopy interception of secondary forest of Castanopsis carlesii and Chinese fir plantation in subtropical China[J]. Journal of Soil and Water Conservation, 2017, 31(1): 119−124, 129.

    [19] 邱治军, 周光益, 吴仲民, 等. 粤北杨东山常绿阔叶次生林林冠截留特征[J]. 林业科学, 2011, 47(6):157−161. doi: 10.11707/j.1001-7488.20110623.

    Qiu Z J. Zhou G Y, Wu Z M, et al. Characteristics of the canopy interception in an evergreen broad-leaved secondary forest in Yangdongshan, North Guangdong[J]. Scientia Silvae Sinicae, 2011, 47(6): 157−161. doi: 10.11707/j.1001-7488.20110623.

    [20] 梁文俊, 丁国栋, 臧荫桐, 等. 华北土石山区油松林对降雨再分配的影响[J]. 水土保持研究, 2012, 19(4):77−80.

    Liang W J, Ding G D, Zang Y T, et al. Study on effect of Pinus tabulaeformis plantation on rainfall redistribution processes in the mountainous area of North China[J]. Research of Soil and Water Conservation, 2012, 19(4): 77−80.

    [21] 艾长江, 高光耀, 袁川, 等. 陕北黄土高原柠条灌丛穿透雨特征与影响因素[J]. 生态学报, 2018, 38(17):6063−6073.

    Ai C J, Gao G Y, Yuan C, et al. Throughfall and its influential factors of a typical xerophytic shrub (Caragana korshinskii) in northern Shaanxi in the Loess Plateau of China[J]. Acta Ecologica Sinica, 2018, 38(17): 6063−6073.

    [22] 张梅. 辽东半岛仙人洞自然保护区植物区系多样性分析[J]. 西北植物学报, 2014, 34(8):1693−1698. doi: 10.7606/j.issn.1000-4025.2014.08.1693

    Zhang M. Plant floristic diversity in xianrendong natural reserve from Liaodong Peninsula[J]. Acta Botanica Boreali-Occidentalia Sinica, 2014, 34(8): 1693−1698. doi: 10.7606/j.issn.1000-4025.2014.08.1693

    [23] 郭凤, 陈建刚, 杨军, 等. 植草沟对北京市道路地表径流的调控效应[J]. 水土保持通报, 2015, 35(3):182−187.

    Guo F, Chen J G, Yang J, et al. Regulatory effect of grassed swales on road surface runoff in Beijing City[J]. Bulletin of Soil & Water Conservation, 2015, 35(3): 182−187.

    [24] 杨会侠, 温亮, 李淳, 等. 辽东山区人工红松林降雨截留分配效应[J]. 吉林林业科技, 2017, 46(2):12−15.

    Yang H X, Wen L, Li C, et al. The rainfall retention distribution effect of artificial Pinus koraiensis forest in Liaodong mountain area[J]. Journal of Jilin Forestry Science and Technology, 2017, 46(2): 12−15.

    [25] 冯亚琦, 郭娜, 蔡体久, 等. 蒙古栎林对大气降雨的再分配规律[J]. 森林工程, 2017, 33(5):24−28, 34.

    Feng Y Q, Guo N, Cai T J, et al. Rainfall redistribution of mongolian oak plantation in Harbin[J]. Forest Engineering, 2017, 33(5): 24−28, 34.

    [26] 石磊, 盛后财, 满秀玲, 等. 兴安落叶松林降雨再分配及其穿透雨的空间异质性[J]. 南京林业大学学报(自然科学版), 2017, 41(2):90−96.

    Shi L, Sheng H C, Man X L, et al. Rainfall redistribution and the spatial heterogeneity of throughfall in Larix gmelinii forest, northeast China[J]. Journal of Nanjing Forestry University (Natural Science Edition), 2017, 41(2): 90−96.

    [27] 董玲玲, 康峰峰, 韩海荣, 等. 辽河源3种林分降雨再分配特征及其影响因素[J]. 水土保持学报, 2018, 32(4):147−152.

    Dong L L, Kang F F, Han H S, et al. Traitsand influencing factors of rainfall redistribution in three types of forest in Liaoheyuan[J]. Journal of Soil and Water Conservation, 2018, 32(4): 147−152.

    [28] 陈丽华, 杨新兵, 鲁绍伟, 等. 华北土石山区油松人工林耗水分配规律[J]. 北京林业大学学报, 2008, 30(9):182−187.

    Chen L H, Yang X B, Lu S W, et al. Distribution of water consumption of Pinus tabulaeformis plantation in rocky mountain areas in northern China[J]. Journal of Beijing Forestry University, 2008, 30(9): 182−187.

    [29] 刘玉杰, 满秀玲, 盛后财. 大兴安岭北部兴安落叶松林穿透雨延滞效应[J]. 应用生态学报, 2015, 26(11):3285−3292.

    Liu Y J, Man X L, Sheng H C. Time lag effects of throughfall in natural Larix gmelinii forest in the north of Great Xing ’an Mountains, China[J]. Chinese Journal of Applied Ecology, 2015, 26(11): 3285−3292.

    [30] 周秋文, 马龙生, 颜红, 等. 贵州省喀斯特阔叶林降雨截留分配特征[J]. 水土保持通报, 2016, 36(6):321−325.

    Zhou Q W, Ma L S, Yan H, et al. Distribution characteristics of rainfall interception by broadleaved forest in typical karst area of Guizhou Province[J]. Bulletin of Soil and Water Conservation, 2016, 36(6): 321−325.

    [31]

    Holwerda F, Bruijnzeel L A, Muñoz-Villers L E, et al. Rainfall and cloud water interception in mature and secondary lower montane cloud forests of central Veracruz, Mexico[J]. Journal of Hydrology, 2010, 384(1−2): 84−96. doi: 10.1016/j.jhydrol.2010.01.012.

    [32]

    Levia D F, Frost E E. A review and evaluation of stemflow literature in the hydrologic and biogeochemical cycles of forested and agricultural ecosystems[J]. Journal of Hydrology (Amsterdam), 2003, 274(1−4): 1−29. doi: 10.1016/S0022-1694(02)00399-2.

    [33] 王艳萍, 王力, 卫三平. Gash模型在黄土区人工刺槐林冠降雨截留研究中的应用[J]. 生态学报, 2012, 32(17):5445−5453. doi: 10.5846/stxb201203190374.

    Wang Y P, Wang L, Wei S P. Modeling canopy rainfall interception of a replanted Robinia pseudoacacia forest in the Loess Plateau[J]. Acta Ecologica Sinica, 2012, 32(17): 5445−5453. doi: 10.5846/stxb201203190374.

    [34]

    Macinnis-Ng C M O, Flores E E, Henry M, et al. Throughfall and stemflow vary seasonally in different land-use types in a lower montane tropical region of Panama[J]. Hydrological Processes, 2014, 26(4): 2174−2184.

    [35] 万艳芳, 刘贤德, 王顺利, 等. 祁连山青海云杉林冠降雨再分配特征及影响因素[J]. 水土保持学报, 2016, 30(5):224−229.

    Wan Y F, Liu X D, Wang S L, et al. Rainfall canopy partitioning and its influencing factors of Picea crassifolia forest in the Qilian Mountains[J]. Journal of Soil and Water Conservation, 2016, 30(5): 224−229.

    [36] 张宁, 郭宾良, 张国强, 等. 沿坝地区天然次生林对降雨再分配的影响[J]. 水土保持研究, 2015, 22(6):104−107, 114.

    Zhang N, Guo B L , Zhang G Q, et al. Study on effect of natural secondary forest on rainfall redistribution processes along the dam area[J]. Research of Soil and Water Conservation, 2015, 22(6): 104−107, 114.

    [37] 何常清, 薛建辉, 吴永波, 等. 岷江上游亚高山川滇高山栎林的降雨再分配[J]. 应用生态学报, 2008, 19(9):1871−1876.

    He C Q, Xue J H, Wu Y B, et al. Rainfall redistribution in subalpine Quercus aquifolioides forest in upper reaches of Minjiang River[J]. Chinese Journal of Applied Ecology, 2008, 19(9): 1871−1876.

    [38] 温远光, 刘世荣. 我国主要森林生态系统类型降水截留规律的数量分析[J]. 林业科学, 1995, 31(4):289−298.

    Wen Y G, Liu S R. Quantitative analysis of the characteristics of rainfall interception of main forest ecosystems China[J]. Scientia Silvae Sinicae, 1995, 31(4): 289−298.

    [39] 任世奇, 项东云, 肖文发, 等. 广西南宁桉树人工林降雨再分配特征[J]. 生态学杂志, 2017, 36(6):1473−1480.

    Ren S Q, Xiang D Y, Xiao W F, et al. Rainfall redistribution of eucalypt plantation in Nanning, Guangxi, China[J]. Chinese Journal of Ecology, 2017, 36(6): 1473−1480.

图(5)  /  表(2)
计量
  • 文章访问数:  1166
  • HTML全文浏览量:  320
  • PDF下载量:  67
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-01-06
  • 修回日期:  2020-05-13
  • 网络出版日期:  2020-11-06
  • 发布日期:  2020-12-13

目录

/

返回文章
返回
x 关闭 永久关闭