高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

太行山南麓栓皮栎人工林光合作用对土壤呼吸的影响

王鑫 同小娟 张劲松 孟平 解晗 胡海洋 李俊

王鑫, 同小娟, 张劲松, 孟平, 解晗, 胡海洋, 李俊. 太行山南麓栓皮栎人工林光合作用对土壤呼吸的影响[J]. 北京林业大学学报, 2021, 43(1): 66-76. doi: 10.12171/j.1000-1522.20200010
引用本文: 王鑫, 同小娟, 张劲松, 孟平, 解晗, 胡海洋, 李俊. 太行山南麓栓皮栎人工林光合作用对土壤呼吸的影响[J]. 北京林业大学学报, 2021, 43(1): 66-76. doi: 10.12171/j.1000-1522.20200010
Wang Xin, Tong Xiaojuan, Zhang Jinsong, Meng Ping, Xie Han, Hu Haiyang, Li Jun. Effects of photosynthesis on soil respiration of Quercus variabilis plantation in southern Taihang Mountain of northern China[J]. Journal of Beijing Forestry University, 2021, 43(1): 66-76. doi: 10.12171/j.1000-1522.20200010
Citation: Wang Xin, Tong Xiaojuan, Zhang Jinsong, Meng Ping, Xie Han, Hu Haiyang, Li Jun. Effects of photosynthesis on soil respiration of Quercus variabilis plantation in southern Taihang Mountain of northern China[J]. Journal of Beijing Forestry University, 2021, 43(1): 66-76. doi: 10.12171/j.1000-1522.20200010

太行山南麓栓皮栎人工林光合作用对土壤呼吸的影响

doi: 10.12171/j.1000-1522.20200010
基金项目: 国家自然科学基金项目(31872703、31570617)
详细信息
    作者简介:

    王鑫。主要研究方向:森林生态系统碳循环。Email:1176787417@qq.com 地址:100083 北京市海淀区清华东路 35 号北京林业大学生态与自然保护学院

    责任作者:

    同小娟,教授,博士生导师。主要研究方向:气候变化与生态过程。Email:tongxj@bjfu.edu.cn 地址:同上

  • 中图分类号: S714.5

Effects of photosynthesis on soil respiration of Quercus variabilis plantation in southern Taihang Mountain of northern China

  • 摘要:   目的  探究光合作用对土壤呼吸的影响并构建新的土壤呼吸模型,可以提高对研究区域土壤呼吸变化的解释程度,为准确估算太行山南麓土壤呼吸强度与碳收支平衡提供理论依据。  方法  以太行山南麓栓皮栎人工林为研究对象,采用野外控制实验,通过断根与非断根处理对照,分析光合产物对土壤呼吸的贡献比例。并通过土壤呼吸与土壤温湿度及光合数据进行模型拟合,探究加入光合因子是否能对传统土壤呼吸模型进行优化。  结果  在小时尺度上,土壤温度是影响栓皮栎林土壤呼吸的主要因子,两者呈显著指数相关关系(R2 = 0.74,P < 0.01);在日间尺度上,土壤呼吸与温度的变化曲线并不一致,各个月份土壤温度在10:00—18:00均呈现持续增加的状态,但土壤呼吸速率并未呈现相同的规律,其日变化呈现单峰或双峰曲线,一般在14:00—16:00之间出现最高点。不同处理下土壤呼吸温度敏感性Q10值存在差异,断根处理组分(1.90) > 非断根组分(1.77),表明除温度外存在其他因子对土壤呼吸速率产生影响。研究显示,林木光合作用对土壤呼吸影响占比最高可达到36.5%,光合作用与土壤呼吸存在显著线性相关关系(R2 = 0.39,P < 0.01),将光合速率加入土壤呼吸模型能显著提高土壤呼吸拟合的R2值。  结论  土壤呼吸是一个受多因素共同影响的复杂过程,仅根据单因素的作用规律来分析和预估土壤呼吸是不全面的,土壤温度只能单独解释土壤呼吸74%的变异,而不同模型中土壤温度和光合两个因子共同决定了土壤呼吸80%以上的变异,其模型拟合度最高可达到0.81。

     

  • 图  1  林缘部栓皮栎叶片光合作用–光响应曲线

    Figure  1.  Photosynthesis-light response curves of Quercus variabilis leaves

    图  2  栓皮栎叶片净光合速率日变化

    U、D、T分别指栓皮栎上部、下部、总光合速率。U,D and T refer to the upper,lower,and total photosynthetic rates of Quercus variabilis, respectively.

    Figure  2.  Diurnal variations of net photosynthetic rates of Quercus variabilis leaves

    图  3  土壤呼吸速率及土壤温度的变化曲线

    Figure  3.  Variation curves of soil respiration rate and soil temperature

    图  4  土壤呼吸速率与土壤温湿度响应关系

    GK为非断根组分;GRT为断根组分;W为土壤湿度。GK is the non-pruned root component;GRT is the pruned root component;W is the Soil moisture.

    Figure  4.  Response relationship between soil respiration rate and soil temperature as well as soil moisture

    图  5  不同处理下各组分土壤呼吸大小及其对土壤总呼吸的贡献率

    Figure  5.  Soil respiration and its contribution to total soil respiration under different treatments

    图  6  土壤呼吸速率与光合速率响应关系

    Figure  6.  Response relationship between soil respiration rateand photosynthetic rate

    表  1  林缘部栓皮栎叶片光合作用–光响应参数

    Table  1.   Photosynthesis-light response parameters of Quercus variabilis

    月份
    Month
    αβ/
    (m2·s·μmol−1)
    γ/
    (m2·s·μmol−1)
    Rd/
    (μmol·m−2·s−1)
    R2
    70.052 48.04×10−50.004 90.2710.995
    80.042 21.36×10−40.003 30.0780.992
    90.055 29.93×10−50.006 00.0520.997
    100.081 81.64×10−40.012 30.3230.992
    下载: 导出CSV

    表  2  土壤呼吸与各影响因素拟合方程

    Table  2.   Fitting equations of soil respiration and various influencing factors

    类别 Type拟合方程 Fitting equationR2
    土壤呼吸−温度 Soil respiration-temperature $ Y=0.622\;{\mathrm{e}}^{0.065{x}_{1}} $ 0.74
    土壤呼吸−温度(断根) Soil respiration-temperature (root-removal) $ Y=0.396\;{\mathrm{e}}^{0.07{x}_{1}} $ 0.85
    土壤呼吸−温度−湿度 Soil respiration-temperature-moisture $ Y=0.044\;{\mathrm{e}}^{\left(0.003{x}_{1}+0.001{x}_{2}\right)} $ 0.74
    土壤呼吸−温度−光合 Soil respiration-temperature-photosynthetic $ Y=0.003\;{\mathrm{e}}^{0.229{x}_{1}}{{x}_{3}}^{0.277 \; 5}+1.684 $ 0.80
    土壤呼吸−温度−光合 Soil respiration-temperature-photosynthetic $ Y=0.000 \; 8\;{\mathrm{e}}^{0.291{x}_{1}}+0.002{x}_{1}{x}_{3}+1.581 $ 0.81
    土壤呼吸−温度−光合 Soil respiration-temperature-photosynthetic $ Y=0.004\;{\mathrm{e}}^{\left(0.226{x}_{1}+{0.039x}_{3}\right)}+1.679 $ 0.80
    注:Y为土壤呼吸速率(μmol/(m2·s)),$ {x}_{1} $为10 cm土壤温度(℃),$ {x}_{2} $为5 cm土壤湿度(%),$ {x}_{3} $为净光合速率(μmol/(m2·s))。Notes: Y is soil respiration rate, μmol/(m2·s); x1 is soil temperature at 10 cm depth, ℃; x2 is soil moisture at 5 cm depth, x3 is net photosynthetic rate.
    下载: 导出CSV
  • [1] 汪业勖, 赵士洞, 牛栋. 陆地土壤碳循环的研究动态[J]. 生态学杂志, 1999, 18(5):29−35. doi: 10.3321/j.issn:1000-4890.1999.05.006.

    Wang Y X, Zhao S D, Niu D. Research state of soil carbon cycling in terrestrial ecosystem[J]. Chinese Journal of Ecology, 1999, 18(5): 29−35. doi: 10.3321/j.issn:1000-4890.1999.05.006.
    [2] 陈花丹. 中亚热带阔叶林土壤呼吸动态及其影响因素研究[J]. 林业勘察设计, 2017, 37(1):38−42.

    Chen H D. Research on dynamics and influencing factors of soil respiration in mid-subtropical broad-leaved forest[J]. Forestry Prospect and Design, 2017, 37(1): 38−42.
    [3] 刘博奇, 牟长城, 邢亚娟, 等. 小兴安岭典型温带森林土壤呼吸对强降雨的响应[J]. 北京林业大学学报, 2016, 38(4):77−85.

    Liu B Q, Mu C C, Xing Y J, et al. Effect of strong rainfalls on soil respiration in a typical temperate forest in Lesser Xing’an Mountains, northeast China[J]. Journal of Beijing Forestry University, 2016, 38(4): 77−85.
    [4] 井艳丽, 关德新, 吴家兵, 等. 光合作用调控土壤呼吸研究进展[J]. 应用生态学报, 2013, 24(1):269−276.

    Jing Y L, Guan D X, Wu J B, et al. Research progress on photosynthesis regulating and controlling soil respiration[J]. Chinese Journal of Applied Ecology, 2013, 24(1): 269−276.
    [5] Huang N, Niu Z. Estimating soil respiration using spectral vegetation indices and abiotic factors in irrigated and rainfed agroecosystems[J]. Plant Soil, 2013, 367(1): 535−550.
    [6] Liu X P, Liang J Y, Gu L H. Photosynthetic and environmental regulations of the dynamics of soil respiration in a forest ecosystem revealed by analyses of decadal time series[J/OL]. Agricultural and Forest Meteorology. 2020, 282: 107863 (2019−11−29) [2020−01−26]. https://doi.org/10.1016/j.agrformet.2019.107863.
    [7] Vargas R, Allen M F. Environmental controls and the influence of vegetation type, fine roots and rhizomorphs on diel and seasonal variation in soil respiration[J]. New Phytol, 2008, 179(2): 460−471.
    [8] Baldocchi D, Tang J, Xu L. How switches and lags in biophysical regulators affect spatial-temporal variation of soil respiration in an oak-grass savanna[J/OL]. Journal Of Geophysical Research-Biogeosciences, 2006, 111: G02008 (2006−06−01) [2019−11−26]. https://doi.org/10.1029/2005JG000063.
    [9] Cardon Z G, Czaja A D, Funk J K. Periodic carbon flushing to roots of Quercus rubra saplings affects soil respiration and rhizosphere microbial biomass[J]. Oecologia, 2002, 133(4): 626−626. doi: 10.1007/s00442-002-1083-5.
    [10] 徐菲楠, 田志伟, 王维真. 西北干旱区玉米农田光合作用对地表能量平衡的影响[J]. 兰州大学学报(自然科学版), 2018, 54(2):224−232.

    Xu F N, Tian Z W, Wang W Z. Effect of the photosynthesis on the surface energy balance in corn farmland in the arid region of Northwest China[J]. Journal of lanzhou University (Natural Sciences), 2018, 54(2): 224−232.
    [11] Yan L M, Chen S P, Huang J H, et al. Water regulated effects of photosynthetic substrate supply on soil respiration in a semiarid steppe[J]. Global Change Biology, 2011, 17: 1990−2001. doi: 10.1111/j.1365-2486.2010.02365.x.
    [12] Tang J W, Baldocch D, Xu L K. Tree photosynthesis modulates soil respiration on a diurnal time scale[J]. Global Change Biology, 2005, 11: 1298−1304. doi: 10.1111/j.1365-2486.2005.00978.x.
    [13] 井艳丽. 水曲柳幼树光合作用调控土壤呼吸的实验研究[D]. 北京: 中国科学院大学, 2015.

    Jing Y L. Experimental study on regulating and controlling soil respiration by photosynthesis of Fraxinus mandshurica seedlings[D]. Beijing: University of Chinese Academy of Sciences, 2015.
    [14] Bahn M, Lattanzi F A, Hasibeder R, et al. Responses of belowground carbon allocation dynamics to extended shading in mountain grassland[J]. New Phytologist, 2013, 198: 116−126. doi: 10.1111/nph.12138.
    [15] Han G X, Luo Y Q, Li D J, et al. Ecosystem photosynthesis regulates soil respiration on a diurnal scale with a short-term time lag in a coastal wetland[J]. Soil Biology and Biochemistry, 2014, 68: 85−94. doi: 10.1016/j.soilbio.2013.09.024.
    [16] Zhang Q, Phillips R P, Manzoni S, et al. Changes in photosynthesis and soil moisture drive the seasonal soil respiration-temperature hysteresis relationship[J]. Agricultural and Forest Meteorology, 2018, 259: 184−195. doi: 10.1016/j.agrformet.2018.05.005.
    [17] 林力涛, 孙学凯, 雷倩, 等. 光合速率与光合条件对沙质草地土壤呼吸的调控作用[J]. 生态学杂志, 2018, 37(7):2107−2113.

    Lin L T, Sun X K, Lei Q, et al. The role of ecosystem photosynthetic rate and photosynthetic conditions in regulating soil respiration in a sandy grassland[J]. Chinese Journal of Ecology, 2018, 37(7): 2107−2113.
    [18] Gaumont-Guay D, Black T A, Barr A G, et al. Biophysical controls on rhizospheric and heterotrophic components of soil respiration in a boreal black spruce stand[J]. Tree Physiology, 2008, 28: 161−171. doi: 10.1093/treephys/28.2.161.
    [19] Kuzyakov Y, Cheng W. Photosynthesis controls of rhizosphere respiration and organic matter decomposition[J]. Soil Biology and Biochemistry, 2001, 33: 1915−1925. doi: 10.1016/S0038-0717(01)00117-1.
    [20] Jia X, Zha T S, Wang S, et al. Canopy photosynthesis modulates soil respiration in a temperate semi-arid shrub land at multiple timescales[J]. Plant and Soil, 2018, 432: 437−450. doi: 10.1007/s11104-018-3818-z.
    [21] 徐春华, 张华, 张兰, 等. 基于通径分析的兰州北山三种典型植物光合作用影响因子[J]. 生态学杂志, 2015, 34(5):1289−1294.

    Xu C H, Zhang H, Zhang L, et al. Factors influencing photosynthesis of three typical plant species in Beishan Mountain of Lanzhou based on path analysis[J]. Chinese Journal of Ecology, 2015, 34(5): 1289−1294.
    [22] 姜瑞芳. 珙桐幼苗生长与光合特性的主要影响因子[D]. 北京: 北京林业大学, 2016.

    Jiang R F. Effect of environmental factors on the growth and photoynthetic characteristics of Davidia involucrata seedlings[D]. Beijing: Beijing Forestry University, 2016.
    [23] Kirschbaum M U, Farquhar G D. Investigation of the CO2 dependence of quantum yield and respiration in Eucalyptus pauciflora [J]. Plant Physiology, 1987, 83: 1032−1037. doi: 10.1104/pp.83.4.1032.
    [24] Prado C, Moraes J. Photosynthetic capacity and specific leaf mass in twenty woody species of Cerrado vegetation under field condition[J]. Photosynthetica, 1997, 33: 103−112.
    [25] Ye Z P. A new model for relationship between irradiance and the rate of photosynthesis in Oryza sativa[J]. Photosynthetica, 2007, 45: 637−640. doi: 10.1007/s11099-007-0110-5.
    [26] Fang L D, Zhang S Y, Zhang G C, et al. Application of five light-response models in the photosynthesis of Populus × Euramericana cv. ‘Zhonglin46’ leaves[J]. Applied Biochemistry and Biotechnology, 2015, 176: 86−100. doi: 10.1007/s12010-015-1543-0
    [27] 李理渊, 李俊, 同小娟, 等. 不同光环境下栓皮栎和刺槐叶片光合光响应模拟[J]. 应用生态学报, 2018, 29(7):2295−2306.

    Li L Y, Li J, Tong X J. Simulation on photosynthetic light-responses of leaves of Quercus variabilis and Robinia pseudoacacia under different light conditions[J]. Chinese Journal of Applied Ecology, 2018, 29(7): 2295−2306.
    [28] 任博, 李俊, 同小娟, 等. 太行山南麓栓皮栎和刺槐叶片光合光响应模拟[J]. 生态学杂志, 2017, 36(8):2206−2216.

    Ren B, Li J, Tong X J, et al. Simulation on photosynthetic light-response of Quercus variabilis and Robinia pseudoacacia in the southern foot of the Taihang Mountain[J]. Chinese Journal of Ecology, 2017, 36(8): 2206−2216.
    [29] 郑桂姿. 北带马尾松林土壤呼吸的模型模拟[D]. 武汉: 华中农业大学, 2012.

    Zheng G Z. The model of soil respiration in Pinus massoniana forest of northern zone[D]. Wuhan: Huazhong Agricultural University, 2012.
    [30] 李元, 时伟宇, 闫美杰, 等. 土壤呼吸影响因素概述及展望[J]. 水土保持研究, 2013, 20(5):311−316.

    Li Y, Shi W Y, Yan M J, et al. Review and prospect on lmpact factors of soil respiration[J]. Research of Soil and Water Conservation, 2013, 20(5): 311−316.
    [31] 郝龙飞, 王庆成, 刘婷岩. 东北地区4种林分土壤呼吸及温、湿度敏感性对氮添加的短期响应[J]. 生态学报, 2019, 40(2):560−567.

    Hao L F, Wang Q C, Liu T Y. Short-term responses of soil respiration, temperature and humidity sensitivity to nitr-ogen addition[J]. Acta Ecologica Sinica, 2019, 40(2): 560−567.
    [32] 徐昳晅, 同小娟, 张劲松, 等. 太行山南麓刺槐人工林土壤呼吸与土壤温度间的滞后关系[J]. 北京林业大学学报, 2019, 41(4):78−87.

    Xu Y X, Tong X J, Zhang J S, et al. Time lag between soil respiration and soil temperature in a Robinia pseudoacacia plantation in the south of the Taihang Mountains[J]. Journal of Beijing Forestry University, 2019, 41(4): 78−87.
    [33] Speckman H N, Frank J M, Bradford J B, et al. Forest ecosystem respiration estimated from eddy covariance and chamber measurements under high turbulence and substantial tree mortality from bark beetles[J]. Global Change Biology, 2015, 21(2): 708−721.
    [34] 吴孟霖. 天目山常绿落阔混交林土壤呼吸与碳通量的变化特征[D]. 临安: 浙江农林大学, 2016.

    Wu M L.The observation of soil respiration and CO2 fluxes of evergreen and deciduous broad-leaved mixed forest in Tianmu Mountain[D]. Lin’an: Zhejiang A&F University, 2016.
    [35] 黄湘, 李卫红, 马建新, 等. 通过改变光热条件分析胡杨群落光合作用对土壤呼吸速率的影响[J]. 中国沙漠, 2011, 31(5):1167−1173.

    Huang X, Li W H, Ma J X, et al. Influence of photosynthesis on soil respiration rates for Populus euphratica in different light conditions in arid environments[J]. Journal of Desert Research, 2011, 31(5): 1167−1173.
    [36] 林力涛, 韩潇潇, 于占源, 等. 施氮处理下植物光合对沙质草地土壤呼吸的调控作用[J]. 应用生态学报, 2019, 30(9):3019−3027.

    Lin L T, Han X X, Yu Z Y, et al. Role of photosynthesis in regulating soil respiration under nitrogen application in a sandy grassland[J]. Chinese Journal of Applied Ecology, 2019, 30(9): 3019−3027.
    [37] Pumpanen J S, Heinonsalo J, Rasilo T, et al. Carbon balance and allocation of assimilated CO2 in Scots pine, Norway spruce,and silver birch seedlings determined with gas exchange measurements and 14C pulse labeling[J]. Trees-Structure and Function, 2009, 23: 611−621. doi: 10.1007/s00468-008-0306-8.
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  458
  • HTML全文浏览量:  148
  • PDF下载量:  43
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-01-16
  • 修回日期:  2020-05-22
  • 网络出版日期:  2020-12-15
  • 刊出日期:  2021-02-05

目录

    /

    返回文章
    返回