高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

陕北黄土区不同植被类型土壤有机碳分布特征及其影响因素

张智勇 王瑜 艾宁 刘广全 刘长海

张智勇, 王瑜, 艾宁, 刘广全, 刘长海. 陕北黄土区不同植被类型土壤有机碳分布特征及其影响因素[J]. 北京林业大学学报, 2020, 42(11): 56-63. doi: 10.12171/j.1000-1522.20200013
引用本文: 张智勇, 王瑜, 艾宁, 刘广全, 刘长海. 陕北黄土区不同植被类型土壤有机碳分布特征及其影响因素[J]. 北京林业大学学报, 2020, 42(11): 56-63. doi: 10.12171/j.1000-1522.20200013
Zhang Zhiyong, Wang Yu, Ai Ning, Liu Guangquan, Liu Changhai. Distribution characteristics of soil organic carbon and its influencing factors in different vegetation types in loess region of northern Shaanxi Province, northwestern China[J]. Journal of Beijing Forestry University, 2020, 42(11): 56-63. doi: 10.12171/j.1000-1522.20200013
Citation: Zhang Zhiyong, Wang Yu, Ai Ning, Liu Guangquan, Liu Changhai. Distribution characteristics of soil organic carbon and its influencing factors in different vegetation types in loess region of northern Shaanxi Province, northwestern China[J]. Journal of Beijing Forestry University, 2020, 42(11): 56-63. doi: 10.12171/j.1000-1522.20200013

陕北黄土区不同植被类型土壤有机碳分布特征及其影响因素

doi: 10.12171/j.1000-1522.20200013
基金项目: 国家重点研发计划项目(2016YFC0501602、2016YFC0501705),延安市科技计划项目(2019ZDQY-036),延安大学研究生教育教学改革研究项目(YDYJG2018014),延安大学研究生教育创新计划项目(YCX2020080)
详细信息
    作者简介:

    张智勇。主要研究方向:水土保持与林业生态工程。Email:1874295505@qq.com 地址:716000陕西省延安市宝塔区圣地路580号延安大学生命科学学院

    责任作者:

    艾宁,博士,讲师。主要研究方向:水土保持与林业生态工程。Email:aining_office@126.com 地址:同上

  • 中图分类号: S714.2

Distribution characteristics of soil organic carbon and its influencing factors in different vegetation types in loess region of northern Shaanxi Province, northwestern China

  • 摘要:   目的  探究陕北黄土区退耕还林(草)后形成的主要植被群落类型土壤有机碳空间分布特征及其影响因素,旨在为今后该地区人工林土壤碳汇管理以及生态效益评估提供参考依据,为我国北方森林土壤碳的相关研究积累基础数据。  方法  以吴起县大吉沟森林公园内的油松林、沙棘林、草地、油松沙棘混交林为研究对象,选取典型样区,运用单因素方差分析与灰色关联法,探讨不同植被类型在0 ~ 100 cm土壤有机碳垂直变化规律及其主要影响因素。  结果  (1)研究区土壤有机碳含量及储量具有明显表聚现象,且随土壤深度增加而降低。(2)不同植被类型下,土壤有机碳平均含量表现为沙棘林(7.03 g/kg) > 低坡度油松沙棘混交林(5.34 g/kg) > 草地(5.16 g/kg) > 高坡度油松沙棘混交林(3.87 g/kg) > 油松林(3 g/kg),沙棘林与油松林、高坡度油松沙棘混交林土壤有机碳平均含量呈显著性差异(P < 0.05)。(3)不同植被类型土壤有机碳储量介于41.11 ~ 74.76 t/hm2。(4)不同植被土壤剖面C/N在16.41 ~ 39.11之间,C/N均值由大到小表现为沙棘林(34.68) > 低坡度油松沙棘混交林(25.88) > 草地(25.82) > 油松林(23.08) > 高坡度油松沙棘混交林(22.71)。(5)不同植被类型土壤理化因子与有机碳含量关联度均在中等关联以上,与有机碳含量关系密切。  结论  研究区在今后建设碳汇林时应充分考虑土壤有机碳影响因素,优先选择沙棘等优势树种。

     

  • 图  1  不同植被类型土壤有机碳含量

    Figure  1.  Soil organic carbon content of different vegetation types

    图  2  不同植被类型土壤有机碳储量

    不同小写字母表示同种植被类型土壤有机碳储量在不同土层间差异显著(P < 0.05)。Different lowercase letters indicate that soil organic carbon storage of the same plantation type has significant differences among varied soil layers (P < 0.05).

    Figure  2.  Soil organic carbon storage under different vegetation types

    图  3  不同植被类型土壤C/N

    Figure  3.  Soil C/N of different vegetation types

    表  1  样地基本情况

    Table  1.   Basic situation of the sample plots

    样地编号
    Sample plot No.
    植被类型
    Vegetation type
    密度/(株·hm−2) Density/(tree·ha−1)平均树高
    Mean tree
    height/m
    坡度
    Slope/(°)
    海拔
    Altitude/m
    油松
    Pinus tabuliformis
    沙棘
    Hippophae rhamnoides
    PT 油松 Pinus tabuliformis 1 200 3.33 17 1 386
    HR 沙棘 Hippophae rhamnoides 2 300 2.62 17 1 406
    HPⅠ 油松沙棘(低坡度)
    Pinus tabuliformis-Hippophae rhamnoides (low slope)
    800 1 500 1.88 12 1 396
    HPⅡ 油松沙棘(高坡度)
    Pinus tabuliformis-Hippophae rhamnoides (high slope)
    700 1 400 1.98 29 1 380
    LL 达乌里胡枝子、赖草
    Lespedeza davurica, Leymus secalinus
    28 1 398
    下载: 导出CSV

    表  2  不同植被类型土壤有机碳含量统计特征

    Table  2.   Statistical characteristics of soil organic carbon content in different vegetation types

    植被类型
    Vegetation type
    平均值
    Mean value/(g·kg−1)
    最大值
    Max. value/(g·kg−1)
    最小值
    Min. value/(g·kg−1)
    标准差
    Standard deviation
    标准误
    Standard error
    变异系数
    Variation coefficient/%
    HR 7.03a 13.96 3.19 0.2 0.08 53
    PT 3b 5.53 2.31 0.18 0.07 38
    LL 5.16ab 9.44 3.19 0.17 0.06 40
    HPⅠ 5.34ab 8.92 3.24 0.2 0.06 44
    HPⅡ 3.87b 5.41 3.14 0.23 0.07 20
    注:表中不同字母表示不同植被类型的土壤有机碳含量差异显著(P < 0.05)。Note: different letters indicate significant differences in soil organic carbon content of varied vegetation types (P < 0.05).
    下载: 导出CSV

    表  3  不同植被类型土壤理化因子与土壤有机碳的关联度

    Table  3.   Correlations between soil physical and chemical factors and soil organic carbon under different vegetation types

    项目 ItemHPⅠHPⅡPTLLHR
    关联度
    Correlation
    degree
    排序
    Rank
    关联度
    Correlation
    degree
    排序
    Rank
    关联度
    Correlation
    degree
    排序
    Rank
    关联度
    Correlation
    degree
    排序
    Rank
    关联度
    Correlation
    degree
    排序
    Rank
    土壤密度
    Soil bulk density
    0.78 3 0.77 2 0.76 2 0.59 9 0.94 1
    毛管孔隙度
    Capillary porosity
    0.65 7 0.64 7 0.57 9 0.89 2 0.63 9
    非毛管孔隙度
    Non-capillary porosity
    0.68 5 0.76 3 0.63 8 0.78 3 0.78 5
    饱和含水量
    Saturated moisture
    0.58 12 0.63 8 0.66 6 0.90 1 0.62 10
    毛管持水量
    Capillary water capacity
    0.61 10 0.62 9 0.56 10 0.89 2 0.64 8
    电导率
    Conductivity
    0.78 3 0.77 2 0.77 1 0.61 8 0.73 6
    pH 0.66 6 0.83 1 0.69 4 0.70 5 0.63 9
    速效氮
    Available nitrogen
    0.6 11 0.65 6 0.63 8 0.72 4 0.68 7
    速效磷
    Available phosphorus
    0.64 8 0.68 5 0.67 5 0.62 7 0.68 7
    速效钾
    Available potassium
    0.72 4 0.67 6 0.71 3 0.78 3 0.80 4
    全氮
    Total nitrogen
    0.62 9 0.7 4 0.65 7 0.70 5 0.83 2
    全磷
    Total phosphorus
    0.86 1 0.56 10 0.65 7 0.54 10 0.59 11
    全钾
    Total potassium
    0.84 2 0.76 3 0.51 11 0.63 6 0.81 3
    下载: 导出CSV
  • [1] Batjes N H. Total carbon and nitrogen in the soils of the world[J]. European Journal of Soil Science, 2014, 65(1): 10−21. doi: 10.1111/ejss.12114_2.
    [2] Li Q, Yu P, Li G, et al. Overlooking soil erosion induces underestimation of the soil C loss in degraded land[J]. Quaternary International, 2014, 349(28): 287−290.
    [3] Chen D M, Lan Z C, Hu S J, et al. Effects of nitrogen enrichment on belowground communities in grassland: relative role of soil nitrogen availability vs. soil acidification[J]. Soil Biology and Biochemistry, 2015, 89(10): 99−108.
    [4] Post W M, Kwon K C. Soil carbon sequestration and land-use change: processes and potential[J]. Global Change Biology, 2000, 6(3): 317−327. doi: 10.1046/j.1365-2486.2000.00308.x.
    [5] 陈心桐, 徐天乐, 李雪静, 等. 中国北方自然生态系统土壤有机碳含量及其影响因素[J]. 生态学杂志, 2009, 38(4):1133−1140.

    Chen X T, Xu T L, Li X J, et al. Soil organic carbon concentrations and the influencing factors in natural ecosystems of northern China[J]. Chinese Journal of Ecology, 2009, 38(4): 1133−1140.
    [6] 郭璐璐, 李安迪, 商宏莉, 等. 川西贡嘎山不同森林生态系统土壤有机碳垂直分布与组成特征与组成特征[J]. 中国农业气象, 2018, 39(10):636−643. doi: 10.3969/j.issn.1000-6362.2018.10.002.

    Guo L L, Li A D, Shang H L, et al. Total and labile organic carbon in soils of three subalpine forest types in Gongga Mountain, western Sichuan[J]. Chinese Journal of Agrometeorology, 2018, 39(10): 636−643. doi: 10.3969/j.issn.1000-6362.2018.10.002.
    [7] 丁越岿, 杨劼, 宋炳煜, 等. 不同植被类型对毛乌素沙地土壤有机碳的影响[J]. 草业学报, 2012, 21(2):18−25. doi: 10.11686/cyxb20120203.

    Ding Y K, Yang J, Song B Y, et al. Effect of different vegetation types on soil organic carbon in Mu Us Desert[J]. Acta Prataculturae Sinica, 2012, 21(2): 18−25. doi: 10.11686/cyxb20120203.
    [8] 李裕元, 邵明安, 郑纪勇, 等. 黄土高原北部草地的恢复与重建对土壤有机碳的影响[J]. 生态学报, 2007, 27(6):2279−2287. doi: 10.3321/j.issn:1000-0933.2007.06.017.

    Li Y Y, Shao M A, Zheng J Y, et al. Impact of grassland recovery and reconstruction on soil organic carbon in the northern Loess Plateau[J]. Acta Ecologica Sinica, 2007, 27(6): 2279−2287. doi: 10.3321/j.issn:1000-0933.2007.06.017.
    [9] 张宏, 黄懿梅, 安韶山, 等. 黄土高原森林带植被群落下土壤活性有机碳研究[J]. 水土保持研究, 2013, 20(3):65−70,77.

    Zhang H, Huang Y M, An S S, et al. Soil active organic carbon with different plant communities on the Loess Plateau[J]. Research of Soil and Water Conservation, 2013, 20(3): 65−70,77.
    [10] 孟国欣, 查同刚, 张晓霞, 等. 植被类型和地形对黄土区退耕地土壤有机碳垂直分布的影响[J]. 生态学杂志, 2017, 36(9):2447−2454.

    Meng G X, Zha T G, Zhang X X, et al. Effects of vegetation type and terrain on vertical distribution of soil organic carbon on abandoned farmlands in the Loess Plateau[J]. Chinese Journal of Ecology, 2017, 36(9): 2447−2454.
    [11] 王鑫, 杨德刚, 熊黑钢, 等. 新疆不同植被类型土壤有机碳特征[J]. 干旱区研究, 2017, 34(4):782−788.

    Wang X, Yang D G, Xiong H G, et al. Characteristics of soil organic carbon under different vegetation types in Xinjiang[J]. Arid Zone Research, 2017, 34(4): 782−788.
    [12] 武小钢, 郭晋平, 杨秀云, 等. 芦芽山典型植被土壤有机碳剖面分布特征及碳储量[J]. 生态学报, 2011, 31(11):3009−3019.

    Wu X G, Guo J P, Yang X Y, et al. Soil organic carbon storage and profile inventory in the different vegetation types of Luya Mountain[J]. Acta Ecologica Sinica, 2011, 31(11): 3009−3019.
    [13] 弓文艳, 陈丽华, 郑学良. 基于不同林分类型下土壤碳氮储量垂直分布[J]. 水土保持学报, 2019, 33(1):152−157,164.

    Gong W Y, Chen L H, Zheng X L. Vertical distributions of soil carbon and nitrogen reserves in different forests[J]. Journal of Soil and Water Conservation, 2019, 33(1): 152−157,164.
    [14] 刘小璐. 生态建设条件下坡面土壤水分消耗与补偿特征模拟研究[D]. 西安: 西安理工大学, 2019.

    Liu X L. Simulation study on soil water consumption and compensation characteristics of slope unoer ecological construction conditions[D]. Xi’an: Xi’an University of Technology, 2019.
    [15] 王秋兵, 段迎秋, 魏忠义, 等. 沈阳市城市土壤有机碳空间变异特征研究[J]. 土壤通报, 2009, 40(2):252−257.

    Wang Q B, Duan Y Q, Wei Z Y, et al. Spatial varibility of urban soil organic carbon in Shenyang City[J]. Chinese Journal of Soil Science, 2009, 40(2): 252−257.
    [16] Deng J L. Introduction to grey system theory[J]. The Journal of Grey System, 1989, 1(1): 1−24.
    [17] 罗上华, 马蔚纯, 王祥荣, 等. 城市环境保护规划与生态建设指标体系实证[J]. 生态学报, 2003, 23(1):45−55. doi: 10.3321/j.issn:1000-0933.2003.01.007.

    Luo S H, Ma W C, Wang X R, et al. A case study on indicator system of urban environmental protection and ecological construction[J]. Acta Ecologica Sinica, 2003, 23(1): 45−55. doi: 10.3321/j.issn:1000-0933.2003.01.007.
    [18] 王文静, 王百田, 吕钊, 等. 山西太岳山不同林分土壤有机碳储量研究[J]. 干旱区资源与环境, 2013, 27(1):81−85.

    Wang W J, Wang B T, Lü z, et al. Soil organic carbon reserve of different forests in Taiyue Mountain[J]. Journal of Arid Land Resources and Environment, 2013, 27(1): 81−85.
    [19] 周莉, 李保国, 周广胜. 土壤有机碳主导影响因子及其研究进展[J]. 地球科学进展, 2005, 20(1):99−105. doi: 10.3321/j.issn:1001-8166.2005.01.016.

    Zhou L, Li B G, Zhou G S. Advances in controlling factors of soil organic carbon[J]. Advances in Earth Science, 2005, 20(1): 99−105. doi: 10.3321/j.issn:1001-8166.2005.01.016.
    [20] 赵俊勇, 孙向阳, 李素艳, 等. 辽宁省老秃顶子不同林分类型土壤有机碳储量和碳氮垂直分布特征[J]. 东北林业大学学报, 2016, 44(10):65−68,78. doi: 10.3969/j.issn.1000-5382.2016.10.013

    Zhao J Y, Sun X Y, Li S Y, et al. Soil organic carbon storage and vertical distribution of carbon and nitrogen under different forest types in the Laotudingzi Mountain of Liaoning[J]. Journal of Northeast Forestry University, 2016, 44(10): 65−68,78. doi: 10.3969/j.issn.1000-5382.2016.10.013
    [21] 李龙, 姚云峰, 秦富仓, 等. 黄花甸子流域人工林土壤有机碳密度分布特征[J]. 西北农林科技大学(自然科学版), 2016, 44(2):77−82.

    Li L, Yao Y F, Qin F C, et al. Distribution characteristics of soil organic carbon density of different forests in Huanghuadianzi Watershed[J]. Journal of Northwest A&F University (Natural Science Edition), 2016, 44(2): 77−82.
    [22] 权伟, 郑方东, 戎建涛. 浙江乌岩岭7种林分土壤碳密度及碳氮比分布特征[J]. 南京林业大学学报(自然科学版), 2019, 43(1):175−180.

    Quan W, Zheng F D, Rong J T. Soil carbon density and C/N distribution of seven forest types in Wuyanling Nature Reserve, Zhejiang Province[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2019, 43(1): 175−180.
    [23] 黄从德, 张健, 杨万勤, 等. 四川森林土壤有机碳储量的空间分布特征[J]. 生态学报, 2009, 29(3):1217−1225. doi: 10.3321/j.issn:1000-0933.2009.03.017.

    Huang C D, Zhang J, Yang W Q, et al. Spatial distribution characteristics of forest soil organic carbon stock in Sichuan Province[J]. Acta Ecologica Sinica, 2009, 29(3): 1217−1225. doi: 10.3321/j.issn:1000-0933.2009.03.017.
    [24] 文伟, 彭友贵, 谭一凡, 等. 深圳市森林土壤主要类型有机碳分布特征[J]. 西南林业大学学报(自然科学), 2018, 38(6):106−113.

    Wen W, Peng Y G, Tan Y F, et al. Distribution characteristics of organic carbon in main forest soil types in Shenzhen City[J]. Journal of Southwest Forestry University (Natural Sciences), 2018, 38(6): 106−113.
    [25] 朱丽琴, 黄荣珍, 段洪浪, 等. 红壤侵蚀地不同人工恢复林对土壤总有机碳和活性有机碳的影响[J]. 生态学报, 2017, 37(1):249−257.

    Zhu L Q, Huang R Z, Duan H L, et al. Effects of artificially restored forests on soil organic carbon and active organic carbon in eroded red soil[J]. Acta Ecologica Sinica, 2017, 37(1): 249−257.
    [26] 周志文. 我国中东部不同气候带森林土壤有机碳氮分布特征研究[D]. 南京: 南京农业大学, 2015.

    Zhou Z W. A syudy on the distribution of forest soil organic carbon and total nitrogen in different climatic zones of the middle east China[D]. Nanjing: Nanjing Agricultural University, 2015.
    [27] 艾宁, 魏天兴, 朱清科. 陕北黄土高原不同植被类型下降雨对坡面径流侵蚀产沙的影响[J]. 水土保持学报, 2013, 27(2):26−30.

    Ai N, Wei T X, Zhu Q K. The effect of rainfall for runoff-erosion-sediment yield under the different vegetation types in Loess Plateau of northern Shaanxi Province[J]. Journal of Soil and Water Conservation, 2013, 27(2): 26−30.
    [28] 李龙, 周飞, 田杰, 等. 地形因子对半干旱地区土壤有机碳含量的影响[J]. 北方园艺, 2019, 43(16):104−109.

    Li L, Zhou F, Tian J, et al. Effects of topographic tactors on soil organic carbon content in semi-arid regions[J]. Northern Horticulture, 2019, 43(16): 104−109.
    [29] 卓志清, 李勇, 兴安, 等. 东北旱作区土壤碳氮磷生态化学计量特征及其影响因素[J]. 农业机械学报, 2019, 50(10):259−268, 336. doi: 10.6041/j.issn.1000-1298.2019.10.030.

    Zhuo Z Q, Li Y, Xing A, et al. Characteristic of ecological stoichiometry of soil C, N and P and its influencing factors in dry farming region of northeast China[J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(10): 259−268, 336. doi: 10.6041/j.issn.1000-1298.2019.10.030.
    [30] 吴晓玲, 张世熔, 蒲玉琳, 等. 川西平原土壤微生物生物量碳氮磷含量特征及其影响因素分析[J]. 中国生态农业学报(中英文), 2019, 27(10):1607−1616.

    Wu X L, Zhang S R, Pu Y L, et al. Distribution characteristics and impact factors of soil microbial biomass carbon, nitrogen and phosphorus in western Sichuan plain[J]. Chinese Journal of Eco-Agriculture, 2019, 27(10): 1607−1616.
    [31] 韩磊, 庄涛, 周慧华, 等. 小清河滨岸带土壤碳氮变化及影响因素研究[J]. 环境科学与技术, 2019, 42(6):28−34.

    Han L, Zhuang T, Zhou H H, et al. Study on the change of soil carbon and nitrogen and their influencing factors in the riparian zone of Xiaoqing River[J]. Environmental Science & Technology, 2019, 42(6): 28−34.
    [32] 王云琦, 王玉杰. 三峡库区林地土壤有机碳含量特征及效应[J]. 长江流域资源与环境, 2010, 19(12):1448−1455.

    Wang Y Q, Wang Y J. Content of soil organic carbon in forest soil and its effects in the Three Gorges Reservoir Area[J]. Resources and Environment in the Yangtze Basin, 2010, 19(12): 1448−1455.
    [33] 赵维俊, 孟好军, 马剑, 等. 祁连山哈溪林区森林土壤电导率剖面变化特征[J]. 林业科技通讯, 2018(11):7−10.

    Zhao W J, Meng H J, Ma J, et al. Change features of forest soil conductivity profile in Haxi District, Qilian Mountain[J]. Forest Science and Technology, 2018(11): 7−10.
    [34] 高艺宁, 许丽, 林凤友, 等. 矿区复垦地土壤有机碳分布及与土壤化学特性的关系[J]. 内蒙古农业大学学报(自然科学版), 2016, 37(1):54−60.

    Gao Y N, Xu L, Lin F Y, et al. Relationship between soil organic carbon distribution and soil chemical properties in mining area[J]. Journal of Inner Mongolia Agricultural University (Natural Science Edition), 2016, 37(1): 54−60.
    [35] 张鹏, 张涛, 陈年来. 祁连山北麓山体垂直带土壤碳氮分布特征及影响因素[J]. 应用生态学报, 2009, 20(3):518−524.

    Zhang P, Zhang T, Chen N L. Vertical distribution patterns of soil organic carbon and total nitrogen and related affecting factors along northern slope of Qilian Mountains[J]. Chinese Journal of Applied Ecology, 2009, 20(3): 518−524.
  • 加载中
图(3) / 表(3)
计量
  • 文章访问数:  559
  • HTML全文浏览量:  195
  • PDF下载量:  43
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-01-09
  • 修回日期:  2020-03-18
  • 网络出版日期:  2020-11-17
  • 刊出日期:  2020-12-14

目录

    /

    返回文章
    返回