高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

低共熔溶剂提取马尾松松针抗氧化成分的研究

傅钰 史璇 张道明 张锡宇 符群

傅钰, 史璇, 张道明, 张锡宇, 符群. 低共熔溶剂提取马尾松松针抗氧化成分的研究[J]. 北京林业大学学报, 2021, 43(7): 149-158. doi: 10.12171/j.1000-1522.20200030
引用本文: 傅钰, 史璇, 张道明, 张锡宇, 符群. 低共熔溶剂提取马尾松松针抗氧化成分的研究[J]. 北京林业大学学报, 2021, 43(7): 149-158. doi: 10.12171/j.1000-1522.20200030
Fu Yu, Shi Xuan, Zhang Daoming, Zhang Xiyu, Fu Qun. Antioxidant activities in extracts from Pinus massoniana needles by deep eutectic solvents[J]. Journal of Beijing Forestry University, 2021, 43(7): 149-158. doi: 10.12171/j.1000-1522.20200030
Citation: Fu Yu, Shi Xuan, Zhang Daoming, Zhang Xiyu, Fu Qun. Antioxidant activities in extracts from Pinus massoniana needles by deep eutectic solvents[J]. Journal of Beijing Forestry University, 2021, 43(7): 149-158. doi: 10.12171/j.1000-1522.20200030

低共熔溶剂提取马尾松松针抗氧化成分的研究

doi: 10.12171/j.1000-1522.20200030
基金项目: 国家重点研发计划项目(2016YFC0500307-07)
详细信息
    作者简介:

    傅钰。主要研究方向:农产品加工。Email:354071803@qq.com  地址:150040 黑龙江省哈尔滨市香坊区和兴路26号东北林业大学林学院

    责任作者:

    符群,博士,高级工程师。主要研究方向:天然产物分离与制备及功能性质研究。Email:nefufuqun@163.com 地址:同上

  • 中图分类号: TQ352;S791.248

Antioxidant activities in extracts from Pinus massoniana needles by deep eutectic solvents

  • 摘要:   目的  马尾松松针富含多酚、黄酮类化合物,具有多种活性功能。通过对马尾松松针的低共熔溶剂(DES)提取物的制备及其抗氧化活性进行研究,深度开发林下资源,获得与传统提取方式相比更加绿色环保、活性优良并且高效的制备方法。  方法  采用超声波技术辅助低共熔溶剂提取马尾松松针中活性成分,首先通过对比提取效果对3种低共熔溶剂进行了筛选,进一步在选定的低共熔溶剂(氯化胆碱/葡萄糖)基础上,进行液料比、超声温度、超声时间、超声功率对提取效果影响的单因素试验。在单因素试验基础上,以多酚、黄酮得率为指标,响应面法优化主要工艺参数,对比提取物与传统醇提物对DPPH·、ABTS+·的清除能力以及还原能力的差异。  结果  马尾松松针提取物的最佳提取工艺为:液料比为10 mL/g,超声温度为48 ℃,超声时间为60 min,超声功率为300 W。在此条件下,多酚得率为7.387%,黄酮得率为10.377%,回归模型拟合良好,与醇提物相比,低共熔溶剂提取物的抗氧化活性整体优于醇提物。  结论  采用超声波技术辅助低共熔溶剂提取的马尾松松针提取物的得率显著高于普通醇提法,通过显著性分析比较得出DES提取物抗氧化活性显著优于醇提物。该方法绿色环保,可实现高效提取马尾松松针成分,并充分保持其生物活性,在提升马尾松的资源利用方面具有一定的意义。

     

  • 图  1  不同单因素对提取物得率的影响

    Figure  1.  Effects of different single factors on extract yield

    图  2  不同提取方法活性物质的得率对比

    标有不同大写字母表示差异极显著(P < 0.01),标有不同小写字母表示差异显著(P < 0.05)。Different capital letters mean very significant difference (P < 0.01), different lowercase letters mean significant difference (P < 0.05).

    Figure  2.  Contrast of the yield of active substances by different extraction methods

    图  3  松针活性成分对DPPH·自由基清除率的影响

    Figure  3.  Effects of active components in pine needles on DPPH· radical scavenging

    图  4  松针活性成分对ABTS+·自由基清除的影响

    Figure  4.  Effects of active components in pine needles on ABTS+· radical scavenging

    图  5  不同溶剂提取物中活性成分总还原能力对比

    Figure  5.  Comparison of total reducing power of active components in different solvent extracts

    表  1  不同类型低共熔溶剂配制方案

    Table  1.   Different types of deep eutectic solvents

    低共熔溶剂 Deep eutectic solvent溶剂体系构成 Composition of solvent system摩尔比 Mole ratio
    氢受体 Hydrogen acceptor氢供体 Hydrogen bond donors水 Water
    DES-1 氯化胆碱 Choline chloride 丙三醇 Glycerol 水 Water 1∶1∶4
    DES-2 氯化胆碱 Choline chloride 葡萄糖 Glucose 水 Water 1∶1∶4
    DES-3 氯化胆碱 Choline chloride 尿素 Carbamide 水 Water 1∶1∶4
    下载: 导出CSV

    表  2  提取溶剂对多酚、黄酮得率的影响

    Table  2.   Effects of extraction solvent on yield of polyphenol and flavone

    低共熔溶剂种类
    Types of deep eutectic solvents
    多酚得率
    Polyphenol yield/%
    黄酮得率
    Flavone yield/%
    DES-1 7.66AB 10.11A
    DES-2 8.07A 10.05A
    DES-3 7.38B 9.15A
    注:同列数值后不同大写字母表示差异显著(P < 0.05)。Note: values in the same column followed by different capital letters mean that the difference is significant at P < 0.05 level.
    下载: 导出CSV

    表  3  响应面实验方案及结果

    Table  3.   Response surface design and experimental results

    试验号
    Experiment No.
    液料比
    Liquid-solid ratio/(mL·g−1)
    超声时间
    Ultrasonic time/min
    超声温度
    Ultrasonic temperature/℃
    超声功率
    Ultrasonic power/W
    多酚得率
    Polyphenol yield/%
    黄酮得率
    Flavone yield/%
    1 10 60 35 270 6.367 9.132
    2 8 60 55 300 6.186 9.919
    3 12 60 35 300 6.459 9.773
    4 10 75 45 330 6.465 9.126
    5 8 75 45 300 6.628 9.071
    6 10 60 55 330 6.828 9.593
    7 10 60 35 330 6.569 9.303
    8 8 60 45 330 6.361 8.892
    9 10 45 45 270 6.465 9.889
    10 8 60 45 270 6.485 8.691
    11 12 60 55 300 6.922 10.184
    12 10 60 45 300 7.571 10.548
    13 10 45 35 300 6.027 9.830
    14 10 60 55 270 6.511 10.120
    15 10 60 45 300 7.617 10.245
    16 10 45 55 300 6.655 9.633
    17 10 60 45 300 7.513 10.364
    18 8 60 35 300 6.204 8.633
    19 10 75 35 300 6.454 8.316
    20 8 45 45 300 5.969 9.771
    21 10 75 55 300 6.897 9.303
    22 12 60 45 330 6.127 9.694
    23 10 75 45 270 6.741 9.600
    24 12 75 45 300 6.279 9.979
    25 10 60 45 300 7.686 10.390
    26 10 45 45 330 6.384 9.936
    27 12 60 45 270 6.721 9.109
    28 10 60 45 300 7.277 10.054
    29 12 45 45 300 5.636 10.192
    下载: 导出CSV

    表  4  多酚方差分析表

    Table  4.   Anova for response surface quadratic model of polyphenol

    方差来源 Variance source平方和 Sum of squares自由度 Degree of freedom均方 Mean squareFP显著性 Significance
    模型 Model 6.360 14 0.450 6.90 0.0004 **
    A 8.060 × 10−3 1 8.060 × 10−3 0.12 0.7317
    B 0.450 1 0.450 6.86 0.0202 *
    C 0.310 1 0.310 4.66 0.0487 *
    D 0.026 1 0.026 0.39 0.5418
    AB 6.400 × 10−5 1 6.400 × 10−5 9.718 × 10−4 0.9756
    AC 0.058 1 0.058 0.88 0.3646
    AD 0.055 1 0.055 0.84 0.3753
    BC 8.556 × 10−3 1 8.556 × 10−3 0.13 0.7239
    BD 9.506 × 10−3 1 9.506 × 10−3 0.14 0.7097
    CD 3.306 × 10−3 1 3.306 × 10−3 0.05 0.8259
    A2 3.180 1 3.180 48.28 < 0.0001 **
    B2 2.510 1 2.510 38.13 < 0.0001 **
    C2 1.240 1 1.240 18.84 0.0007 **
    D2 1.280 1 1.280 19.44 0.0006 **
    残差 Residual 0.920 14 0.066
    失拟项 Lack of fit 0.820 10 0.082 3.37 0.1265 不显著 Not significant
    纯误差 Pure error 0.098 4 0.024
    总和 Total 7.290 28
    注:**为差异极显著(P < 0.01),*为差异显著(P < 0.05)。下同。Notes:** means highly significant difference (P < 0.01), * means significant difference (P < 0.05). The same below.
    下载: 导出CSV

    表  5  黄酮方差分析表

    Table  5.   Anova for response surface quadratic model of flavone

    方差来源 Variance source平方和 Sum of squares自由度 Degree of freedom均方 Mean squareFP显著性 Significance
    模型 Model 7.580 14 0.540 4.45 0.004 2 **
    A 1.300 1 1.300 10.72 0.005 5 **
    B 1.240 1 1.240 10.19 0.006 5 **
    C 1.180 1 1.180 9.72 0.007 6 **
    D 7.500 × 10−7 1 7.500 × 10−7 6.169 × 10−6 0.998 1
    AB 0.059 1 0.059 0.49 0.496 4
    AC 0.19 1 0.190 1.57 0.230 1
    AD 0.037 1 0.037 0.30 0.590 5
    BC 0.350 1 0.350 2.88 0.111 6
    BD 0.068 1 0.068 0.56 0.467 3
    CD 0.120 1 0.120 1.00 0.333 8
    A2 1.080 1 1.080 8.91 0.009 8 **
    B2 0.650 1 0.650 5.34 0.036 6 *
    C2 1.200 1 1.200 9.86 0.007 2 **
    D2 1.700 1 1.700 13.96 0.002 2 **
    残差 Residual 1.700 14 0.120
    失拟项 Lack of fit 1.570 10 0.160 4.64 0.076 3 不显著 Not significant
    纯误差 Pure error 0.140 4 0.034
    总和 Total 9.280 28
    下载: 导出CSV
  • [1] 潘炘, 陈顺伟, 庄晓伟. 不同提取方式马尾松松针抗氧化能力研究[J]. 食品工业科技, 2009, 30(8):108−110.

    Pan X, Chen S W, Zhuang X W. Study on antioxidant activities in extracts from dry Pinus massoniana needles by different methods[J]. Science and Technology of Food Industry, 2009, 30(8): 108−110.
    [2] 杨丽华. 马尾松松针抗氧化活性研究及其抗氧化功能饮料研制[D]. 广州: 广州医科大学, 2014.

    Yang L H. Research on antioxidant activity and antioxidant functional beverage of Masson pine needles[D]. Guangzhou: Guangzhou Medical University, 2014.
    [3] 徐丽珊, 张萍华, 张瑜. 松针总黄酮的提取工艺优化研究[J]. 浙江师范大学学报(自然科学版), 2009, 32(2):207−211.

    Xu L S, Zhang P H, Zhang Y. Study on optimum process for extraction of flavonoids from pine needles[J]. Journal of Zhejiang Normal University (Natural Science), 2009, 32(2): 207−211.
    [4] 张霞. 油松松针黄酮的分离提纯及其抗氧化活性研究[D]. 北京: 北京林业大学, 2010.

    Zhang X. Extraction and purification of flavonoids from pine needles and antioxidative activity of the extract[D]. Beijing: Beijing Forestry University, 2010.
    [5] 战英, 陈丽娜, 石矛. 微波辅助提取红松松针总黄酮工艺优化[J]. 食品研究与开发, 2015, 36(16):69−72. doi: 10.3969/j.issn.1005-6521.2015.16.017

    Zhan Y, Chen L N, Shi M. Optimization of process in extracting total flavonoids assisted by microwave from Korean pine needles[J]. Food Research and Development, 2015, 36(16): 69−72. doi: 10.3969/j.issn.1005-6521.2015.16.017
    [6] 王冉, 李健, 黎晨晨, 等. 响应面法优化东北红松针总黄酮的超声辅助乙醇提取工艺[J]. 食品工业科技, 2018, 39(4):143−149.

    Wang R, Li J, Li C C, et al. Optimization of ultrasonic-assisted ethanol extraction of total flavonoids from Pinus koraiensis needles by response surface methodology[J]. Science and Technology of Food Industry, 2018, 39(4): 143−149.
    [7] 赵玉红, 翟亚楠, 王振宇. 樟子松树皮中松多酚的提取工艺研究及提取方法比较[J]. 食品工业科技, 2013, 34(4):304−309.

    Zhao Y H, Zhai Y N, Wang Z Y. Extraction of polyphenols from Pinus sylvestris L. and comparison of extraction method[J]. Science and Technology of Food Industry, 2013, 34(4): 304−309.
    [8] Abbott A P, Capper G, Davies D L, et al. Novel solvent properties of choline chloride/urea mixtures[J]. Chemical Communications, 2003, 9(1): 70−71.
    [9] Dai Y T, Verpoorte R, Choi Y H. Natural deep eutectic solvents providing enhanced stability of natural colorants from safflower (Carthamus tinctorius)[J]. Food Chemistry, 2014, 159: 116−121. doi: 10.1016/j.foodchem.2014.02.155
    [10] Dai Y T, Rozema E, Verpoorte R, et al. Application of natural deep eutectic solvents to the extraction of anthocyanins from Catharanthus roseus with high extractability andstability replacing conventional organic solvents[J]. Journal of Chromatography A, 2016, 1434: 50−56. doi: 10.1016/j.chroma.2016.01.037
    [11] 刘珊, 李德慧, 孙科, 等. 新型绿色低共熔溶剂用于金钱草总黄酮的提取研究[J]. 时珍国医国药, 2019, 30(6):1312−1314.

    Liu S, Li D H, Sun K, et al. The research of new deep eutectic solvent extract total flavone from desmodium[J]. Lishizhen Medicine and Materia Medica Research, 2019, 30(6): 1312−1314.
    [12] 胡文杰, 李阁, 李冠喜. 马尾松松针挥发油化学成分及抗氧化活性研究[J]. 中国粮油学报, 2018, 33(12):42−48. doi: 10.3969/j.issn.1003-0174.2018.12.008

    Hu W J, Li G, Li G X. Study on chemical constituents and antioxidant activity of volatile oil from Pinus massoniana pine needles[J]. Journal of the Chinese Cereals and Oils Association, 2018, 33(12): 42−48. doi: 10.3969/j.issn.1003-0174.2018.12.008
    [13] 彭映林, 谢丹, 李媛, 等. 黑茶中茶多酚的提取及其含量测定方法的研究进展[J]. 广东化工, 2019, 46(19):110−111, 138.

    Peng Y L, Xie D, Li Y, et al. Research progress on extraction and determination methods of tea polyphenols in dark tea[J]. Guangdong Chemical Industry, 2019, 46(19): 110−111, 138.
    [14] 郭海欢. 刺玫果提取物化学成分分离及黄酮苷元的制备[D]. 吉林: 吉林化工学院, 2017.

    Guo H H. Study on component separation of the Rosa davurica Pall. extracts and flavonoid aglycones preparation[D]. Jilin: Jilin Institute of Chemical Technology, 2017.
    [15] Farvin K H S, Andersen L L, Nielsen H H, et al. Antioxidant activity of cod (Gadus morhua) protein hydrolysates: in vitro assays and evaluation in 5% fish oil-in-water emulsion[J]. Food Chemistry, 2014, 149: 326−334. doi: 10.1016/j.foodchem.2013.03.075
    [16] 倪玉娇, 赵春建, 李春英, 等. 超声辅助低共熔溶剂提取沙棘籽粕多酚的工艺优化[J]. 植物研究, 2017, 37(3):474−480. doi: 10.7525/j.issn.1673-5102.2017.03.020

    Ni Y J, Zhao C J, Li C Y, et al. Process optimization of ultrasonic assisted deep eutectic solvents (DESs) extraction of polyphenols from Hippophae rhamnoides seed meal[J]. Plant Research, 2017, 37(3): 474−480. doi: 10.7525/j.issn.1673-5102.2017.03.020
    [17] 谭婷. 低共熔溶剂的制备及其在一些食品和中药分析中的应用研究[D]. 南昌: 南昌大学, 2016.

    Tan T. Preparation of deep eutectic solvent and their applications in the analysis of some food and Chinese herbs[D]. Nanchang: Nanchang University, 2016.
  • 加载中
图(5) / 表(5)
计量
  • 文章访问数:  323
  • HTML全文浏览量:  120
  • PDF下载量:  33
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-01-21
  • 修回日期:  2020-09-06
  • 网络出版日期:  2021-07-01
  • 刊出日期:  2021-07-25

目录

    /

    返回文章
    返回