Seasonal dynamics of functional diversity of soil microbial communities in Castanopsis kawakamii forest gaps
-
摘要:目的 林窗作为森林生态系统中的小尺度干扰,对森林土壤养分循环与微生物群落功能多样性维持起着重要作用。明确不同林窗大小土壤养分和微生物群落功能多样性及其季节动态响应机制,有助于改善格氏栲林土壤生态环境。方法 以格氏栲天然林林窗为对象,采用Biolog微平板法,研究不同林窗大小土壤理化性质、碳源利用能力和代谢特征的季节动态变化规律。结果 (1)林窗生长季土壤温度、速效钾含量显著高于非生长季,pH值、速效磷含量显著低于非生长季。林窗形成促进了土壤pH值升高与速效钾积累,加速了微生物对碱解氮与速效磷的吸收和利用。(2)林窗生长季土壤微生物平均颜色变化率在培养的中后期显著高于非生长季。林窗内土壤微生物在生长季中主要利用碳源为羧酸、多聚物和氨基酸类,在非生长季中主要利用碳源为氨基酸类和羧酸类。(3)林窗土壤微生物功能多样性指数中,生长季Shannon-Wiener和Pielou指数显著高于非生长季,Simpson指数显著低于非生长季。林窗面积对生长季土壤微生物群落功能多样性指数影响不明显。非生长季小林窗Simpson指数最高,中林窗Shannon-Wiener指数和Pielou指数最高。(4)广义线性模型表明,林窗生长季的土壤温度和土壤速效钾含量升高有利于土壤微生物常见种优势度升高;非生长季土壤碱解氮含量降低,速效钾含量升高有利于微生物功能多样性升高。结论 生长季林窗内土壤微生物群落功能多样性保持较高水平,土壤养分循环效率高;非生长季非林窗土壤环境有利于土壤微生物生长代谢,维持土壤生态系统功能。林窗形成导致土壤温度与速效养分含量的异质性是影响土壤微生物群落代谢特征和功能多样性的主要因素。
-
关键词:
- 林窗 /
- 土壤微生物 /
- 功能多样性 /
- Biolog微平板法 /
- 格氏栲林
Abstract:Objective As a small-scale disturbance in the forest ecosystem, the forest gap plays an important role in nutrient cycling and functional diversity of microbial community in the soil of forest. Clarifying the seasonal dynamic response mechanism of soil nutrients and functional diversity of microbial community to the forest size will help to improve the soil ecological environment of Castanopsis kawakamii forests.Method The gaps of C. kawakamii natural forests were used as research objects, and the Biolog micro-plate method was used, combining the regularity of soil physical and chemical properties, carbon source utilization capacity and metabolic characteristics with different size of forest gaps during growing season and non-growing season.Result (1) The soil temperature (ST), available potassium (AK) content in the growing season of the gaps were significantly higher than those in the non-growing season, and pH value, available phosphorus (AP) content were significantly lower than those in the non-growing season. The formation of forest gaps promoted the increase of soil pH value and the accumulation of available potassium (AK), and accelerated the absorption and utilization of alkali-hydrolyzable nitrogen (HN) and available phosphorus (AP) by microorganisms. (2) The average well color development (AWCD) of soil microorganisms in the growing season of the forest gaps was significantly higher than that in the non-growing season in the middle and late cultivation periods. The soil microorganisms of the forest gaps mainly used carboxylic acid, polymer, and amino acid carbon sources in the growing season, and mainly used the carbon sources as amino acid and carboxylic acid carbon sources in the non-growing season. (3) In soil microbial functional diversity indexes of forest gaps, Shannon-Wiener and Pielou indices in the growing season of the forest gaps were significantly higher than those in the non-growing season, and the Simpson index was significantly lower than in the non-growing season. Gap size had no significant effect on the functional diversity index of microbial community during the growing season. The Simpson index of the soil microbial community in the non-growing small forest window was the highest. The Shannon-Wiener index and Pielou index of the medium gaps were the highest. (4) Generalized linear model (GLM) analysis showed that increasing soil temperature (ST) and soil available potassium (AK) in the growing season of the forest gaps were conducive to increasing the dominance of common soil microorganism species. The reduction of soil alkaline nitrogen (HN) content and the increase of available potassium (AK) content in non-growing seasons were conducive to the increase of microbial diversity and uniformity.Conclusion Functionaldiversity of soil microbial community of the forest gaps during the growing season is maintained at a high level, and the soil nutrient cycling efficiency is high. The soil environment of non-gaps during the non-growing season is conducive to the growth and metabolism of soil microorganisms and maintains the function of the soil ecosystem. Heterogeneity of soil temperature and available nutrient content caused by the formation of forest gaps is the main factor affecting the metabolic characteristics and functional diversity of soil microbial communities. -
-
图 1 不同林窗内生长季与非生长季土壤微生物AWCD值
LG1为生长季大林窗;MG1为生长季中林窗;SG1为生长季小林窗;NG1为生长季对照;LG2为非生长季大林窗;MG2为非生长季中林窗;SG2为非生长季小林窗;NG2为非生长季对照。同一列数据上不同字母表示差异显著(P < 0.05)。下同。LG1, large forest gap in growing season; MG1, medium forest gap in growing season; SG1, small forest gap in growing season; NG1, control in growing season; LG2, large forest gap in non-growing season; MG2, medium forest gap in non-growing season; SG2, small forest gap in non-growing season; NG2, control in non-growing season. Different letters above the same column data indicate significant differences (P < 0.05).The same below.
Figure 1. Soil microbial AWCD values of different forest gaps in growing season and non-growing season
表 1 林窗研究样地概况
Table 1 General situation of the research plots of the forest gaps
林窗 Forest gap GS/m2 SHC/% LG 206.17 ± 4.53 0.85 MG 73.15 ± 1.93 0.67 SG 33.49 ± 2.48 0.50 NG 100 ± 0 0.77 注:LG为大林窗;MG为中林窗;SG为小林窗;NG为对照;GS为林窗面积;SHC为灌草覆盖度。数据为均值 ± 标准差,n = 3,下同。Notes: LG, large gap; MG, medium gap; SG, small gap; NG, control; GS, forest gap size; SHC, shrub and herb coverage. The data are mean ± standard deviation, n = 3. The same below. 表 2 林窗土壤特性的双因素方差分析
Table 2 Two-way ANOVA analysis of soil characteristics in different growing seasons and gap size
环境因子 Environmental factor 因子 Factor 自由度 df F P ST 季节 Season 1 2 707.332 < 0.001*** 林窗面积 Forest gap size 3 0.978 0.428 季节 × 林窗面积 Season × forest gap size 3 0.325 0.807 SWC 季节 Season 1 2.246 0.153 林窗面积 Forest gap size 3 0.298 0.826 季节 × 林窗面积 Season × forest gap size 3 0.077 0.972 pH 季节 Season 1 45.334 < 0.001*** 林窗面积 Forest gap size 3 5.256 0.010** 季节 × 林窗面积 Season × forest gap size 3 2.132 0.136 HN 季节 Season 1 3.219 0.092 林窗面积 Forest gap size 3 1.256 0.323 季节 × 林窗面积 Season × forest gap size 3 0.586 0.633 AK 季节 Season 1 84.533 < 0.001*** 林窗面积 Forest gap size 3 9.146 0.001** 季节 × 林窗面积 Season × forest gap size 3 0.733 0.548 AP 季节 Season 1 28.392 < 0.001*** 林窗面积 Forest gap size 3 18.916 < 0.001*** 季节 × 林窗面积 Season × forest gap size 3 7.052 0.003** SOC 季节 Season 1 1.439 0.248 林窗面积 Forest gap size 3 2.032 0.150 季节 × 林窗面积 Season × forest gap size 3 1.521 0.247 注:ST为土壤温度;SWC为土壤含水量;HN为碱解氮;AK为速效钾;AP为速效磷;SOC为有机碳,下同。*代表差异显著(P < 0.05);**代表差异极显著(P < 0.01);***代表差异极显著(P < 0.001),下同。Notes: ST, soil temperature; SWC, soil water content; HN, alkali-hydrolyzable nitrogen; AK, available potassium; AP, available phosphorus; SOC, soil organic carbon. * represents significant difference (P < 0.05); ** represents extremely significant difference (P < 0.01); *** represents extremely significant difference (P < 0.001). The same below. 表 3 不同面积林窗生长季与非生长季土壤特性
Table 3 Soil characteristics of forest gaps with different size in growing season and non-growing season
季节 Season 林窗
Forest gapST/℃ pH HN/(mg∙kg− 1) AK/(mg∙kg− 1) AP/(mg∙kg− 1) 生长季 Growing season LG 25.9 ± 0.65a 3.4 ± 0.08b 212.05 ± 34.94ab 120.89 ± 20.25a 5.89 ± 2.72d MG 25.7 ± 0.37a 3.25 ± 0.01cd 215.32 ± 7.09ab 86.51 ± 6.13ab 10.61 ± 0.30c SG 25.64 ± 0.14a 3.24 ± 0.08cd 182.57 ± 20.6b 93.56 ± 8.14b 12.57 ± 1.00abc NG 25.6 ± 0.59a 3.21 ± 0.03d 235.79 ± 12.76ab 94.85 ± 2.55b 12.64 ± 1.03abc 非生长季 Non-growing season LG 12.94 ± 0.36b 3.54 ± 0.09a 222.69 ± 55.27ab 75.46 ± 12.31cd 12.01 ± 0.01bc MG 12.63 ± 0.33b 3.37 ± 0.1bc 231.7 ± 49.14ab 56.01 ± 2.88e 12.08 ± 0.27bc SG 12.63 ± 0.07b 3.45 ± 0.1ab 234.15 ± 15.6ab 61.2 ± 6.91de 13.2 ± 0.64ab NG 12.02 ± 1.38b 3.53 ± 0.01a 248.07 ± 11.26a 59.89 ± 0.36de 14.33 ± 0.59a 注:同一列数据后不同字母表示差异显著(P < 0.05),下同。Notes: different letters in the same column indicate significant difference(P < 0.05). The same below. 表 4 林窗土壤平均颜色变化率值的双因素方差分析
Table 4 Two-way ANOVA on soil average well color development(AWCD)value of forest gaps
组间因子
Intergroup factordf F P 组内因子
Intragroup factor自由度
dfF P 季节 Season 1 250.338 < 0.001*** 时间 Time 8 989.012 < 0.001*** 林窗面积 Forest gap size 3 0.455 0.717 时间 × 季节 Time × season 8 224.237 < 0.001*** 季节 × 林窗面积
Season × forest gap size3 0.111 0.952 时间 × 林窗面积 Time × forest gap size 24 0.601 0.926 时间 × 季节 × 林窗面积
Time × season × forest gap size24 0.263 1.000 表 5 不同生长季节与林窗面积的微生物功能多样性双因素分析结果
Table 5 Results of two-way ANOVA of functional diversity of microorganisms in different growing seasons and forest gap size
多样性指数 Diversity index 因子 Factor df F P Simpson 指数
Simpson index季节 Season 1 8.773 0.009** 林窗面积 Forest gap size 3 1.684 0.210 季节 × 林窗面积 Season × forest gap size 3 1.557 0.239 Shannon-Wiener指数
Shannon-Wiener index季节 Season 1 350.491 < 0.001*** 林窗面积 Forest gap size 3 4.298 0.021* 季节 × 林窗面积 Season × forest gap size 3 4.403 0.019* Pielou 指数
Pielou index季节 Season 1 350.665 < 0.001*** 林窗面积 Forest gap size 3 4.281 0.021* 季节 × 林窗面积 Season × forest gap size 3 4.406 0.019* 表 6 不同面积林窗土壤微生物功能多样性
Table 6 Functional diversity of soil microorganisms of forest gaps in different size
季节
Season林窗
Forest gapSimpson指数
Simpson indexShannon-Wiener指数
Shannon-Wiener indexPielou指数
Pielou index生长季 Growing season LG 0.984 4 ± 0.000 2b 4.88 ± 0.02a 0.985 7 ± 0.004 3a MG 0.984 2 ± 0.000 3b 4.86 ± 0.01a 0.980 6 ± 0.002 2a SG 0.984 8 ± 0.000 3b 4.9 ± 0.01a 0.988 3 ± 0.001 4a NG 0.983 9 ± 0.001 1b 4.84 ± 0.05a 0.977 8 ± 0.010 9a 非生长季 Non-growing season LG 1.011 7 ± 0.006 7ab 4.49 ± 0.02c 0.906 5 ± 0.003 4c MG 0.996 7 ± 0.007b 4.63 ± 0.03b 0.935 3 ± 0.005 6b SG 1.031 0 ± 0.051 3a 4.54 ± 0.09c 0.917 1 ± 0.017 8c NG 0.987 0 ± 0.002b 4.48 ± 0.05c 0.904 0 ± 0.010 9c 表 7 土壤微生物功能多样性与环境因子间逐步回归结果
Table 7 Results of stepwise regression between functional diversity of soil microorganisms and environmental factors
季节 Season 多样性指数 Diversity index 环境因子 Environmental factor AIC 生长季 Growing season Simpson指数 Simpson index ST + SWC + pH + HN + AK + AP + SOC + GA − 423.13 ST + SWC + pH + AK + AP + SOC + GA − 424.92 ST + pH + AK + AP + SOC + GA − 426.74 ST + pH + AK + AP + SOC − 428.27 Shannon-Wiener指数 Shannon-Wiener index ST + SWC + pH + HN + AK + AP + SOC + GA − 181.88 ST + SWC + pH + HN + AK + AP + SOC − 183.66 ST + SWC + pH + HN + AP + SOC − 185.52 ST + SWC + pH + HN + SOC − 187.35 ST + SWC + HN + SOC − 188.68 ST + HN + SOC − 189.73 ST + SOC − 191.15 Pielou指数 Pielou index ST + SWC + pH + HN + AK + AP + SOC + GA − 277.94 ST + SWC + pH + HN + AK + AP + SOC − 279.72 ST + SWC + pH + HN + AP + SOC − 281.57 ST + SWC + pH + HN + SOC − 283.41 ST + SWC + HN + SOC 284.73 ST + HN + SOC − 285.79 ST + SOC − 287.21 非生长季 Non-growing season Simpson指数 Simpson index ST + SWC + pH + HN + AK + AP + SOC + GA − 284.55 ST + SWC + pH + HN + AK + SOC + GA − 286.52 ST + SWC + pH + HN + AK + SOC − 288.46 ST + SWC + HN + AK + SOC − 289.41 Shannon-Wiener指数 Shannon-Wiener index ST + SWC + pH + HN + AK + AP + SOC + GA − 84.2 SWC + pH + HN + AK + AP + SOC + GA − 86.11 SWC + pH + HN + AK + AP + GA − 87.56 Pielou指数 Pielou index ST + SWC + pH + HN + AK + AP + SOC + GA − 180.22 SWC + pH + HN + AK + AP + SOC + GA − 182.13 SWC + pH + HN + AK + AP + GA − 183.58 注:AIC为赤池信息准则。下同。Notes: AIC,akaike information criterion.The same below. 表 8 土壤微生物功能多样性与环境因子间GLM分析
Table 8 GLM analysis of the relationship between functional diversity of soil microorganisms and environmental factors
季节
Season多样性指数
Diversity index环境因子
Environmental factorAIC β SE t P 生长季
Growing seasonSimpson指数
Simpson indexST − 428.27 1.25 × 10− 3 2.76 × 10− 4 4.525 0 0.000 9*** AK 3.12 × 10− 5 1.36 × 10− 5 2.298 0 0.038 6* Shannon-Wiener指数
Shannon-Wiener index— − 191.15 — — — — Pielou指数
Pielou index— − 287.21 — — — — 非生长季
Non-growing seasonSimpson指数
Simpson indexST − 289.41 3.47 × 10− 3 1.52 × 10− 3 2.289 0 0.031 2* SWC 2.46 × 10− 3 8.92 × 10− 4 2.754 0 0.011 0* HN 2.03 × 10− 4 3.96 × 10− 5 5.134 0 < 0.000 1*** AK − 7.74 × 10− 4 1.61 × 10− 4 − 4.808 0 < 0.000 1*** SOC − 1.44 × 10− 2 4.16 × 10− 3 − 3.471 0 0.002 0** Shannon-Wiener指数
Shannon-Wiener indexSWC − 87.56 − 0.089 1 0.025 9 − 3.455 0 0.002 2** AK 0.016 4 0.005 9 2.784 0 0.010 6* GA − 0.002 8 0.000 9 − 3.049 0 0.005 7** Pielou指数
Pielou indexSWC − 183.58 − 0.018 0 0.005 2 − 3.443 0 0.002 2** AK 0.003 3 0.001 2 2.784 0 0.010 6* GA − 0.000 6 0.000 2 − 3.050 0 0.005 7** -
[1] Scharenbroch B C, Bockheim J G. Impacts of forest gaps on soil properties and processes in old growth northern hardwood-hemlock forests[J]. Plant and Soil, 2007, 294(1−2): 219−233. doi: 10.1007/s11104-007-9248-y
[2] Schliemann S A, Bockheim J G. Influence of gap size on carbon and nitrogen biogeochemical cycling in northern hardwood forests of the Upper Peninsula, Michigan[J]. Plant and Soil, 2014, 377(1−2): 323−335. doi: 10.1007/s11104-013-2005-5
[3] 费菲, 肖文娅, 刁娇娇, 等. 林窗尺度对侧柏人工林土壤微生物生物量碳氮的短期影响[J]. 生态学报, 2018, 38(3):1087−1096. Fei F, Xiao W Y, Diao J J, et al. Short-term effects of forest gap size on soil microbial biomass carbon and nitrogen in the Platycladus orientalis plantation[J]. Acta Ecologica Sinica, 2018, 38(3): 1087−1096.
[4] Li D, Li X, Su Y, et al. Forest gaps influence fungal community assembly in a weeping cypress forest[J]. Applied Microbiology and Biotechnology, 2019, 103(7): 3215−3224. doi: 10.1007/s00253-018-09582-1
[5] Muscolo A, Sidari M, Mercurio R. Influence of gap size on organic matter decomposition, microbial biomass and nutrient cycle in Calabrian pine (Pinus laricio, Poiret) stands[J]. Forest Ecology and Management, 2007, 242(2): 412−418.
[6] Yang Y, Geng Y, Zhou H, et al. Effects of gaps in the forest canopy on soil microbial communities and enzyme activity in a Chinese pine forest[J]. Pedobiologia, 2017, 61: 51−60. doi: 10.1016/j.pedobi.2017.03.001
[7] Yanmao L I, Jiangchun H U, Wang S, et al. Function and application of soil microorganisms in forest ecosystem[J]. Chinese Journal of Applied Ecology, 2004, 15(10): 1943−1946.
[8] Morgan J A W, Bending G D, White P J. Biological costs and benefits to plant-microbe interactions in the rhizosphere[J]. Journal of Experimental Botany, 2005, 56: 1729−1739. doi: 10.1093/jxb/eri205
[9] Garbeva P, Van Veen J A, Van Elsas J D. Microbial diversity in soil: selection of microbial populations by plant and soil type and implications for disease suppressiveness[J]. Annual Review of Phytopathology, 2004, 42(1): 243−270. doi: 10.1146/annurev.phyto.42.012604.135455
[10] 王朋, 管云云, 肖文娅, 等. 林窗对根际和非根际土壤化学性质季节变化的影响[J]. 西南林业大学学报, 2017, 37(5):88−97. Wang P, Guan Y Y, Xiao W Y, et al. Effects of canopy gaps on the physical and chemical properties of rhizosphere and bulk soil with seasonal changes[J]. Journal of Southwest Forestry University, 2017, 37(5): 88−97.
[11] Saner P, Lim R, Burla B, et al. Reduced soil respiration in gaps in logged lowland dipterocarp forests[J]. Forest Ecology and Management, 2009, 258(9): 2007−2012. doi: 10.1016/j.foreco.2009.07.048
[12] 欧江, 张捷, 崔宁洁, 等. 采伐林窗对马尾松人工林土壤微生物生物量的初期影响[J]. 自然资源学报, 2014, 29(12):2036−2047. doi: 10.11849/zrzyxb.2014.12.005 Ou J, Zhang J, Cui N J, et al. The early effects of forest gap harvesting on soil microbial biomass in Pinus massoniana plantations[J]. Journal of Natural Resources, 2014, 29(12): 2036−2047. doi: 10.11849/zrzyxb.2014.12.005
[13] 周义贵, 郝凯婕, 李贤伟, 等. 林窗对米亚罗林区云杉低效林土壤有机碳和微生物生物量碳季节动态的影响[J]. 应用生态学报, 2014, 25(9):2469−2476. Zhou Y G, Hao K J, Li X W, et al. Effects of forest gap on seasonal dynamics of soil organic carbon and microbial biomass carbon in Picea asperata forest in Miyaluo of western Sichuan, Southwest China[J]. Chinese Journal of Applied Ecology, 2014, 25(9): 2469−2476.
[14] He Z, Wang L, Jiang L, et al. Effect of microenvironment on species distribution patterns in the regeneration layer of forest gaps and non-gaps in a subtropical natural forest, China[J/OL]. Forests, 2019, 10: 90(2019−02−24)[2019−06−17]. https://doi.org/10.3390/f10020090.
[15] 刘金福, 苏松锦, 何中声, 等. 格氏栲天然林土壤有机碳空间分布及其影响因素[J]. 山地学报, 2011, 29(6):641−648. doi: 10.3969/j.issn.1008-2786.2011.06.001 Liu J F, Su S J, He Z S, et al. Spatial distribution and influencing factors of soil organic carbon in mid-subtropical Castanopsis kawakamii natural forest[J]. Journal of Mountain Science, 2011, 29(6): 641−648. doi: 10.3969/j.issn.1008-2786.2011.06.001
[16] 刘金福, 何中声, 洪伟, 等. 濒危植物格氏栲保护生态学研究进展[J]. 北京林业大学学报, 2011, 33(5):136−143. Liu J F, He Z S, Hong W, et al. Conservation ecology of endangered plant Castanopsis kawakamii[J]. Journal of Beijing Forestry University, 2011, 33(5): 136−143.
[17] He Z, Liu J, Wu C, et al. Effects of forest gaps on some microclimate variables in Castanopsis kawakamii natural forest[J]. Journal of Mountain Science, 2012, 9(5): 706−714. doi: 10.1007/s11629-012-2304-y
[18] 马瑞丰, 刘金福, 吴则焰, 等. 格氏栲林土壤微生物结构的多样性特征研究[J]. 西南林业大学学报, 2014, 34(4):14−19. doi: 10.3969/j.issn.2095-1914.2014.04.003 Ma R F, Liu J F, Wu Z Y, et al. Soil microbial community structure diversity in Castanopsis kawakamii forest[J]. Journal of Southwest Forestry University, 2014, 34(4): 14−19. doi: 10.3969/j.issn.2095-1914.2014.04.003
[19] 马瑞丰, 刘金福, 张广帅, 等. 格氏栲林土壤生态化学计量和微生物群落特征及其关联性分析[J]. 植物资源与环境学报, 2015, 24(1):19−27. doi: 10.3969/j.issn.1674-7895.2015.01.03 Ma R F, Liu J F, Zhang G S, et al. Soil ecological stoichiometric and microbial community characteristics of Castanopsis kawakamii forest and their relevance analysis[J]. Journal of Plant Resources and Environment, 2015, 24(1): 19−27. doi: 10.3969/j.issn.1674-7895.2015.01.03
[20] Hu L, Gong Z, Li J, et al. Estimation of canopy gap size and gap shape using a hemispherical photograph[J]. Trees, 2009, 23(5): 1101−1108. doi: 10.1007/s00468-009-0353-9
[21] 卢尧舜, 何中声, 罗丽洁, 等. 基于无人机影像探讨格氏栲天然林林窗数量分布及其影响因素[J/OL]. 广西植物, 2020(2020−01−10)[2020−01−23]. http://kns.cnki.net/kcms/detail/45.1134.Q.20200110.1338.006.html. Lu Y S, He Z S, Luo L J, et al. Using UAV images to explore the quantitative characteristics and influencing factors of forest gaps in Castanopsis kawakamii natural forest[J/OL]. Guihaia, 2020 (2020−01−10)[2020−01−23]. http://kns.cnki.net/kcms/detail/45.1134.Q.20200110.1338.006.html.
[22] 徐凯健, 曾宏达, 张仲德, 等. 亚热带福建省森林生长季与气温、降水相关性的遥感分析[J]. 地球信息科学学报, 2015, 17(10):1249−1259. Xu K J, Zeng H D, Zhang Z D, et al. Relating forest phenology to temperature and precipitation in the subtropical region of Fujian based on time-series MODIS-NDVI[J]. Journal of Goe-Information Science, 2015, 17(10): 1249−1259.
[23] 宋贤冲, 王会利, 秦文弟, 等. 退化人工林不同恢复类型对土壤微生物群落功能多样性的影响[J]. 应用生态学报, 2019, 30(3):841−848. Song X C, Wang H L, Qin W D, et al. Effects of stand type of artificial forests on soil microbial functional diversity[J]. Chinese Journal of Applied Ecology, 2019, 30(3): 841−848.
[24] Zheng J, Li J, Lan Y, et al. Effects of Spartina alterniflora invasion on Kandelia candel rhizospheric bacterial community as determined by high-throughput sequencing analysis[J]. Journal of Soils & Sediments, 2019, 19(1): 332−344.
[25] 邓娇娇, 朱文旭, 周永斌, 等. 不同土地利用模式对辽东山区土壤微生物群落多样性的影响[J]. 应用生态学报, 2018, 29(7):2269−2276. Deng J J, Zhu W X, Zhou Y B, et al. Effects of different land use patterns on the soil microbial community diversity in montane region of eastern Liaoning Province, China[J]. Chinese Journal of Applied Ecology, 2018, 29(7): 2269−2276.
[26] 刘辉, 吴小芹, 任嘉红, 等. 荧光假单胞菌与红绒盖牛肝菌共接种对杨树根际土壤酶活性及微生物多样性的影响[J]. 林业科学, 2019, 55(1):22−30. doi: 10.11707/j.1001-7488.20190103 Liu H, Wu X Q, Ren J H, et al. Effect of co-inoculation with Pseudomonas fluorescens and Xerocomus chrysenteron on the soil enzyme activity and microbial diversity in poplar rhizosphere[J]. Scientia Silvae Sinicae, 2019, 55(1): 22−30. doi: 10.11707/j.1001-7488.20190103
[27] 李波, 张曼, 赵璐玲, 等. 汶川地震滑坡体自然植被恢复及影响因子: 以龙溪–虹口自然保护区为例[J]. 应用与环境生物学报, 2014, 20(3):468−473. Li B, Zhang M, Zhao L L, et al. Vegetation recovery on landslides of the Wenchuan earthquake and its influencing factors: a case study in Longxi-Hongkou Nature Reserve[J]. Chinese Journal of Applied and Environmental Biology, 2014, 20(3): 468−473.
[28] 杨宁, 邹冬生, 杨满元, 等. 衡阳紫色土丘陵坡地不同植被恢复阶段土壤微生物群落多样性的变化[J]. 林业科学, 2016, 52(8):146−156. Yang N, Zou D S, Yang M Y, et al. Variations of soil microbial community diversity in purple soils at different re-vegetation stages on sloping-land in Hengyang, Hunan Province[J]. Scientia Silvae Sinicae, 2016, 52(8): 146−156.
[29] 梁晶, 王庆成, 许丽娟, 等. 抚育对长白山两种林分凋落物分解及土壤的影响[J]. 植物研究, 2015, 35(2):297−303. doi: 10.7525/j.issn.1673-5102.2015.02.018 Liang J, Wang Q C, Xu L J, et al. Efect of thinning on litter decomposition and soil of two stands in Changbai Mountain[J]. Bulletin of Botanical Research, 2015, 35(2): 297−303. doi: 10.7525/j.issn.1673-5102.2015.02.018
[30] 陈立新, 姜一, 段文标, 等. 红松混交林凋落物氮储量及分解释放对土壤氮的影响[J]. 生态学杂志, 2015, 34(1):114−121. Chen L X, Jiang Y, Duan W B, et al. Effect of litter nitrogen storage and nitrogen release of litter decomposition on soil nitrogenin Pinus koraiensis mixed forests[J]. Chinese Journal of Ecology, 2015, 34(1): 114−121.
[31] 孙鹏跃, 徐福利, 王渭玲, 等. 华北落叶松人工林地土壤养分与土壤酶的季节变化及关系[J]. 浙江农林大学学报, 2016, 33(6):944−952. doi: 10.11833/j.issn.2095-0756.2016.06.004 Sun P Y, Xu F L, Wang W L, et al. Seasonal dynamics of soil nutrients and soil enzyme activities in Larix principis-rupprechtii plantations[J]. Journal of Zhejiang A&F University, 2016, 33(6): 944−952. doi: 10.11833/j.issn.2095-0756.2016.06.004
[32] 薛敬意, 唐建维, 沙丽清, 等. 西双版纳望天树林土壤养分含量及其季节变化[J]. 植物生态学报, 2003, 27(3):373−379. doi: 10.3321/j.issn:1005-264X.2003.03.013 Xue J Y, Tang J W, Sha L Q, et al. Soil nutrient contents and their characteristics of seasonal changes under Shorea chinensis forest of Xishuangbanna[J]. Chinese Journal of Plant Ecology, 2003, 27(3): 373−379. doi: 10.3321/j.issn:1005-264X.2003.03.013
[33] Singh J S, Raghubanshi A S, Singh R S, et al. Microbial biomass acts as a source of plant nutrients in dry tropical forest and savanna[J]. Nature, 1989, 338: 499−500. doi: 10.1038/338499a0
[34] 许振羽, 李学鹏, 杜宇, 等. 桑树根际土壤微生物对间作和施氮的响应[J]. 应用生态学报, 2019, 30(6):1983−1992. Xu Z Y, Li X P, Du Y, et al. Responses of soil microbial communities in mulberry rhizophere to intercropping and nitrogen application[J]. Chinese Journal of Applied Ecology, 2019, 30(6): 1983−1992.
[35] 蒋铮, 于倩楠, 乔明锋, 等. 云杉幼树根系分泌物对2种草本植物种子萌发和幼苗生长的影响[J]. 林业科学, 2019, 55(6):160−166. doi: 10.11707/j.1001-7488.20190619 Jiang Z, Yu Q N, Qiao M F, et al. Effects of root exudates from Picea asperata seedlings on the seed germination and seedling growth of two herb species[J]. Scientia Silvae Sinicae, 2019, 55(6): 160−166. doi: 10.11707/j.1001-7488.20190619
[36] 曹小闯, 吴良欢, 马庆旭, 等. 高等植物对氨基酸态氮的吸收与利用研究进展[J]. 应用生态学报, 2015, 26(3):919−929. Cao X C, Wu L H, Ma Q X, et al. Advances in studies of absorption and utilization of amino acids by plants: a review[J]. Chinese Journal of Applied Ecology, 2015, 26(3): 919−929.
[37] 王晶晶, 樊伟, 崔珺, 等. 氮磷添加对亚热带常绿阔叶林土壤微生物群落特征的影响[J]. 生态学报, 2017, 37(24):8361−8373. Wang J J, Fan W, Cui J, et al. Effects of nitrogen and phosphorus addition on soil microbial community characteristics in a subtropical evergreen broadleaved forest[J]. Acta Ecologica Sinica, 2017, 37(24): 8361−8373.
[38] 吴则焰, 林文雄, 陈志芳, 等. 中亚热带森林土壤微生物群落多样性随海拔梯度的变化[J]. 植物生态学报, 2013, 37(5):397−406. doi: 10.3724/SP.J.1258.2013.00397 Wu Z Y, Lin W X, Chen Z F, et al. Variations of soil microbial community diversity along an elevational gradient in mid-subtropical forest[J]. Chinese Journal of Plant Ecology, 2013, 37(5): 397−406. doi: 10.3724/SP.J.1258.2013.00397
[39] 刘秉儒, 张秀珍, 胡天华, 等. 贺兰山不同海拔典型植被带土壤微生物多样性[J]. 生态学报, 2013, 33(22):7211−7220. doi: 10.5846/stxb201208061110 Liu B R, Zhang X Z, Hu T H, et al. Soil microbial diversity under typical vegetation zones along an elevation gradient in Helan Mountains[J]. Acta Ecologica Sinica, 2013, 33(22): 7211−7220. doi: 10.5846/stxb201208061110
[40] 张红, 吕家珑, 曹莹菲, 等. 不同植物秸秆腐解特性与土壤微生物功能多样性研究[J]. 土壤学报, 2014, 51(4):743−752. doi: 10.11766/trxb201311010504 Zhang H, Lü J L, Cao Y F, et al. Decomposition characteristics of different plant straws and soil microbial functional diversity[J]. Acta Pedologoca Sinica, 2014, 51(4): 743−752. doi: 10.11766/trxb201311010504
[41] 裴振, 孔强, 郭笃发. 盐生植被演替对土壤微生物碳源代谢活性的影响[J]. 中国环境科学, 2017, 37(1):373−380. Pei Z, Kong Q, Guo D F. Effect of succession of halophytic vegetation on soil microbial carbon metabolic activity[J]. China Environmental Science, 2017, 37(1): 373−380.
[42] 孙雪, 韩冬雪, 刘岩, 等. 原始红松林土壤理化及微生物碳代谢特征对生长季动态的响应[J]. 南京林业大学学报(自然科学版), 2017, 41(5):18−26. Sun X, Han D X, Liu Y, et al. Responses of soil physicochemical properties and soil microorganism characteristics regareding as carbon metabolism in original Korean pine forest[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2017, 41(5): 18−26.
[43] 张明锦, 陈良华, 张健, 等. 马尾松人工林林窗内土壤动物对凋落物微生物生物量的影响[J]. 应用与环境生物学报, 2016, 22(1):35−42. Zhang M J, Chen L H, Zhang J, et al. Effects of soil fauna on microbial biomass in decomposing litter under artifificial masson pine (Pinus massoniana) forest gap[J]. Chinese Journal of Applied and Environmental Biology, 2016, 22(1): 35−42.
-
期刊类型引用(24)
1. 张秀芸,伍文慧,梁英梅. 落叶松枯梢病在中国的适生性. 生态学报. 2024(07): 3027-3037 . 百度学术
2. 葛婉婷,刘莹,赵智佳,张珅,李洁,杨桂娟,曲冠证,王军辉,麻文俊. 不同气候情景下黄心梓木在我国的潜在适生区预测. 林业科学. 2024(11): 63-74 . 百度学术
3. 汤思琦,武扬,梁定东,郭恺. 未来气候变化下栎树猝死病菌在中国的适生性分析. 生态学报. 2023(01): 388-397 . 百度学术
4. 刘璐璐,赵亮,蔺诗颖,冯建龙. 基于MaxEnt和GARP的阿蒙森海域南极磷虾(EUPHAUSIA SUPERBA)的分布区预测. 海洋与湖沼. 2023(02): 399-411 . 百度学术
5. 唐雨薇,张晓龙,张雪云,吕佩锋,罗乐. 基于GIS与AHP分析法的单叶蔷薇生态适宜性评价. 绿色科技. 2023(13): 205-208+213 . 百度学术
6. 王广平,李成,王书砚,刘超,杨君珑. 宁夏罗山青海云杉林空间分布特征研究. 农业科学研究. 2023(03): 10-15+23 . 百度学术
7. 张惠惠,孟祥霄,林余霖,陈士林,黄林芳. 基于GMPGIS系统和MaxEnt模型预测人参全球潜在生长区域. 中国中药杂志. 2023(18): 4959-4966 . 百度学术
8. 李盼畔,何旭诺,吴海荣,陈萍,刘明航,武目涛,王亚锋. 多年生豚草在中国的潜在分布预测. 植物检疫. 2022(04): 57-62 . 百度学术
9. 李盼畔,何旭诺,左然玲,吕文刚,吴海荣. 4种蒺藜草属杂草在中国的潜在适生性预测. 杂草学报. 2022(02): 15-23 . 百度学术
10. 林姗,陆兴利,王茹琳,李庆,王明田,郭翔,文刚. RCP8.5情景下气候变化对四川省猕猴桃溃疡病病菌地理分布的影响. 江苏农业科学. 2020(03): 124-129 . 百度学术
11. 王华辰,朱弘,李涌福,伊贤贵,李蒙,南程慧,王贤荣. 中国特有植物雪落樱桃潜在分布及其生态特征. 热带亚热带植物学报. 2020(02): 136-144 . 百度学术
12. 赵金鹏,王茹琳,刘原,陆兴利,王庆,郭翔,文刚,李庆. RCP4.5情景下四川省猕猴桃溃疡病菌适生性分析. 沙漠与绿洲气象. 2020(02): 137-143 . 百度学术
13. 段义忠,王佳豪,王驰,王海涛,杜忠毓. 未来气候变化下西北干旱区4种扁桃亚属植物潜在适生区分析. 生态学杂志. 2020(07): 2193-2204 . 百度学术
14. 陈爱莉,赵志华,龚伟,孔芬,张克亮. 气候变化背景下紫楠在中国的适宜分布区模拟. 热带亚热带植物学报. 2020(05): 435-444 . 百度学术
15. 文雪梅,艾科拜尔·木哈塔尔,木巴来克·阿布都许科尔,阿不都拉·阿巴斯. 基于MaxEnt模型的新疆微孢衣属地衣生境适宜性评价. 武汉大学学报(理学版). 2019(01): 77-84 . 百度学术
16. 常红,刘彤,王大伟,纪孝儒. 气候变化下中国西北干旱区梭梭(Haloxylon ammodendron)潜在分布. 中国沙漠. 2019(01): 110-118 . 百度学术
17. 吕汝丹,何健,刘慧杰,姚敏,程瑾,谢磊. 羽叶铁线莲的分布区与生态位模型分析. 北京林业大学学报. 2019(02): 70-79 . 本站查看
18. 陆兴利,罗伟,李庆,林姗,王茹琳,游超,郭翔,王明田. RCP2.6情景下四川省猕猴桃溃疡病菌潜在分布预测. 湖北农业科学. 2019(18): 49-54 . 百度学术
19. 王蕾,罗磊,刘平,侯晓臣,邱琴,高亚琪,李曦光. 基于MaxEnt模型分析新疆特色林果区春尺蠖发生风险. 新疆农业科学. 2019(09): 1691-1700 . 百度学术
20. 王茹琳,郭翔,李庆,王明田,游超. 四川省猕猴桃溃疡病潜在分布预测及适生区域划分. 应用生态学报. 2019(12): 4222-4230 . 百度学术
21. 赵健,李志鹏,张华纬,陈宏,翁启勇. 基于MaxEnt模型和GIS技术的烟粉虱适生区预测. 植物保护学报. 2019(06): 1292-1300 . 百度学术
22. 王奕晨,郑鹏,潘文斌. 运用GARP生态位模型预测福寿螺在中国的潜在适生区. 福建农林大学学报(自然科学版). 2018(01): 21-25 . 百度学术
23. 邱靖,朱弘,陈昕,汤庚国. 基于DIVA-GIS的水榆花楸适生区模拟及生态特征. 北京林业大学学报. 2018(09): 25-32 . 本站查看
24. 王野,陈磊,白云,张俊娥,刘红霞,田呈明. 云杉矮槲寄生遗传多样性的ISSR分析. 西北植物学报. 2017(11): 2153-2162 . 百度学术
其他类型引用(20)