高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

东北林区10种主要森林类型的蓄积量、生物量和碳储量模型研建

曾伟生 孙乡楠 王六如 王威 蒲莹

曾伟生, 孙乡楠, 王六如, 王威, 蒲莹. 东北林区10种主要森林类型的蓄积量、生物量和碳储量模型研建[J]. 北京林业大学学报, 2021, 43(3): 1-8. doi: 10.12171/j.1000-1522.20200058
引用本文: 曾伟生, 孙乡楠, 王六如, 王威, 蒲莹. 东北林区10种主要森林类型的蓄积量、生物量和碳储量模型研建[J]. 北京林业大学学报, 2021, 43(3): 1-8. doi: 10.12171/j.1000-1522.20200058
Zeng Weisheng, Sun Xiangnan, Wang Liuru, Wang Wei, Pu Ying. Developing stand volume, biomass and carbon stock models for ten major forest types in forest region of northeastern China[J]. Journal of Beijing Forestry University, 2021, 43(3): 1-8. doi: 10.12171/j.1000-1522.20200058
Citation: Zeng Weisheng, Sun Xiangnan, Wang Liuru, Wang Wei, Pu Ying. Developing stand volume, biomass and carbon stock models for ten major forest types in forest region of northeastern China[J]. Journal of Beijing Forestry University, 2021, 43(3): 1-8. doi: 10.12171/j.1000-1522.20200058

东北林区10种主要森林类型的蓄积量、生物量和碳储量模型研建

doi: 10.12171/j.1000-1522.20200058
基金项目: 中国国土勘测规划院招投标项目(GXTC-A-19070081),国家自然科学基金项目(31770676)
详细信息
    作者简介:

    曾伟生,博士,教授级高级工程师。主要研究方向:森林资源清查与林业数学建模。Email:zengweisheng0928@126.com 地址:100714 北京市东城区和平里东街18号国家林业和草原局调查规划设计院

Developing stand volume, biomass and carbon stock models for ten major forest types in forest region of northeastern China

  • 摘要:   目的  林分水平的蓄积量、生物量和碳储量模型或数表,是开展森林资源规划设计调查的必备计量工具。研建东北林区10种主要森林类型的蓄积量、生物量和碳储量模型,既是方法学探索,也为生产实践提供参考成果。  方法  基于东北林区云冷杉林、落叶松林、红松林、樟子松林、栎树林、桦树林、杨树林、榆树林、椴树林和水胡黄林10种主要森林类型的2 000个样地的实测数据,分别利用非线性独立回归估计、非线性误差变量联立方程组和含哑变量的非线性误差变量联立方程组方法,建立了林分水平的蓄积量、生物量和碳储量模型。  结果  基于全部样地通过误差变量联立方程组方法建立的蓄积量、生物量和碳储量总体平均模型,其确定系数分别为0.945、0.805和0.839,而包含森林类型参数的蓄积量、生物量和碳储量哑变量模型,其确定系数分别达到0.959、0.949和0.951。10种主要森林类型的蓄积量、生物量和碳储量模型,确定系数(R2)都在0.86以上,平均预估误差(MPE)都在3%以内,平均百分标准误差(MPSE)大多数在10%以内。蓄积量模型的R2在0.876 ~ 0.980之间,MPE在0.90% ~ 1.95%之间,MPSE在5.14% ~ 11.89%之间;生物量模型的R2在0.864 ~ 0.988之间,MPE在0.66% ~ 2.07%之间,MPSE在3.61% ~ 11.60%之间;碳储量模型的R2在0.866 ~ 0.988之间,MPE在0.67% ~ 1.96%之间,MPSE在3.65% ~ 11.57%之间。  结论  不同森林类型的蓄积量主要取决于林分断面积和平均高,生物量主要取决于蓄积量和林分平均高。含哑变量的非线性误差变量联立方程组方法,是建立林分水平储量模型系统的可行方法。本研究所建立的东北地区10种主要森林类型的蓄积量、生物量和碳储量模型,其预估精度达到森林资源规划设计调查技术规定要求,可以在实践中推广应用。

     

  • 图  1  云冷杉林蓄积量、生物量和碳储量的相对残差分布

    Figure  1.  Distribution of relative residuals for stand volume, biomass and carbon stock models for Picea spp. & Abies spp. forest

    表  1  建模样地主要林分特征参数变化范围

    Table  1.   Ranges of main forest stand parameters for modeling sample plots

    森林类型
    Forest type
    样地数
    Sample plot
    number
    蓄积量/(m3·hm−2)
    Volume/(m3·ha−1)
    生物量/(t·hm−2)
    Biomass/(t·ha−1)
    断面积/(m2·hm−2)
    Basal area/(m2·ha−1)
    平均高
    Mean height/m
    最小值
    Min.
    最大值
    Max.
    最小值
    Min.
    最大值
    Max.
    最小值
    Min.
    最大值
    Max.
    最小值
    Min.
    最大值
    Max.
    云冷杉林 Picea spp. & Abies spp. forest 198 5.29 491.82 6.72 326.25 1.93 45.22 4.53 21.40
    落叶松林 Larix spp. forest 202 5.94 334.97 6.17 268.10 1.33 34.66 6.37 20.08
    樟子松林 Pinus sylvestris var. mongolica forest 200 11.89 476.58 12.02 328.06 3.19 46.87 5.82 20.68
    红松林 Pinus koraiensis forest 200 9.94 669.29 12.30 478.14 3.28 65.43 4.21 19.75
    栎树林 Quercus spp. forest 196 6.47 246.64 6.94 301.55 1.59 35.07 3.56 15.07
    桦树林 Betula spp. forest 201 4.78 212.50 5.45 184.31 1.37 29.37 6.37 15.88
    杨树林 Populus spp. forest 210 2.45 376.62 1.96 284.11 0.58 45.87 5.79 19.85
    榆树林 Ulmus spp. forest 199 25.10 306.16 38.03 359.19 5.05 35.26 6.42 16.64
    椴树林 Tilia spp. forest 196 65.03 385.31 62.07 529.66 10.68 50.17 6.46 17.49
    水胡黄林 Fraxinus mandshurica, Juglans
    mandshurica & Phellodendron amurense forest
    198 35.88 296.93 40.54 251.62 7.84 33.27 8.44 19.54
    下载: 导出CSV

    表  2  独立和联立储量模型的参数估计值和模型评价指标

    Table  2.   Parameter estimates and model evaluation indices of independent and simultaneous stock models

    模型
    Model
    目标变量
    Target
    variable
    参数估计值 Parameter estimate评价指标 Evaluation index
    a0/b0/c0a1/b1a2/b2R2SEETRE/%ASE/%MPE/%MPSE/%
    独立
    Independent
    V 0.831 56 (0.024 34) 1.100 79 (0.007 00) 0.746 32 (0.013 71) 0.945 22.65 0.21 0.00 0.61 9.75
    B 3.599 24 (0.170 57) 0.043 00 (0.011 40) −0.617 75 (0.023 75) 0.812 32.19 0.63 1.23 0.99 14.30
    C 0.477 52 (0.000 31) 0.845 14.01 1.22 1.66 0.89 13.01
    联立
    Simultaneous
    V 0.840 83 (0.026 22) 1.103 15 (0.007 50) 0.738 86 (0.014 52) 0.945 22.61 0.22 0.00 0.61 9.76
    B 3.147 67 (0.129 90) 0.029 72 (0.009 10) −0.541 02 (0.018 69) 0.805 32.81 −0.90 −0.08 1.01 14.29
    C 0.479 45 (0.003 59) 0.839 14.28 −0.72 −0.05 0.91 12.91
    注:括号内数据为标准差。V. 单位面积蓄积量;B. 单位面积生物量;C. 单位面积碳储量;SEE. 估计值的标准差;TRE. 总体相对误差;ASE. 平均系统误差;MPE. 平均预估误差;MPSE. 平均百分标准误差。下同。Notes: data in brackets is SD. V, volume per unit area; B, biomass per unit area; C, carbon stock per unit area; SEE, standard error of estimate; TRE, total relative error; ASE, average system error; MPE, mean prediction error; MPSE, mean percentage standard error. The same below.
    下载: 导出CSV

    表  3  东北林区10种森林类型储量模型的参数估计值和模型评价指标

    Table  3.   Parameter estimates and evaluation indices of stock models for 10 forest types in forest region of northeastern China

    森林类型
    Forest type
    目标变量
    Target
    variable
    参数估计值 Parameter estimate评价指标 Evaluation index
    a0/b0/c0a1/b1a2/b2R2SEETRE/%ASE/%MPE/%MPSE/%
    云冷杉
    Picea spp. &
    Abies spp.
    V 1.110 92 1.108 20 0.654 12 0.968 18.29 −0.32 −0.02 1.40 8.28
    B 2.048 77 0.000 00 −0.399 77 0.936 17.13 −0.04 0.00 1.74 7.72
    C 0.489 02 0.944 7.78 −0.07 −0.01 1.62 7.34
    落叶松
    Larix spp.
    V 1.093 95 1.032 65 0.710 65 0.968 11.66 −0.08 −0.01 1.35 6.70
    B 1.818 69 0.000 00 −0.301 28 0.977 7.85 0.38 −0.02 1.08 4.81
    C 0.488 54 0.977 3.82 0.35 −0.01 1.07 4.79
    樟子松
    Pinus sylvestris
    var. mongolica
    V 1.309 96 1.121 72 0.573 13 0.954 20.40 0.04 0.00 1.37 7.54
    B 1.993 64 0.000 00 −0.427 15 0.958 14.22 0.16 0.00 1.23 6.68
    C 0.497 88 0.958 6.83 0.13 0.00 1.23 6.67
    红松
    Pinus koraensis
    V 1.414 19 1.063 71 0.596 03 0.911 39.76 −0.23 0.00 1.95 11.89
    B 1.391 50 0.000 00 −0.227 46 0.877 27.67 −0.82 −0.08 2.07 11.52
    C 0.483 33 0.892 12.90 −0.68 −0.07 1.94 10.85
    栎树
    Quercus spp.
    V 0.601 32 1.085 50 0.860 68 0.968 8.12 −0.92 0.28 1.37 6.96
    B 2.813 30 0.000 00 −0.394 95 0.969 8.82 0.37 0.00 1.23 5.77
    C 0.481 27 0.971 4.07 0.35 0.00 1.18 5.64
    桦树
    Betula spp.
    V 0.894 57 1.023 98 0.777 91 0.980 5.74 −0.13 −0.01 0.90 5.14
    B 1.904 00 0.000 00 −0.302 37 0.988 3.79 0.03 0.00 0.66 3.61
    C 0.487 10 0.988 1.89 0.02 0.00 0.67 3.65
    杨树
    Populus spp.
    V 1.378 40 1.086 41 0.573 36 0.952 17.31 −0.12 0.09 1.48 7.13
    B 2.832 52 0.000 00 −0.466 15 0.941 13.48 0.69 −0.05 1.55 7.75
    C 0.478 60 0.939 6.49 0.59 −0.05 1.57 8.03
    榆树
    Ulmus spp.
    V 0.938 61 1.033 57 0.768 68 0.924 14.18 0.13 0.01 1.53 8.55
    B 3.473 86 0.000 00 −0.403 54 0.953 12.93 0.00 −0.02 1.06 6.03
    C 0.452 60 0.960 5.34 −0.04 −0.03 0.96 5.48
    椴树
    Tilia spp.
    V 0.966 60 1.223 60 0.513 24 0.876 24.03 −0.85 0.61 1.72 10.01
    B 3.503 66 0.000 00 −0.453 16 0.864 31.94 0.04 0.02 1.98 11.60
    C 0.476 25 0.866 15.07 0.07 0.03 1.96 11.57
    水胡黄
    F. mandshurica,
    J. mandshurica &
    P. amurense
    V 0.865 43 1.095 14 0.717 54 0.887 16.67 0.03 −0.03 1.33 7.94
    B 2.225 80 0.000 00 −0.425 17 0.927 9.97 −0.04 0.05 0.94 5.64
    C 0.475 83 0.933 4.53 −0.06 0.05 0.89 5.34
    下载: 导出CSV
  • [1] IUFRO. International guidelines for forest monitoring[R]. Volume 5. Vienna: IUFRO World Series, 1994.
    [2] IPCC. IPCC guidelines for national greenhouse gas inventory [R/OL]. 2006. [2020−03−11]. http://www.ipcc-nggip.iges.or.jp.
    [3] FAO. Global forest resources assessment 2020: guidelines and specifications[R]. Rome: FRA Working Paper, 2018.
    [4] 张雄清, 张建国, 段爱国. 基于单木水平和林分水平的杉木兼容性林分蓄积量模型[J]. 林业科学, 2014, 50(1):82−87.

    Zhang X Q, Zhang J G, Duan A G. Compatibility of stand volume model for Chinese fir based on tree-level and stand-level[J]. Scientia Silvae Sinicae, 2014, 50(1): 82−87.
    [5] 曾伟生, 杨学云, 陈新云. 单木和林分水平一元和二元材积模型的预估精度对比[J]. 中南林业调查规划, 2017, 36(4):1−6.

    Zeng W S, Yang X Y, Chen X Y. Comparison on prediction precision of one-variable and two-variable volume models on tree-level and stand-level[J]. Central South Forest Inventory & Planning, 2017, 36(4): 1−6.
    [6] Jagodziński A M, Dyderski M K, Gesikiewicz K, et al. Tree and stand level estimations of Abies alba Mill. aboveground biomass[J]. Annals of Forest Science, 2019, 76: 56. doi: 10.1007/s13595-019-0842-y.
    [7] 中华人民共和国农林部. 立木材积表 (LY208—77)[S]. 北京: 中国标准出版社, 1977.

    Agriculture and Forestry Ministry of China. Tree volume tables (LY208−77)[S]. Beijing: China Standard Press, 1977.
    [8] Luo Y J, Wang X K, Ouyang Z Y, et al. A review of biomass equations for China’s tree species[J]. Earth System Science Data, 2020, 12(1): 21−40. doi: 10.5194/essd-12-21-2020
    [9] 国家林业局. 立木生物量模型及碳计量参数—落叶松(LY/T 2654—2016)[S]. 北京: 中国标准出版社, 2017.

    State Forestry Administration. Tree biomass models and related parameters to carbon accounting for Larix (LY/T 2654−2016)[S]. Beijing: China Standard Press, 2017.
    [10] 国家林业局. 立木生物量模型及碳计量参数—云杉(LY/T 2655—2016)[S]. 北京: 中国标准出版社, 2017.

    State Forestry Administration. Tree biomass models and related parameters to carbon accounting for Abies (LY/T 2656−2016)[S]. Beijing: China Standard Press, 2017.
    [11] 国家林业局. 立木生物量模型及碳计量参数—冷杉(LY/T 2656—2016)[S]. 北京: 中国标准出版社, 2017.

    State Forestry Administration. Tree biomass models and related parameters to carbon accounting for Picea (LY/T 2656−2016)[S]. Beijing: China Standard Press, 2017.
    [12] 国家林业局. 立木生物量模型及碳计量参数—栎树(LY/T 2658—2016)[S]. 北京: 中国标准出版社, 2017.

    State Forestry Administration. Tree biomass models and related parameters to carbon accounting for Quercus (LY/T 2658−2016)[S]. Beijing: China Standard Press, 2017.
    [13] 国家林业局. 立木生物量模型及碳计量参数—桦树(LY/T 2659—2016)[S]. 北京: 中国标准出版社, 2017.

    State Forestry Administration. Tree biomass models and related parameters to carbon accounting for Betula (LY/T 2659−2016) [S]. Beijing: China Standard Press, 2017.
    [14] Zeng W S. Developing one-variable individual tree biomass models based on wood density for 34 tree species in China[J]. Forest Research, 2018, 7: 1−5. doi: 10.4172/2168-9776.1000217
    [15] Shiver B D, Brister G H. Tree and stand volume functions for Eucalyptus saligna[J]. Forest Ecology and Management, 1992, 47(Suppl.1–4): 211−223.
    [16] Næsset E. Stand volume functions for Picea abies in western Norway[J]. Scandinavian Journal of Forest Research, 1995, 10(1): 42−50.
    [17] Næsset E, Tveite B. Stand volume functions for Picea abies in eastern, central and northern Norway[J]. Scandinavian Journal of Forest Research, 1999, 14: 164−174. doi: 10.1080/02827589950152890.
    [18] Chamshama S A O, Mugasha A G, Zahabu E. Stand biomass and volume estimation for Miombo woodlands at Kitulangalo, Morogoro, Tanzania[J]. Southern African Forestry Journal, 2004, 200: 59−69. doi: 10.1080/20702620.2004.10431761.
    [19] Castedo-Dorado F, Gómez-García E, Diéguez-Aranda U, et al. Aboveground stand-level biomass estimation: a comparison of two methods for major forest species in northwest Spain[J]. Annals of Forest Science, 2012, 69: 735−746. doi: 10.1007/s13595-012-0191-6.
    [20] Usoltsev V A, Shobairi S O R, Chasovskikh V P. Triple harmonization of transcontinental allometric of Picea spp. and Abies spp. forest stand biomass[J]. Ecology, Environment and Conservation, 2018, 24(4): 1966−1972.
    [21] Jagodziński A M, Dyderski M K, Gesikiewicz K, et al. How do tree stand parameters affect young Scots pine biomass? Allometric equations and biomass conversion and expansion factors[J]. Forest Ecology and Management, 2018, 409: 74−83. doi: 10.1016/j.foreco.2017.11.001
    [22] Jagodziński A M, Dyderski M K, Gesikiewicz K, et al. Tree- and stand-level biomass estimation in a Larix decidua Mill. chronosequence[J/OL]. Forests, 2018, 9: 587 [2020−01−13]. https://www.mdpi.com/1999-4907/9/10/587.
    [23] Jagodziński A M, Dyderski M K, Gęsikiewicz K, et al. Effects of stand features on aboveground biomass and biomass conversion and expansion factors based on a Pinus sylvestris L. chronosequence in western Poland[J]. European Journal of Forest Research, 2019, 138: 673−683. doi: 10.1007/s10342-019-01197-z
    [24] Burt A, Calders K, Cuni-Sanchez A, et al. Assessment of bias in pan-tropical biomass predictions[J]. Frontiers in Forests and Global Change, 2020, 3: 12. doi: 10.3389/ffgc.2020.00012
    [25] 方精云, 刘国华, 徐嵩龄. 我国森林植被的生物量和净生产量[J]. 生态学报, 1996, 16(5):497−508.

    Fang J Y, Liu G H, Xu S L. Biomass and net production of forest vegetation in China[J]. Acta Ecologica Sinica, 1996, 16(5): 497−508.
    [26] Fang J Y, Chen A P, Peng C H, et al. Changes in forest biomass carbon storage in China between 1949 and 1998[J]. Science, 2001, 292: 2320−2322. doi: 10.1126/science.1058629
    [27] 余松柏, 叶金盛, 王登峰, 等. 编制林分形高表估计林分蓄积量方法的研究[J]. 中南林业调查规划, 2005, 24(3):5−9. doi: 10.3969/j.issn.1003-6075.2005.03.002.

    Yu S B, Ye J S, Wang D F, et al. Study on method of establishing stand form-height table for volume estimation[J]. Central South Forest Inventory & Planning, 2005, 24(3): 5−9. doi: 10.3969/j.issn.1003-6075.2005.03.002.
    [28] 侯振宏, 张小全, 徐德应, 等. 杉木人工林生物量和生产力研究[J]. 中国农学通报, 2009, 25(5):97−103.

    Hou Z H, Zhang X Q, Xu D Y, et al. Study on biomass and productivity of Chinese fir plantation[J]. Chinese Agricultural Science Bulletin, 2009, 25(5): 97−103.
    [29] 王斌, 刘某承, 张彪. 基于森林资源清查资料的森林植被净生产量及其动态变化研究[J]. 林业资源管理, 2009(1):35−42. doi: 10.3969/j.issn.1002-6622.2009.01.009.

    Wang B, Liu M C, Zhang B. Dynamics of net production of China forest vegetation based on forest inventory data[J]. Forest Resources Management, 2009(1): 35−42. doi: 10.3969/j.issn.1002-6622.2009.01.009.
    [30] 王艳婷, 李崇贵, 郝利军. 用岭估计估测以分类为前提的森林蓄积量[J]. 东北林业大学学报, 2014, 42(9):39−42, 57. doi: 10.3969/j.issn.1000-5382.2014.09.009.

    Wang Y T, Li C G, Hao L J. Forest volume estimation on the premise of classification by ridge estimate[J]. Journal of Northeast Forestry University, 2014, 42(9): 39−42, 57. doi: 10.3969/j.issn.1000-5382.2014.09.009.
    [31] Hou Y N, Wu H L, Zeng W X, et al. Conversion parameters for stand biomass estimation of four subtropical forests in southern China[C/OL]. Beijing: Proceedings of 2016 International Conference on Environment, Climate Change and Sustainable Development, 2017 [2020−03−18]. DOI: 10.12783/dteees/eccsd2016/5846.
    [32] Mei G Y, Sun Y J, Saeed S. Models for predicting the biomass of Cunninghamia lanceolata trees and stands in southeastern China[J/OL]. PLoS ONE, 2017, 12(1): e0169747 [2020−03−15]. https://pubmed.ncbi.nlm.nih.gov/28095512/.
    [33] Zhao M M, Yang J L, Zhao N, et al. Estimation of China’s forest stand biomass carbon sequestration based on the continuous biomass expansion factor model and seven forest inventories from 1977 to 2013[J]. Forest Ecology and Management, 2019, 448: 528−534. doi: 10.1016/j.foreco.2019.06.036.
    [34] Dong L H, Zhang L J, Li F R. Evaluation of stand biomass estimation methods for major forest types in the eastern Da Xing’an Mountain, northeast China[J]. Forests, 2019, 10: 715. doi: 10.3390/f10090715.
    [35] 曾伟生. 云南省森林生物量与生产力研究[J]. 中南林业调查规划, 2005, 24(4):1−3, 13. doi: 10.3969/j.issn.1003-6075.2005.04.001.

    Zeng W S. Research on forest biomass and productivity in Yunnan[J]. Central South Forest Inventory & Planning, 2005, 24(4): 1−3, 13. doi: 10.3969/j.issn.1003-6075.2005.04.001.
    [36] 欧阳钦. 长沙望城区森林植被生物量及碳储量研究[D]. 长沙: 中南林业科技大学, 2014.

    Ouyang Q. The research on biomass and carbon storage of forest vegetations in Wangcheng District, Changsha[D]. Changsha: Central South University of Forestry and Technology, 2014.
    [37] 梁兴军. 济南市森林植被生物量和碳储量调查研究[D]. 济南: 山东师范大学, 2015.

    Liang X J. Research on biomass and carbon storage of forest vegetation in Jinan City[D]. Jinan: Shandong Normal University, 2015.
    [38] 陈小林. 湖南安仁县森林生态系统生物量和碳贮量研究[D]. 长沙: 中南林业科技大学, 2016.

    Chen X L. Biomass and carbon storage of typical forest ecosystem in Anren County of Hunan Province[D]. Changsha: Central South University of Forestry and Technology, 2016.
    [39] Soares P, Tome M. Biomass expansion factors for Eucalyptus globulus stands in Portugal[J]. Forest Systems, 2012, 21(1): 141−152. doi: 10.5424/fs/2112211-12086.
    [40] 李海奎, 雷渊才. 中国森林植被生物量和碳储量评估[M]. 北京: 中国林业出版社, 2010.

    Li H K, Lei Y C. Estimation and evaluation of forest biomass and carbon storage in China[M]. Beijing: China Forestry Publishing House, 2010.
    [41] 曾伟生, 唐守正. 非线性模型对数回归的偏差校正及与加权回归的对比分析[J]. 林业科学研究, 2011, 24(2):137−143.

    Zeng W S, Tang S Z. Bias correction in logarithmic regression and comparison with weighted regression for non-linear models[J]. Forest Research, 2011, 24(2): 137−143.
    [42] 唐守正, 郎奎建, 李海奎. 统计和生物数学模型计算(ForStat教程)[M]. 北京: 科学出版社, 2008.

    Tang S Z, Lang K J, Li H K. Statistics and computation of biomathematical models (ForStat textbook)[M]. Beijing: Science Press, 2008.
    [43] Zeng W S, Zhang H R, Tang S Z. Using the dummy variable model approach to construct compatible single-tree biomass equations at different scales:a case study for Masson pine (Pinus massoniana) in southern China[J]. Canadian Journal of Forest Research, 2011, 41(7): 1547−1554. doi: 10.1139/x11-068
    [44] Zeng W S. Using nonlinear mixed model and dummy variable model approaches to construct origin-based single tree biomass equations[J]. Trees, 2015, 29(1): 275−283. doi: 10.1007/s00468-014-1112-0
    [45] 曾伟生, 唐守正. 立木生物量模型的优度评价和精度分析[J]. 林业科学, 2011, 47(11):106−113. doi: 10.11707/j.1001-7488.20111117

    Zeng W S, Tang S Z. Goodness evaluation and precision analysis of tree biomass equations[J]. Scientia Silvae Sinicae, 2011, 47(11): 106−113. doi: 10.11707/j.1001-7488.20111117
    [46] 国家质量监督检验检疫总局, 国家标准化管理委员会. 森林资源规划设计调查技术规程(GB/T 26424—2010)[S]. 北京: 中国标准出版社, 2011.

    General Administration of Quality Supervision, Inspection and Quarantine, Standardization Administration of PRC. Technical regulations for inventory for forest management planning and design[S]. Beijing: Standards Press of China, 2011.
  • 加载中
图(1) / 表(3)
计量
  • 文章访问数:  717
  • HTML全文浏览量:  166
  • PDF下载量:  99
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-06
  • 修回日期:  2020-06-14
  • 网络出版日期:  2021-03-03
  • 刊出日期:  2021-04-16

目录

    /

    返回文章
    返回