General methods for quantitative assessment of in-forest landscape quality of urban forest
-
摘要:目的 针对城市森林林内景观质量评价研究中存在的理论研究多、评价指标体系不通用等问题,构建区域性通用的林内景观质量评价指标体系,并提出林内景观分级标准,为城市森林结构优化、经营管理和生产实践提供技术支撑。方法 以城市公园风景游憩林、郊野公园风景游憩林、居住区城市森林、城郊山地风景林等为研究对象,在林分尺度上筛选评价指标,以因子分析法构建林分结构质量综合指数,采用Topsis法结合聚类分析对城市森林林内景观质量等级进行划分。结果 (1)4种类型的城市森林筛选出15个评价指标用于城市森林林内景观评价,将林内景观分为优、高、中、低4个等级。(2)城市森林林内景观质量评价,核心指标包括乔木树种丰富度、林下物种丰富度、林型、林分整洁度、胸径分化度、郁闭度、观赏器官多样性、色彩季相多样性、单位面积胸高断面积、冠径比等。(3)不同类型城市森林最优景观的指标特点不完全相同。城市公园风景游憩林:相对枝下高最小,径高比较小,冠径比较大,林分整洁度高;居住区城市森林:单位面积胸高断面积最大,相对枝下高最小,冠径比较小,季相丰富度高。郊野公园风景游憩林:单位面积胸高断面积、树高分化度和径高比最大,乔木树种种类最多,观赏器官较多样,多为混交林。城郊山地风景林:郁闭度适中、灌木相对高度最低、林分垂直层次和林下物种较丰富、林分整洁度高。结论 总体上看,树种组成丰富、适度混交、林内整洁、胸径分化度和郁闭度都适宜的林分和观赏器官较多样,季相富于变化的景观更受人们的喜爱,不同类型城市森林的林分密度和冠径比的最优范围不同。在城市森林经营管理中,建议适当丰富林木树种种类,注重彩色植物和多季相树种的配置,适当调整林分密度,及时修枝、割灌,清除林下杂乱的枯落物和生活垃圾,保持林分整洁,并根据城市森林类型适时采取不同的经营管理措施,以提高其景观质量。Abstract:Objective In view of the problems existing in the study of in-forest landscape quality assessment of urban forest, such as many theoretical studies, poor unification in assessment index systems, a regional universal in-forest landscape quality evaluation index system of urban forest was constructed, and the classification standard of in-forest landscape was proposed, which could provide technical support for the optimization of urban forest structure, management and production practice.Method Four types of urban forests, including scenic-recreational forest both in urban park and country park, urban forest of residential areas and scenic forest of suburban mountainous areas, were taken as the research objects. The evaluation indicators were selected on the scale of forest stand, the comprehensive quality index of forest structure quality was constructed by factor analysis, and the in-forest landscape quality grade of urban forest was classified by TOPSIS method and cluster analysis.Result (1) Fifteen evaluation indices were selected based on four types of urban forest and were used for evaluation of in-forest landscape of urban forest. The in-forest landscape of urban forest was divided into four grades: excellent, high, medium and low. (2) The in-forest landscape quality evaluation index system of urban forest was established, the core indicators including tree species richness (TSR), species richness under canopy (SRC), the forest type (FT), cleanliness of the forest stand (CFS), dispersion of DBH (DDBH), canopy coverage (CC), ornamental organ diversity (OOD), seasonal abundance (SA), breast height basal area per hectare (BAH), ratio of crown width to diameter (RCWD), etc. (3) The index characteristics of the optimal landscape of different types of urban forests were not exactly the same. Scenic-recreational forest of urban park: relative under branch height (RBH) was the smallest, ratio of diameter-height (RDH) was smaller, RCWD was larger, CFS was high. Urban forest of residential areas: BAH was the largest, RBH was the smallest, RCWD was smaller, SA was high. Scenic-recreational forest of country park: BAH, dispersion of tree height (DTH) and RDH were the largest, tree species were the most, with diverse ornamental organs, mostly mixed forest. Scenic forest of suburban mountainous areas: CC was moderate, relative shrub height (RSH) was the lowest, stand vertical stratum (SS) and species under the canopy were richer, CFS was high.Conclusion Seen as a whole, forests or landscapes which are of abundant tree species, mixed moderately, neat in-forest condition, both dispersion of DBH and canopy coverage are suitable, and with abundant ornamental organs and seasonal changes are more popular. The optimal range of stand density and RCWD is different for varied types of urban forest. In the management of urban forests, it is suggested to enrich the tree species appropriately, pay attention to the configuration of colored plants and multi-seasonal tree species, adjust the density of the forest properly, timely pruning, cutting and irrigation, remove litter and domestic garbage under the forest, keep the forest tidy, and give different managerial measures timely according to different urban forest types to improve its landscape quality.
-
Keywords:
- urban forest /
- in-forest landscape /
- scenic beauty /
- landscape quality classification
-
小流域是我国水土流失综合治理的基本单元,流域短时间内地形地貌与土壤特征相对稳定,无人为影响下植被覆盖不会发生明显变化,因此短期内降雨是引起小流域土壤侵蚀的主要动力和重要因素[1-2]。降水的时程雨型是指降雨过程中雨量随历时的分配,雨型对入渗、径流和侵蚀过程有重要影响[3]。国内外学者提出了多种雨型用以描述降雨时程分配的不均匀性,Huff[4]将降雨历时等分为4个时段,根据峰值雨强出现时段划分雨型,Huff雨型没有包括均匀型降雨。邵卫云等[5]提出了双矩形雨型,用“平均降雨强度”和“峰值降雨强度”描述降雨时程分配的不均匀性。邬铃莉等[6]利用WEPP模型根据最大30分钟雨强(I30)出现的时间将不同降雨划分为递增型、峰值型、递减型和均值型。殷水清等[3]将中国的降雨过程分为降雨前期集中型(I型)、降雨中期集中型(Ⅱ型)、降雨后期集中型(Ⅲ型)和降雨均匀分布型(Ⅳ型),较好的描述了降雨时程分配的不均匀性。黄土区的雨型研究多采用王万忠等[7]的雨型分类,将降雨划分为短时局地雷暴雨(A型)、锋面性降雨夹有雷暴性质的暴雨(B型)、长历时锋面降雨(C型),但忽略了降雨时程分配的不均匀性。
黄土高原区是我国水土流失最严重的地区之一,研究黄土区的降雨−径流关系对水土流失治理具有重要意义[8-10]。许多研究者对黄土区不同小流域的降雨径流关系进行了研究,郑粉莉等[11]利用黄土区多年观测资料将侵蚀性降雨分为突发型、峰值型和均匀型3种雨型,其中突发型降雨引起的侵蚀量最大,均匀型降雨引起的侵蚀量最小。郑芳等[12]采用王万忠[7]的雨型分类研究了晋西黄土区降雨对小流域产流的影响,结果表明A型降雨条件下洪峰流量最大,C型降雨条件下径流量最大。罗娅等[13]分析了黄土区径流产沙与雨强和植被盖度变化的关系,表明植被盖度变化对产流和产沙的影响较雨强更明显。纳磊等[14]对晋西黄土区不同土地利用小流域径流关系进行了研究,得出不同降雨条件下封禁、人工林小流域场降雨地表径流系数明显小于农地和半农半牧小流域。黄明等[15]研究了晋西黄土区不同植被覆盖小流域的产流特征,结果表明自然封禁小流域对径流的拦蓄作用远大于人工梯田小流域,对于黄土高原典型暴雨的预防效果最佳。
尽管对黄土区小流域降雨−径流关系的研究很多,对降雨过程中雨量随历时的分配(雨型)对径流和侵蚀过程影响的研究相对较少。因此,本研究以晋西黄土区蔡家川流域为研究对象,利用多年实测降雨−径流资料,研究降雨过程(雨型)对小流域产流过程的影响,探明黄土区不同雨型条件径流形成过程的差异,以期为小流域尺度上产汇流分析提供依据。
1. 研究区概况
研究区位于山西省吉县蔡家川流域,为黄河的三级支流。地理坐标为110°39′45″ ~ 110°47′45″E、36°14′24″ ~ 36°18′23″N,海拔高度为900 ~ 1 513 m,呈由西向东走向,全长约12.15 km,流域面积为38 km2(图1)。属于典型的梁状丘陵沟壑区,平均降雨量为575.9 m,主要集中在7—9月,年平均气温为7 ~ 10 ℃。流域内以褐土为主,抗蚀性差,水土流失严重。流域上游主要为由辽东栎(Quercus liaotungensis)、山杨(Populus davidiana)、黑桦(Betula dahurica)、北京丁香(Syringa pekinensis)等组成的天然次生林,中游为由刺槐(Robinia pseudoacacia)、油松(Pinus tabuliformis)、侧柏(Platycladus orientalis)组成的人工林,下游为荒草地和农地。
2. 研究方法
2.1 研究流域
为了便于进行长期的水文观测,在蔡家川流域内的各小流域中安装自记雨量计实时监测降雨过程,在各小流域出口处选择控制断面,修建复合型量水堰,安装自记水位计测定径流过程。本研究选择地形地貌特征相近的农地小流域和封禁小流域为研究对象,封禁小流域的主要树种为30年的山杨、辽东栎、油松、虎榛子(Ostryopsis davidiana)等,农地小流域以水平梯田、荒草地为主,水平梯田主要种植玉米(Zea mays)、土豆(Solanum tuberosum),荒草地主要植物为虎榛子、白刺花(Sophora davidii)和蒿类。小流域基本情况见表1。
表 1 研究流域基本情况Table 1. Basic information of studied small watersheds流域类型
Watershed type流域土地利用类型
Land use of watershed森林覆盖率
Forest cover rate/%流域面积
Watershed area/km2流域长度
Watershed length/km形状系数
Shape factor河网密度
River density/
(km·km− 2)沟道比降
Channel gradient/%农地小流域
Agricultural small watershed以水平梯田为主
Based on the terraced fields15.2 0.71 1.38 2.54 1.81 8.70 封禁小流域
Closed small watershed以次生植被为主
Mainly secondary vegetation99 1.93 3.00 4.40 4.10 8.40 2.2 资料选取与数据处理
(1)降雨数据选取。本研究所用降雨数据为蔡家川流域2007—2017年5—9月(雨季)每5 min记录1次的降雨资料。侵蚀性降雨指能够引起土壤侵蚀的降雨[16-18],根据张建军等在蔡家川地区的研究结果,降雨量10 mm以上的降雨为侵蚀性降雨[19]。蔡家川流域5—9月(雨季)降水占全年降水量的78.3% ~ 83.2%,且侵蚀性降雨集中发生在雨季,所以利用5—9月降雨数据能够较好的反应蔡家川流域降雨特征。因此本文选取5—9月份74场降雨量10 mm以上的侵蚀性降雨过程作为研究对象。
(2)雨型划分。本研究采用殷水清等[3]的雨型分类办法,对降雨数据进行量纲−变换,具体步骤为:首先进行数据量纲处理,将累积降雨历时(t,t = 1,2,…,T)除以总历时(T)作为横坐标,累积降雨量(Pt)除以总降雨量(P)作为纵坐标,得到量纲−累积降雨过程曲线。再根据降雨量集中出现在降雨历时0 ~ 40%、40% ~ 60%、60% ~ 100%位置处以及均匀分布于整个降雨过程,将降雨过程分为前期型降雨(Ⅰ型)、中期型降雨(Ⅱ型)、后期型降雨(Ⅲ型)和均匀型降雨(Ⅳ型),并利用LSD多重比较对各雨型的特征值进行差异性检验。
(3)降雨侵蚀力计算。降雨侵蚀力可以反映由降雨引起土壤侵蚀的潜在能力。指标EI30是最广泛使用的降雨侵蚀力指标,但是指标EI30中动能E的整理计算繁琐复杂[20-21]。章文波[22]确定了我国降雨侵蚀力指标为降雨量和最大10 min雨强的乘积PI10,其精度与常用的侵蚀力指标EI30相当,并建立了指标PI10与EI30的转换关系:EI30 = 0.177 3·PI10。本研究以PI10表征不同雨型下降雨侵蚀力的特征。
(4)径流数据处理。选取蔡家川流域2010—2017年农地小流域和封禁小流域场降雨径流数据,其中降雨−产流事件历时指降雨起始时刻至洪水退却时刻所经历的时间。根据已标定的水位流量关系曲线计算流量。研究流域面积小,地下径流少且稳定,因此适用直线平割法分割地表径流量与地下径流量。。
3. 结果与分析
3.1 蔡家川流域的雨型特征
根据降雨量在时间轴上集中出现的位置,蔡家川流域的降雨过程(雨型)可分为前期型降雨(Ⅰ型)、中期型降雨(Ⅱ型)、后期型降雨(Ⅲ型)和均匀型降雨(Ⅳ型)。图3为不同雨型的量纲−累积降雨量历时曲线,Ⅰ型曲线呈上凸状,降雨在前期集中;Ⅱ型曲线先下凹再上凸,降雨在中期集中;Ⅲ型曲线呈下凹状,降雨在后期集中;Ⅳ型曲线平缓上升,雨量均匀分布整个降雨过程。将量纲−累积降雨历时等分为10个时段(0 ~ 1),其中Ⅰ型降雨的雨量集中在前0.4时段内,累积雨量达到次降雨量的68.4%,前0.2时段内的累积雨量占比高达40%左右,随着时间推移降雨量迅速减小并稳定在5%左右;Ⅱ型降雨的雨量主要集中在0.4 ~ 0.6时段内,累积雨量达到次降雨量的41.9%;Ⅲ型降雨的雨量主要集中在0.6至降雨结束时段内,累积雨量达到次降雨量55.9%,时段降雨量较Ⅰ型和Ⅱ型降雨更平缓;Ⅳ型降雨的时段雨量均在5% ~ 15%之间,最均衡稳定(图4)。
表2为各雨型的降雨特征值,其中不同字母表示各雨型间特征值差异性显著(P < 0.05)。4种雨型的平均雨强、I10、I30、I60差异显著(P < 0.05),降雨量和降雨历时的差异不显著(P > 0.05),Ⅰ型降雨与Ⅱ型降雨的特征值差异不显著(P > 0.05),Ⅰ型、Ⅱ型降雨的雨强特征与Ⅲ型、Ⅳ型降雨差异显著性(P < 0.05)。Ⅰ型降雨频次最高,发生33次,占比44.6%,是研究区的主要雨型,Ⅱ型降雨频次最少,仅发生10次,占比13.5%,雨型Ⅲ和雨型Ⅳ降雨频次相近,占比20.3%、21.6%。Ⅰ型降雨的平均雨量最大,为24.6 mm,平均降雨历时短,为440 min,降雨侵蚀力最强(PI10 = 1 038.86),平均雨强(7.23 mm/h)、I10(31.36 mm/h)、I30(20.16 mm/h)、I60(12.93 mm/h)均高于其他雨型;Ⅱ型降雨的平均雨量较小,为19.42 mm,平均降雨历时最短,为428 min,平均雨强较大,为6.72 mm/h,降雨侵蚀力(PI10 = 591.32)远小于Ⅰ型降雨;Ⅲ型降雨的平均雨量为22.23 mm,平均降雨历时为586 min,平均雨强为4.43 mm/h,降雨特征均衡介于Ⅰ型和Ⅳ型降雨之间。Ⅳ型降雨平均降雨历时最长,为715 min,平均降雨量最小,为17.84 mm,降雨侵蚀力最弱(PI10 = 117.83),平均雨强(1.88 mm/h)、I10(5.96 mm/h)、I30(4.59 mm/h)、I60(3.85 mm/h)远低于其他雨型。Ⅰ型、Ⅱ型降雨多为短历时强降雨,其中Ⅱ型降雨为小雨量强降雨,Ⅲ型降雨多为降雨特征均衡的降雨,Ⅳ型降雨多为长历时小雨强降雨。Ⅰ型降雨的平均雨强约为Ⅳ型降雨的3.8倍,I10约为Ⅳ型降雨的5.2倍,PI10约为Ⅳ型降雨的8.8倍。
表 2 不同雨型的降雨特征Table 2. Rainfall characteristics of different rainfall patterns雨型
Rainfall
pattern降雨量
Precipitation/mm降雨历时
Rainfall
duration/min平均雨强
Average rainfall intensity/(mm·h− 1)I10/
(mm·h− 1)I30/
(mm·h− 1)I60/
(mm·h− 1)PI10 频次
Frequency占总频次比例
Proportion in total frequency/%Ⅰ 24.60a 440.00a 7.23a 31.36a 20.16a 12.93a 1 038.86 33 44.6 Ⅱ 19.42a 428.33a 6.72a 26.13a 16.87a 10.73a 591.32 10 13.5 Ⅲ 22.23a 586.25a 4.43b 17.18b 11.54b 7.02b 470.79 15 20.3 Ⅳ 17.84a 715.94b 1.88c 5.96c 4.59c 3.85c 117.83 16 21.6 注:同一列不同字母表示特征值差异性显著(P < 0.05)。I10. 最大10 min雨强;I30. 最大30 min雨强;I60. 最大60 min雨强。下同。Notes: different small letters in the same column mean significant difference(P < 0.05). I10, maximum 10 minutes rainfall intensity; I30, maximum 30 minutes rainfall intensity; I60, maximum 60 minutes rainfall intensity. The same below. 图5为不同月份各雨型累积降雨量和降雨频次比例,由图5可知,流域内各雨型降雨集中发生在7、8月份,占雨季各雨型总降雨量的71.7%,7月份降雨量最大为88.77 mm,5月份降雨量最小仅为7.42 mm。在6—8月中Ⅰ型降雨的降雨量和降雨频次远高于其他雨型,7月份Ⅰ型降雨的降雨量占总降雨量的65%(57.7 mm),而在降水较少的5月和9月Ⅰ型降雨较少出现,表明短历时强降雨集中分布在雨水充足的6—8月;Ⅱ型和Ⅲ型降雨也多分布在6—8月,降雨量和频次分布相对均衡;Ⅳ型降雨在5月和9月出现较多,雨量和降雨频次也高于其他雨型,而在6—8月发生频次较少,表明长历时小雨强的降雨多发生在雨季的前期和后期。
3.2 雨型对小流域径流的影响
不同雨型条件下农地小流域和封禁小流域产流特征值如表3所示。不同雨型条件下农地小流域的径流深、洪峰流量的排序为:Ⅰ型降雨 > Ⅲ型降雨 > Ⅱ型降雨 > Ⅳ型降雨,其中,Ⅰ型降雨的径流深为1.87 mm,洪峰流量为3.28 L/(s.hm2),明显高于其他雨型。Ⅳ型降雨的径流深和洪峰流量最小,分别为0.076 mm、0.035 L/(s.hm2)。Ⅰ型降雨形成的径流深、洪峰流量是Ⅳ型降雨的24.6倍和93.7倍。洪峰滞后时间指洪峰出现时间滞后雨峰的时间,反映流域产流对降雨的响应情况。不同雨型条件下农地小流域的洪峰滞后时间排序为:Ⅳ型降雨(2.21 h) > Ⅱ型降雨(1.12 h) > Ⅲ型降雨(0.96 h) > Ⅰ型降雨(0.68 h)。封禁小流域在不同雨型条件下的产流规律与农地小流域相近。Ⅰ型降雨条件下的径流深、洪峰流量远高于其他雨型,洪峰对雨峰响应灵敏,形成洪峰速度快,雨型Ⅲ次之;Ⅱ型和Ⅳ型降雨条件下的径流深均较小,但Ⅱ型降雨形成的洪峰流量较Ⅳ型降雨大,形成洪峰速度更快。
表 3 不同雨型条件下农地小流域和封禁小流域产流特征Table 3. Runoff characteristics of the agricultural small watershed and the closed small watershed under different rainfall patterns小流域
Small watershed雨型
Rainfall pattern径流量
Runoff/m3基流量
Base flow/m3径流深
Depth of runoff/mm洪峰流量/(L·s− 1·hm− 2)
Peak discharge/(L·s− 1·ha− 1)洪峰滞后时间
Peak lag time/h农地小流域
Agricultural small watershedⅠ 1 384.89 58.15 1.869 4 3.283 2 0.676 Ⅱ 88.37 30.74 0.081 2 0.074 9 1.123 Ⅲ 361.82 138.98 0.314 0 0.323 7 0.958 Ⅳ 108.03 53.76 0.076 5 0.034 8 2.211 封禁小流域
Closed small watershedⅠ 720.17 154.70 0.292 6 0.171 9 1.116 Ⅱ 229.44 42.94 0.096 5 0.033 9 1.748 Ⅲ 787.77 447.87 0.175 9 0.129 9 1.640 Ⅳ 256.02 74.52 0.093 9 0.033 1 3.243 对比农地小流域和封禁小流域的产流特征可知,在Ⅰ型、Ⅲ型降雨条件下农地小流域的径流深和洪峰流量均高于封禁小流域,尤其在Ⅰ型降雨条件下农地小流域的径流深和洪峰流量是封禁小流域的6.4倍和19.1倍;而在Ⅱ型和Ⅳ型降雨条件下封禁小流域的径流深和洪峰流量却略高于农地小流域。各雨型条件下封禁小流域的洪峰出现时间均滞后于农地小流域,与农地小流域相比封禁小流域可推迟洪峰出现时间0.5 ~ 1 h。表明封禁小流域较农地小流域能有效拦蓄径流,削减洪峰流量,延长洪峰出现时间,尤其对大雨量强降雨的调节作用更为明显。因此,在黄土高原营造水土保持植被时应该仿拟自然开展封山育林。
不同雨型的累积降雨量和累积径流量比例如图6所示,Ⅰ型降雨的累积降雨量占总降雨量的48.2%,在Ⅰ型降雨条件下农地和封禁小流域的产流量分别占总产流量的89.7%、61.5%,远高于Ⅰ型降雨的累积降雨量占比及其他雨型的产流量。表明Ⅰ型降雨是引起小流域产流的主要雨型,封禁小流域对主要产流雨型的拦蓄能力更明显。
3.3 小流域降雨−径流相关分析
表4和表5为农地小流域和封禁小流域降雨−径流相关性统计,由表4可知,农地小流域在Ⅰ型降雨条件下的径流深、洪峰流量与降雨量、I10、I30、I60显著正相关(P < 0.01),径流深和洪峰流量与I60相关性最高,相关系数分别为0.813、0.890,洪峰滞后时间与雨强显著负相关(− 0.735),与历时显著正相关(0.681);Ⅱ型降雨条件下,洪峰滞后时间与历时相关性极显著(P < 0.01),相关系数为0.957;Ⅲ型降雨条件下,洪峰滞后时间与降雨量和历时显著负相关(P < 0.05),相关系数分别为− 0.683、− 0.738;Ⅳ型降雨条件下,径流深与历时和降雨量相关性极显著为0.962和0.959(P < 0.01)。对比表4和由表5可知,封禁小流域与农地小流域产流的影响因素相近,I10、I30、I60对封禁小流域产流的影响程度较农地小流域小,降雨量及历时较农地小流域影响更大。
表 4 农地小流域降雨−径流相关性统计Table 4. Rainfall-runoff correlation statistics for the agricultural small watershed项目 Item 雨型
Rainfall pattern降雨量
Precipitation平均雨强
Average rainfall intensity降雨历时
Rainfall durationI10 I30 I60 径流深
Depth of runoffⅠ 0.793** 0.176 0.090 0.686** 0.805** 0.813** Ⅱ 0.392 − 0.360 0.214 − 0.321 − 0.291 − 0.271 Ⅲ 0.146 − 0.392 0.494 − 0.198 − 0.031 0.017 Ⅳ 0.962** − 0.278 0.959** − 0.022 0.003 0.041 洪峰流量
Peak dischargeⅠ 0.768** 0.236 − 0.021 0.727** 0.863** 0.890** Ⅱ − 0.175 0.121 − 0.583 0.124 0.239 0.252 Ⅲ 0.111 − 0.399 0.451 − 0.156 − 0.034 0.002 Ⅳ 0.427 0.347 0.255 0.363 0.450 0.524 洪峰滞后时间
Peak lag timeⅠ − 0.148 − 0.735** 0.681** 0.326 0.216 0.179 Ⅱ 0.353 − 0.293 0.957** − 0.293 − 0.434 − 0.360 Ⅲ − 0.683* − 0.263 − 0.738* − 0.015 − 0.396 − 0.388 Ⅳ − 0.501 − 0.328 − 0.289 − 0.474 − 0.477 − 0.509 注:*表示在0.05水平上相关性显著;**表示在0.01水平上相关性显著。下同。Notes: * indicates significant correlation at 0.05 level; ** indicates significant correlation at 0.01 level. The same below. 表 5 封禁小流域降雨−径流相关性统计Table 5. Rainfall-runoff correlation statistics for the closed small watershed项目
Item雨型
Rainfall pattern降雨量
Precipitation平均雨强
Average rainfall intensity降雨历时
Duration of rainfallI10 I30 I60 径流深
Depth of runoffⅠ 0.734** − 0.081 0.296 0.265 0.368 0.371 Ⅱ 0.002 − 0.399 0.092 − 0.525 − 0.449 − 0.309 Ⅲ 0.571 − 0.476 0.852* − 0.556 − 0.448 − 0.274 Ⅳ 0.885** 0.009 0.842** 0.381 0.339 0.373 洪峰流量
Peak dischargeⅠ 0.673** 0.170 0.036 0.581* 0.714** 0.687** Ⅱ − 0.643 0.760 − 0.687 0.635 0.190 0.320 Ⅲ 0.480 − 0.364 0.607 − 0.184 − 0.060 0.212 Ⅳ 0.763** 0.351 0.574 0.650* 0.604* 0.602* 洪峰滞后时间
Peak lag timeⅠ − 0.251 0.295 − 0.452 − 0.578* − 0.391 − 0.389 Ⅱ − 0.943** − 0.441 0.974** − 0.728 − 0.731 − 0.811 Ⅲ − 0.824* 0.632 − 0.802* − 0.843* − 0.746 − 0.604 Ⅳ − 0.428 − 0.340 − 0.169 − 0.484 − 0.441 − 0.352 综合以上分析,在晋西黄土区降雨量和雨强在降雨过程中的分布是影响小流域产流量的主要因素,降雨历时是影响小流域洪峰出现时间的主要因素。降雨量、I30、I60是影响Ⅰ型降雨产流过程主要因素,Ⅰ型降雨条件下的产特过程与降雨要素的相关性最为显著;Ⅱ型降雨的洪峰滞后时间受降雨历时影响显著;Ⅲ型降雨的洪峰滞后时间与降雨量和降雨历时显著负相关;Ⅳ型降雨的产流量受降雨量和降雨历时影响较大。
4. 讨论与结论
4.1 讨 论
研究黄土区降雨过程(雨型)与水土流失的关系是水土保持工作中的重要内容[23]。蔡家川流域的场降雨可划分为前期型降雨(Ⅰ型)、中期型降雨(Ⅱ型)、后期型降雨(Ⅲ型)和均匀型降雨(Ⅳ型),Ⅰ型降雨在雨季出现的频次占绝对优势,为短历时强降雨。Ⅳ型降雨多为长历时低雨强的降雨,Ⅱ型和Ⅲ型降雨的特征值居中,这与殷水清等[3]的雨型分类结果一致。与殷水清等的雨型分类结果相比,本研究中各雨型的降雨历时明显较小,而雨强明显较高,是因为本研究区位于晋西黄土区且主要研究雨季的侵蚀性降雨,多历时短雨强较高的降雨,导致雨型分类的特征值存在差异。
降雨过程(雨型)与小流域水土流失的程度和规律存在密切联系。雨强变化的降雨过程与雨强均匀的降雨过程相比,径流系数和洪峰流量均变化显著[24-25]。Ⅰ型降雨条件下小流域的产流量远高于其他雨型;Ⅱ型和Ⅳ型降雨的产流量均较小。Ⅲ型降雨较Ⅱ型降雨产流量更多,洪峰出现更早,可能是因为Ⅱ型降雨属于小雨量短历时的降雨,而Ⅲ型降雨的雨量大且集中在降雨后期,前期降雨导致林冠截留达到饱和,表层土壤含水量显著提高,后期的降雨易形成地表径流,表明大雨量强降雨易造成流域的水土流失。
流域土地利用类型影响流域降雨的再分配过程以及流域下垫面性质,从而对径流过程产生影响[26]。研究不同雨型条件下各地类的产流特征,对改善晋西黄土区水土流失具有参考意义[27]。结果表明,封禁小流域较农地小流域有明显拦蓄径流、延长洪峰时间的作用,通过封禁恢复植被能有效控制水土流失,与纳磊等[14]、贺维等[27]研究结果一致。在径流深和洪峰流量方面,Ⅰ型和Ⅲ型降雨条件下农地小流域高于封禁小流域,Ⅱ型和Ⅳ型降雨条件下封禁小流域略高于农地小流域。封禁小流域森林覆盖率高,枯枝落叶层厚,能够截持降雨、增加入渗,起到延阻、拦蓄径流泥沙的作用,所以在降雨量大的Ⅰ型和Ⅲ型降雨条件下农地小流域产流高于封禁小流域,表明封禁小流域对大雨量降雨过程的削减径流洪峰作用明显。封禁小流域基流量远高于农地小流域,其前期土壤含水量高,即使降雨量小的雨型也容易形成径流,表明封禁小流域对小雨量降雨过程的削减径流和洪峰作用不明显。农地小流域虽没有森林覆盖,但农业生产活动能够增加地表糙率,梯田等水土保持措施能够起到减缓坡度、改变地形、延阻径流的作用[28],导致雨量小的雨型不易形成径流,所以在Ⅱ型和Ⅳ型降雨条件下封禁小流域产流略高于农地小流域,表明农业措施对小雨量的降雨过程的削减径流和洪峰作用更为显著。
研究表明,降雨量、雨强及降雨历时等降雨特征对降雨径流的形成有重要影响[29-30]。在晋西黄土区,降雨量、降雨历时和雨强在降雨过程中的分布是影响小流域产流过程的重要因素。Ⅲ型降雨的洪峰滞后时间与降雨历时呈负相关(Ⅰ、Ⅱ型呈正相关),可能是因为Ⅲ型降雨洪峰出现在降雨后期,前期降雨使表层土壤含水量饱和,导致后期的降雨易形成地表径流,降雨历时越长,洪峰滞后雨峰的时间越短。与农地小流域对比,降雨过程中的雨强分布对封禁小流域产流过程影响小,降雨量和历时对封禁小流域产流过程影响大,可能是由于封禁小流域植被覆盖率高,林冠截留使降雨无法在短时间内到达地表形成径流,导致雨强对封禁小流域的产流量影响较小;随着降雨量和降雨历时增加,林冠截留达到动态平衡,表层土壤含水量接近饱和,易形成坡面产流,所以降雨量和历时对封禁小流域产流影响较大。
4.2 结 论
(1)蔡家川流域的场降雨可分为前期型降雨(Ⅰ型)、中期型降雨(Ⅱ型)、后期型降雨(Ⅲ型)和均匀型降雨(Ⅳ型)。Ⅰ型降雨多为短历时强降雨,是主要降雨雨型,发生频次最高,降雨量最大最集中,降雨侵蚀力最强,集中分布在6—8月;Ⅳ型降雨多为长历时小雨强降雨,降雨历时最长,降雨侵蚀力最小,多发生在雨季的前期和后期;Ⅱ型和Ⅲ型降雨的特征介于Ⅰ型和Ⅳ型降雨之间。
(2)Ⅰ型降雨是引起小流域产流的主要雨型。Ⅰ型降雨条件下小流域场降雨径流深、洪峰流量远高于其他雨型,形成洪峰速度最快,Ⅲ型降雨次之,Ⅱ型和Ⅳ型降雨的径流深和洪峰流量均较小。在晋西黄土区,大雨量强降雨易造成流域的水土流失,应当作为水土流失预防的重点。
(3)封禁小流域较农地小流域有明显拦蓄径流、延长洪峰出现时间的作用,对大雨量强降雨的调节作用更明显。在水土流失严重的黄土高原地区通过封山育林恢复植被,能有效控制水土流失。
(4)在晋西黄土区,降雨量、降雨历时和雨强在降雨过程中的分布是影响小流域产流过程的重要因素。雨强在降雨过程中的分布对农地小流域产流过程影响更大,降雨量和历时对封禁小流域产流过程影响更大。
-
表 1 样地基本信息
Table 1 Basic information of sample plots
样地类型
Sample plot type试验点名称(建成时间)
Experimental site name (completion year)地理位置
Geographical position主要乔木树种
Main arbor species公园
Park八大处公园(1949)
Badachu Park (1949)北京市石景山区
Shijingshan District, Beijing侧柏 Platycladus orientalis、油松 Pinus tabuliformis、刺槐 Robinia pseudoacacia、山桃 Amygdalus davidiana、栾树 Koelreuteria paniculata、蒙桑 Morus mongolica、君迁子 Diospyros lotus、黑弹树 Celtis bungeana、黄栌 Cotinus coggygria 陶然亭公园(1952)
Taoranting Park (1952)北京市西城区
Xicheng District, Beijing油松 Pinus tabuliformis、圆柏 Sabina chinensis、白皮松 Pinus bungeana、银杏 Ginkgo biloba、小叶杨 Populus simonii、元宝槭 Acer truncatum 青年湖公园(1960)
Qingnianhu Park (1960)北京市东城区
Dongcheng District, Beijing白皮松 Pinus bungeana、银杏 Ginkgo biloba、国槐 Sophora japonica、圆柏 Sabina chinensis、山楂 Crataegus pinnatifida 北京朝阳公园(1984)
Beijing Sun Park (1984)北京市朝阳区
Chaoyang District, Beijing国槐 Sophora japonica、毛白杨 Populus tomentosa、栾树 Koelreuteria paniculata、白蜡树 Fraxinus chinensis、刺槐 Robinia pseudoacacia、元宝槭 Acer truncatum、旱柳 Salix matsudana 双秀公园(1984)
Shuangxiu Park (1984)北京市西城区
Xicheng District, Beijing毛白杨 Populus tomentosa、油松 Pinus tabuliformis 北京西山国家森林公园(1984)
Beijing Xishan National Forest Park (1984)北京西郊小西山
Xiaoxishan in the western suburbs of Beijing山桃 Amygdalus davidiana、侧柏 Platycladus orientalis、君迁子 Diospyros lotus、油松 Pinus tabuliformis、蒙桑 Morus mongolica、白榆 Ulmus pumila 鹰山森林公园(1990)
Yingshan Forest Park (1990)北京市丰台区
Fengtai District, Beijing油松 Pinus tabuliformis、侧柏 Platycladus orientalis、白榆 Ulmus pumila、蒙桑 Morus mongolica、君迁子 Diospyros lotus 菖蒲河公园(2002)
Changpuhe Park (2002)北京市东城区
Dongcheng District, Beijing龙爪槐 Sophora japonica f. pendula、刺槐 Robinia pseudoacacia、白蜡树 Fraxinus chinensis、圆柏 Sabina chinensis、海棠花 Malus spectabilis、银杏 Ginkgo biloba、栾树 Koelreuteria paniculata 朝来森林公园(2002)
Chaolai Forest Park (2002)北京市朝阳区
Chaoyang District, Beijing旱柳 Salix matsudana、臭椿 Ailanthus altissima、圆柏 Sabina chinensis、白蜡树 Fraxinus chinensis、刺槐 Robinia pseudoacacia、油松 Pinus tabuliformis 海淀公园(2003)
Haidian Park (2003)北京市海淀区
Haidian District, Beijing毛白杨 Populus tomentosa、旱柳 Salix matsudana、国槐 Sophora japonica、刺槐 Robinia pseudoacacia、西府海棠 Malus × micromalus、银杏 Ginkgo biloba 马甸公园(2003)
Madian Park (2003)北京市海淀区
Haidian District, Beijing油松 Pinus tabuliformis、栾树 Koelreuteria paniculata、圆柏 Sabina chinensis、臭椿 Ailanthus altissima、白蜡树 Fraxinus chinensis、碧桃 Prunus persica、紫叶李 Prunus cerasifera f. atropurpurea 奥林匹克森林公园(2005)
Olympic Forest Park (2005)北京市朝阳区
Chaoyang District, Beijing白蜡树 Fraxinus chinensis、国槐 Sophora japonica、旱柳 Salix matsudana、毛白杨 Populus tomentosa、栾树 Koelreuteria paniculata、馒头柳 Salix matsudana var. matsudana f. umbraculifera、刺槐 Robinia pseudoacacia、银杏 Ginkgo biloba、绦柳 Salix matsudana var. matsudana f. pendula 百旺公园(2006)
Baiwang Park (2006)北京市海淀区
Haidian District, Beijing国槐 Sophora japonica、毛白杨 Populus tomentosa、旱柳 Salix matsudana、杜仲 Eucommia ulmoides、栾树 Koelreuteria paniculata 玉东郊野公园(2007)
Yudong Country Park (2007)北京市海淀区
Haidian District, Beijing栾树 Koelreuteria paniculata、国槐 Sophora japonica、油松 Pinus tabuliformis、青扦 Picea wilsonii、白皮松 Pinus bungeana、白花泡桐 Paulownia fortunei、栾树 Koelreuteria paniculata、银杏 Ginkgo biloba、龙爪槐 Sophora japonica f. pendula、圆柏 Sabina chinensis 北京东升八家郊野公园(2007)
Should’s Ancestral Hall (2007)北京市海淀区
Haidian District, Beijing毛白杨 Populus tomentosa、国槐 Sophora japonica、银杏 Ginkgo biloba、山楂 Crataegus pinnatifida、油松 Pinus tabuliformis、旱柳 Salix matsudana、圆柏 Sabina chinensis 老山城市休闲公园(2008)
Laoshan Urban Leisure Park (2008)北京市石景山区
Shijingshan District, Beijing油松 Pinus tabuliformis、馒头柳 Salix matsudana var. matsudana f. umbraculifera、国槐 Sophora japonica、毛白杨 Populus tomentosa、侧柏 Platycladus orientalis、核桃 Juglans regia、山杏 Armeniaca sibirica 树村郊野公园(2011)
Shucun Country Park (2011)北京市海淀区
Haidian District, Beijing毛白杨 Populus tomentosa、榆树 Ulmus pumila、国槐 Sophora japonica、柿树 Diospyros kaki 船营公园(2014)
Chuanying Park (2014)北京市海淀区
Haidian District, Beijing银杏 Ginkgo biloba、元宝槭 Acer truncatum、栾树 Koelreuteria paniculata、旱柳 Salix matsudana、国槐 Sophora japonica、油松 Pinus tabuliformis 居民小区
Residential area曙光花园−望山园(2001)
Shuguang Huayuan-Wangshan Yuan (2001)北京市海淀区
Haidian District, Beijing国槐 Sophora japonica、毛白杨 Populus tomentosa、一球悬铃木 Platanus occidentalis、臭椿 Ailanthus altissima 华清嘉园(2002)
Huaqing Jiayuan (2002)北京市海淀区
Haidian District, Beijing一球悬铃木 Platanus occidentalis、千头椿 Ailanthus altissima ‘Qiantou’、三球悬铃木 Platanus orientalis、垂柳 Salix babylonica 逸成东苑(2003)
Yicheng Dongyuan (2003)北京市海淀区
Haidian District, Beijing银杏 Ginkgo biloba、一球悬铃木 Platanus occidentalis、国槐 Sophora japonica 拂林园(2003)
Fulin Yuan (2003)北京市朝阳区
Chaoyang District, Beijing国槐 Sophora japonica、垂柳 Salix babylonica、臭椿 Ailanthus altissima、美国红梣 Fraxinus pennsylvanica、杜仲 Eucommia ulmoides、一球悬铃木 Platanus occidentalis、雪松 Cedrus deodara、银杏 Ginkgo biloba、栾树 Koelreuteria paniculata 观澜国际花园(2003)
Guanlan Guoji Huayuan (2003)北京市海淀区
Haidian District, Beijing臭椿 Ailanthus altissima、一球悬铃木 Platanus occidentalis、二球悬铃木 Platanus acerifolia、国槐 Sophora japonica、垂柳 Salix babylonica、刺槐 Robinia pseudoacacia、雪松 Cedrus deodara、加杨 Populus × canadensis、核桃 Juglans regia 华冠丽景(2003)
Huaguan Lijing (2003)北京市东城区
Dongcheng District, Beijing银杏 Ginkgo biloba、枫杨 Pterocarya stenoptera、华山松 Pinus armandii、国槐 Sophora japonica、垂柳 Salix babylonica、榆树 Ulmus pumila 海晟名苑(2003)
Haisheng Mingyuan (2003)北京市东城区
Dongcheng District, Beijing毛泡桐 Paulownia tomentosa、国槐 Sophora japonica、合欢 Albizia julibrissin、垂柳 Salix babylonica 裕泽园(2004)
Yuze Yuan (2004)北京市海淀区
Haidian District, Beijing银杏 Ginkgo biloba、旱柳 Salix matsudana、白花泡桐 Paulownia fortunei、臭椿 Ailanthus altissima 云会里金雅园(2004)
Yunhuili Jinyayuan (2004)北京市海淀区
Haidian District, Beijing臭椿 Ailanthus altissima、白榆 Ulmus pumila、刺槐 Robinia pseudoacacia、圆柏 Sabina chinensis、油松 Pinus tabuliformis、栾树 Koelreuteria paniculata、旱柳 Salix matsudana 大河庄苑(2005)
Dahe Zhuangyuan (2005)北京市海淀区
Haidian District, Beijing梧桐 Firmiana platanifolia、美国红梣 Fraxinus pennsylvanica、国槐 Sophora japonica、垂柳 Salix babylonica、白花泡桐 Paulownia fortunei 颐慧佳园(2005)
Yihui Jiayuan (2005)北京市海淀区
Haidian District, Beijing二球悬铃木 Platanus acerifolia、一球悬铃木 Platanus occidentalis、银杏 Ginkgo biloba、国槐 Sophora japonica、垂柳 Salix babylonica、五角枫 Acer pictum subsp. mono、臭椿 Ailanthus altissima、梧桐 Firmiana platanifolia、雪松 Cedrus deodara 林场
Forest farm金海湖风景名胜区林场
Forest Farm of Jinhai Lake Scenic Area北京市平谷区
Pinggu District, Beijing侧柏 Platycladus orientalis、油松 Pinus tabuliformis 九龙山林场
Jiulongshan Forest Farm北京市门头沟区
Mentougou District, Beijing侧柏 Platycladus orientalis、油松 Pinus tabuliformis、栓皮栎 Quercus variabilis、华北落叶松 Larix gmelinii var. principis-rupprechtii、黄栌 Cotinus coggygria、白蜡树 Fraxinus chinensis 表 2 4种类型城市森林样地概况
Table 2 Main information of sample plots of four types of urban forests
城市森林类型
Type of urban forest样地数量
Sample plot number林分密度/(株·hm−2)
Stand density/(tree·ha−1)胸径
DBH/cm树高
Tree height/m冠幅
Crown width/m城市公园风景游憩林
Scenic-recreational forest of urban park56 350 ~ 1 367 4.0 ~ 37.9 1.9 ~ 18.0 1.5 ~ 7.3 居住区城市森林
Urban forest of residential area62 52 ~ 825 14.1 ~ 47.3 6.7 ~ 23.5 3.6 ~ 11.6 郊野公园风景游憩林
Scenic-recreational forest of country park55 100 ~ 1 250 6.3 ~ 31.9 3.4 ~ 14.1 1.8 ~ 7.7 城郊山地风景林
Scenic forest of suburban mountainous area55 550 ~ 2 600 7.5 ~ 20.7 6.4 ~ 9.3 2.9 ~ 6.4 表 3 城市森林林内景观质量初选、复选评价指标
Table 3 Preliminary and final screening indexes of in-forest landscape quality of urban forest
结构类型
Structure type指标
Index城市公园风
景游憩林
Scenic-recreational forest of urban park居住区城市森林
Urban forest of residential area郊野公园风
景游憩林
Scenic-recreational forest of country park城郊山地风景林
Scenic forest of suburban mountainous area定性指标分解赋值
Component value of qualitative indices指标含义
Index meaning初选
Primary复选
Final初选
Primary复选
Final初选
Primary复选
Final初选
Primary复选
Final1 2 3 4 空间结构
Spatial structure水平空间
Horizontal spaceBAH √ √ √ √ √ √ 表示样地林分密度的大小[30]
Indicates the stand density of sample plot[30]CH √ 草本地上部分垂直投影的面积占地面的比率
Ratio of vertical projection area of aboveground part of herb to the groundEDSH √ √ 不均匀
Nonuniform较均匀
Relatively uniform均匀
Uniform样地内灌草的水平分布状况[8]
Horizontal distribution of shrubs and grasses in sample plot[8]SHC √ 灌木和草本地上部分垂直投影的面积占地面的比率
Ratio of vertical projection area of aboveground part of shrubs and herbs to the groundCC √ √ 样地内乔木树冠的总投影面积与样地面积的比
Ratio of total projected area of tree crowns in sample plot to the area of sample plot垂直空间
Vertical spaceRBH √ √ √ √ √ √ RBH = 乔木平均活枝下高/平均树高
RBH = average height of first living branch beneath crown/average tree heightRSH √ √ RSH = 灌木平均高度/平均树高
RSH = average height of shrub/average tree heightSS √ √ √ √ √ 指林分垂直方向上生活型层次的数量[18]
Refers to the number of life form levels in vertical direction of stand[18]组成结构
Constituent structure大小组成
Size compositionDDBH √ √ √ √ 表示林木胸径大小的分化程度,用胸径变异系数表示[30]
Indicates the degree of differentiation of DBH of forest, expressed by the coefficient of variation of DBH[30]DTH √ √ √ √ 表示林木树高大小的分化程度,用树高变异系数表示
Indicates the degree of differentiation of tree height, expressed by the coefficient of variation of tree heightDCB √ √ √ 表示林木冠幅大小的分化程度,用冠幅变异系数表示
Indicates the differentiation degree of tree crown size, expressed by the crown width variation coefficientRDH √ √ √ √ √ √ RDH = 林分平均胸径/林分平均树高
RDH = mean DBH of forest stand/average tree heightRCWD √ √ √ √ √ √ √ RCWD = 林分平均冠长/林分平均胸径
RCWD = average crown length/mean DBH of forest stand物种组成
Species compositionFT √ √ √ √ √ 纯林
Pure forest针叶混交
Coniferous mixed forest阔叶混交
Broadleaved mixed forest针阔混交
Broadleaved-coniferous forest表示林分的混交类型[18]
Represents the mixed type of forest stand[18]TSR √ √ √ √ 用Patrick指数表示[31]
Expressed by Patrick index[31]SRC √ √ 林下灌木和草本的丰富度,用Patrick指数表示
Richness of shrubs and herbs under the forest, expressed by Patrick index季相丰富度结构
Seasonal richness structureSA √ √ √ √ 季相变化小
Little seasonal change三季赏景
Three scenic seasons四季赏景
Four scenic seasons指林分的季相变化丰富度,用该林分可观赏季节数表示[8]
Refers to the richness of seasonal changes of stand, expressed by the number of ornamental seasons of stand[8]视觉结构
Visual structureOOD √ √ √ √ 用林分主要树种观赏器官的种类数表示
It is expressed by the number of ornamental organs of main tree species of standCFS √ √ √ √ 杂乱
Messy较整洁
Relatively neat十分整洁
Very neat反映林分的整洁状况[11]
Reflects the cleanliness of forest stand[11]PD √ 林分内目光可以通视的距离,目视估测[24]
Distance within the stand that the eyes can see through, visual estimation[24]UDU √ √ 不统一
Not unified较统一
Relatively unified统一
Unified反映林分下层的统一性和变异性特征[32]
Reflects unity and variability characteristics of lower layer of the stand[32]注:BAH为单位面积胸高断面积,CH为草本盖度,EDSH为灌草分布均匀程度,SHC为灌草盖度,CC为郁闭度,RBH为相对枝下高,RSH为灌木相对高度,SS为林分垂直层次数量,DDBH为胸径分化度,DTH为树高分化度,DCB为冠幅分化度,RDH为径高比,RCWD为冠径比,FT为林型,TSR为乔木树种丰富度,SRC为林下物种丰富度,SA为色彩季相多样性,OOD为观赏器官多样性,CFS为林分整洁度,PD为通视距离,UDU为林下植被层统一度。下同。 “√”表示该指标被选取。Notes: BAH is breast height basal area per hectare, CH is coverage of herbage, EDSH is evenness degree of shrub-herb, SHC is shrub-herb coverage, CC is canopy coverage, RBH is relative under branch height, RSH is relative shrub height, SS is stand vertical stratum, DDBH is dispersion of DBH, DTH is dispersion of tree height, DCB is dispersion of crown breadth, RDH is ratio of diameter-height, RCWD is ratio of crown width to diameter, FT is forest type, TSR is tree species richness, SRC is species richness under canopy, SA is seasonal abundance, OOD is ornamental organ diversity, CFS is cleanliness of forest stand, PD is perspective distance, UDU is unified degree of undergrowth. The same below. “√” indicates that the index is selected. 表 4 林内景观指标的因子分析
Table 4 Factor analysis of indicators of in-forest landscape
指标
Indicator旋转成分矩阵
Rotated component matrix因子得分
Factor score1 2 3 DTH 0.935 −0.109 0.042 0.174 FT 0.931 −0.105 0.040 0.174 TSR 0.930 −0.107 0.042 0.173 OOD 0.918 −0.104 0.033 0.171 RCWD −0.846 0.379 −0.038 −0.147 SS −0.204 0.927 0.191 0.193 CC −0.196 0.920 0.179 0.192 SRC −0.194 0.900 0.187 0.187 RSH −0.190 0.829 0.167 0.172 RBH −0.602 −0.710 0.061 −0.185 DDBH −0.315 −0.233 −0.853 −0.236 SA −0.300 −0.220 −0.839 −0.233 BAH 0.084 −0.233 −0.760 −0.213 CFS −0.511 0.150 0.745 0.215 EDSH −0.389 −0.537 0.644 0.208 RDH 0.361 −0.596 0.629 0.199 累积因子贡献率
Contribution rate of
cumulative factor/%33.88 29.48 21.97 — 注:黑体数据代表因子旋转矩阵按因素载荷的大小排序后各变量的划分结果。Note: bold data represent the partition results of each variable after the factor rotation matrix being sorted according to the size of factor load. 表 5 不同等级间美景度、林内景观质量指数的差异显著性分析
Table 5 Significance analysis of difference on SBE and in-forest landscape quality indices with different scenic beauty grades
城市森林类型
Type of urban forest指数
Index各等级林内景观指数取值(范围)
Value and range of in-forest landscape index of each grade显著性
SignificanceⅠ Ⅱ Ⅲ Ⅳ 城市公园风景游憩林
Scenic-recreational forest of urban parkU1 −0.079ab
(−0.119 ~ −0.048)−0.089b
(−0.120 ~ −0.059)−0.078ab
(−0.106 ~ −0.057)−0.067a
(−0.086 ~ −0.053)0.005 U2 −0.105a
(−0.174 ~ −0.068)−0.107a
(−0.176 ~ −0.040)−0.110a
(−0.147 ~ −0.064)−0.139b
(−0.199 ~ −0.070)0.038 U3 0.345
(0.268 ~ 0.472)0.308
(0.178 ~ 0.402)0.300
(0.155 ~ 0.405)0.307
(0.165 ~ 0.421)0.360 U 0.021
(−0.010 ~ 0.054)0.007
(−0.038 ~ 0.040)0.008
(−0.029 ~ 0.037)0.005
(−0.048 ~ 0.040)0.175 SBE 114.16a
(99.51 ~ 130.29)71.08b
(43.96 ~ 96.68)30.73c
(15.23 ~ 46.01)−10.25d
(−35.75 ~ 13.28)< 0.001 居住区城市森林
Urban forest of residential areaU1 −0.080a
(−0.122 ~ −0.047)−0.080a
(−0.101 ~ −0.057)−0.092ab
(−0.138 ~ −0.050)−0.100b
(−0.130 ~ −0.052)0.023 U2 −0.063a
(−0.125 ~ −0.032)−0.080ab
(−0.118 ~ −0.052)−0.078ab
(−0.117 ~ −0.041)−0.092b
(−0.143 ~ −0.040)0.012 U3 −0.357c
(−0.466 ~ −0.262)−0.287bc
(−0.364 ~ −0.195)−0.241b
(−0.363 ~ −0.160)−0.154a
(−0.212 ~ −0.123)< 0.001 U −0.145c
(−0.186 ~ −0.105)−0.133bc
(−0.150 ~ −0.107)−0.126b
(−0.153 ~ −0.090)−0.111a
(−0.134 ~ −0.080)< 0.001 SBE 100.26a
(80.07 ~ 116.28)66.63b
(59.00 ~ 77.56)52.89c
(42.24 ~ 60.80)41.90d
(34.72 ~ 49.34)< 0.001 郊野公园风景游憩林
Scenic-recreational forest of country parkU1 0.591a
(0.513 ~ 0.654)0.559a
(0.397 ~ 0.664)0.490b
(0.427 ~ 0.595)0.290c
(0.206 ~ 0.420)< 0.001 U3 0.060
(0.027 ~ 0.082)0.045
(−0.001 ~ 0.093)0.043
(−0.010 ~ 0.096)0.045
(0.030 ~ 0.062)0.577 U 0.250a
(0.210 ~ 0.273)0.234a
(0.159 ~ 0.276)0.206b
(0.167 ~ 0.261)0.127c
(0.095 ~ 0.180)< 0.001 SBE 64.37a
(61.51 ~ 66.88)52.37b
(45.46 ~ 58.46)41.12c
(38.73 ~ 44.94)35.41d
(29.61 ~ 43.88)< 0.001 城郊山地风景林
Scenic forest of suburban mountainous areaU1 −0.103
(−0.117 ~ −0.092)−0.105
(−0.137 ~ −0.087)−0.119
(−0.152 ~ −0.085)−0.120
(−0.175 ~ −0.085)0.099 U2 0.456b
(0.414 ~ 0.492)0.551a
(0.472 ~ 0.656)0.443b
(0.400 ~ 0.469)0.531a
(0.453 ~ 0.651)< 0.001 U3 0.133a
(0.110 ~ 0.165)0.107a
(0.055 ~ 0.165)0.121a
(0.055 ~ 0.165)0.075b
(0.055 ~ 0.165)< 0.001 U 0.151bc
(0.132 ~ 0.161)0.176a
(0.138 ~ 0.206)0.137c
(0.112 ~ 0.151)0.155b
(0.118 ~ 0.220)< 0.001 SBE 82.96a
(71.09 ~ 95.49)47.77b
(31.38 ~ 68.57)25.50c
(12.12 ~ 34.23)−7.76d
(−41.73 ~ 8.61)< 0.001 注:SBE代表美景度值。不同小写字母表示不同美景度等级之间差异显著。下同。Notes: SBE represents scenic beauty value. Different lowercase letters indicate significant differences among SBE classes. The same below. 表 6 不同等级间林内景观质量评价指标的差异显著性分析
Table 6 Significance analysis of difference on in-forest landscape quality evaluation indices with different classes
城市森林类型
Type of urban forest指标
Indicator各等级林内景观质量评价指标取值(范围)
Value of in-forest landscape indicator of each grade (range)显著性
SignificanceⅠ Ⅱ Ⅲ Ⅳ 城市公园风景游憩林
Scenic-recreational forest
of urban parkRBH 0.32b (0.21 ~ 0.53) 0.33b (0.12 ~ 0.53) 0.33b (0.19 ~ 0.45) 0.42a (0.21 ~ 0.60) 0.038 RDH 0.020bc (0.011 ~ 0.038) 0.018c (0.012 ~ 0.026) 0.024ab (0.012 ~ 0.036) 0.026a (0.014 ~ 0.039) 0.014 RCWD 26.01ab (15.89 ~ 39.04) 29.28a (19.46 ~ 39.42) 25.54ab (18.67 ~ 34.64) 21.88b (17.48 ~ 28.08) 0.005 EDSH 2.25 (1.00 ~ 3.00) 2.10 (1.00 ~ 3.00) 1.92 (1.00 ~ 3.00) 1.73 (1.00 ~ 3.00) 0.426 CFS 2.67a (2.00 ~ 3.00) 2.29ab (1.00 ~ 3.00) 1.92b (1.00 ~ 3.00) 2.09b (1.00 ~ 3.00) 0.047 居住区城市森林
Urban forest of
residential areaBAH 36.66a (19.88 ~ 47.90) 17.60b (9.56 ~ 26.95) 10.17c (2.81 ~ 17.40) 7.10c (0.98 ~ 11.57) < 0.001 DDBH 0.21a (0.09 ~ 0.34) 0.25a (0.12 ~ 0.35) 0.23a (0.10 ~ 0.38) 0.14b (0.07 ~ 0.28) < 0.001 RBH 0.19b (0.10 ~ 0.38) 0.24ab (0.16 ~ 0.36) 0.24ab (0.13 ~ 0.36) 0.28a (0.12 ~ 0.43) 0.012 RCWD 26.34b (15.26 ~ 39.95) 26.33b (18.61 ~ 32.98) 30.20ab (16.49 ~ 45.12) 32.78a (17.08 ~ 42.53) 0.023 SA 3.18a (2.00 ~ 4.00) 2.83ab (2.00 ~ 4.00) 2.52ab (1.00 ~ 4.00) 2.06b (2.00 ~ 3.00) 0.005 郊野公园风景游憩林
Scenic-recreational forest
of country parkBAH 9.52a (4.66 ~ 14.71) 8.27a (1.58 ~ 16.37) 5.61ab (2.32 ~ 14.52) 4.76b (1.92 ~ 10.46) 0.022 DTH 0.35ab (0.16 ~ 0.50) 0.33a (0.11 ~ 0.55) 0.24b (0.16 ~ 0.37) 0.25b (0.09 ~ 0.41) 0.034 RDH 0.024a (0.016 ~ 0.030) 0.019ab (0.010 ~ 0.030) 0.016b (0.010 ~ 0.027) 0.016b (0.012 ~ 0.025) 0.020 TSR 6.20a (4.00 ~ 9.00) 3.95a (2.00 ~ 6.00) 2.60b (2.00 ~ 3.00) 2.50b (2.00 ~ 4.00) < 0.001 OOD 2.80a (2.00 ~ 4.00) 3.23a (1.00 ~ 4.00) 2.70a (2.00 ~ 4.00) 1.17b (1.00 ~ 3.00) < 0.001 FT 3.40ab (3.00 ~ 4.00) 3.45a (1.00 ~ 4.00) 3.90a (3.00 ~ 4.00) 1.50b (1.00 ~ 4.00) < 0.001 城郊山地风景林
Scenic forest of suburban
mountainous areaCC 0.46bc (0.36 ~ 0.58) 0.54ab (0.27 ~ 0.73) 0.41c (0.30 ~ 0.58) 0.60a (0.30 ~ 0.83) 0.003 RSH 0.08b (0.03 ~ 0.18) 0.11b (0.04 ~ 0.28) 0.13ab (0.03 ~ 0.23) 0.16a (0.06 ~ 0.26) 0.034 RCWD 33.89 (30.30 ~ 38.24) 34.54 (28.50 ~ 45.10) 38.93 (27.89 ~ 50.00) 39.28 (27.91 ~ 57.33) 0.086 SS 2.71ab (2.00 ~ 3.00) 2.94a (2.00 ~ 3.00) 2.40b (2.00 ~ 3.00) 2.50b (2.00 ~ 3.00) 0.015 SRC 8.14b (7.00 ~ 10.00) 11.38a (8.00 ~ 16.00) 7.20b (3.00 ~ 10.00) 8.36b (5.00 ~ 15.00) 0.001 CFS 2.43a (2.00 ~ 3.00) 1.94a (1.00 ~ 3.00) 2.20a (1.00 ~ 3.00) 1.36b (1.00 ~ 3.00) < 0.001 表 7 城市森林林内景观等级TOPSIS得分(范围)
Table 7 TOPSIS values of different grades of in-forest landscape of urban forests (range) with different SBE grades
等级代码
Grade code定义
Definition城市公园风景游憩林
Scenic-recreational forest of urban park居住区城市森林
Urban forest of
residential area郊野公园风景游憩林
Scenic-recreational forest of country park城郊山地风景林
Scenic forest of suburban mountainous areaⅠ 优质景观
Excellent landscape0.803 (0.703 ~ 0.920) 0.797 (0.548 ~ 0.960) 0.832 (0.726 ~ 0.891) 0.709 (0.566 ~ 0.894) Ⅱ 高质景观
High quality landscape0.627 (0.493 ~ 0.703) 0.403 (0.322 ~ 0.548) 0.623 (0.495 ~ 0.726) 0.542 (0.522 ~ 0.566) Ⅲ 中等景观
Medium landscape0.435 (0.342 ~ 0.493) 0.244 (0.159 ~ 0.322) 0.420 (0.361 ~ 0.495) 0.462 (0.213 ~ 0.522) Ⅳ 低质景观
Low quality landscape0.224 (0.057 ~ 0.342) 0.110 (0.043 ~ 0.159) 0.254 (0.165 ~ 0.361) 0.146 (0.094 ~ 0.213) -
[1] 李锋, 王如松, Juergen Paulussen. 北京市绿色空间生态概念规划研究[J]. 城市规划汇刊, 2004(4):61−64. Li F, Wang R S, Paulussen J. A study on ecological concept planning of urban green space in Beijing[J]. Urban Planning Forum, 2004(4): 61−64.
[2] 黄广远. 北京市城区城市森林结构及景观美学评价研究[D]. 北京: 北京林业大学, 2012. Huang G Y. Studies on species composition and landscape aesthetics evaluation of urban forest in Beijing[D]. Beijing: Beijing Forestry University, 2012.
[3] 陈瑜, 徐程扬, 李乐, 等. 阔叶红松风景林单木景观质量评价与模型研究[J]. 北京林业大学学报, 2014, 36(5):87−93. Chen Y, Xu C Y, Li L, et al. Assessment and model research on scenic forest individual tree landscape quality in broadleaved and Korean pine mixed forests[J]. Journal of Beijing Forestry University, 2014, 36(5): 87−93.
[4] 毛斌, 徐程扬, 李乐, 等. 人工油松风景林的林木分级技术[J]. 林业科学, 2014, 50(10):49−58. Mao B, Xu C Y, Li L, et al. Tree classification for Pinus tabulaeformis scenic plantation[J]. Scientia Silvae Sinicae, 2014, 50(10): 49−58.
[5] 周阳超, 王瑞辉, 周璞, 等. 湘东常绿阔叶林林内景观质量评价与分析[J]. 林业资源管理, 2019(3):163−168. Zhou Y C, Wang R H, Zhou P, et al. Landscape quality evaluation and analysis of evergreen broad-leaved forest in eastern Hunan[J]. Forest Resources Management, 2019(3): 163−168.
[6] 陈勇, 孙冰, 廖绍波, 等. 深圳市城市森林林内景观的美景度评价[J]. 林业科学, 2014, 50(8):39−44. Chen Y, Sun B, Liao S B, et al. Scenic beauty estimation of in-forest landscapes in Shenzhen urban forests[J]. Scientia Silvae Sinicae, 2014, 50(8): 39−44.
[7] 武锋, 郑松发, 陆钊华. 珠海淇澳岛红树林景观质量评价[J]. 东北林业大学学报, 2014, 42(9):48−51. doi: 10.3969/j.issn.1000-5382.2014.09.011. Wu F, Zheng S F, Lu Z H. Evaluation of mangrove landscape quality on Qi’ao Island, Zhuhai[J]. Journal of Northeast Forestry University, 2014, 42(9): 48−51. doi: 10.3969/j.issn.1000-5382.2014.09.011.
[8] 章志都. 京郊低山风景游憩林质量评价及调控关键技术研究[D]. 北京: 北京林业大学, 2010. Zhang Z D. Quality assessing and key adjusting technologies for scenic-recreational forests in the lower mountains of suburbans in Beijing[D]. Beijing: Beijing Forestry University, 2010.
[9] 李波. 北京西山风景林中、远景景观质量评价研究[D]. 北京: 北京林业大学, 2011. Li B. Assessment on scenic forest quality in West Mountain in Beijing on middle- and far-distance landscape[D]. Beijing: Beijing Forestry University, 2011.
[10] 樊瑾. 北京西山典型风景游憩林质量调查及景观评价研究[D]. 呼和浩特: 内蒙古农业大学, 2019. Fan J. Quality investigation and landscape evaluation of typical landscape forest in West Mountain of Beijing[D]. Hohhot: Inner Mongolia Agricultural University, 2019.
[11] 刘畅. 游憩型城镇景观林质量评价研究[D]. 北京: 北京林业大学, 2016. Liu C. Study on quality assessment of recreational landscape forest in urban and suburban area[D]. Beijing: Beijing Forestry University, 2016.
[12] 段敏杰, 王月容, 谢军飞, 等. 基于美景度评价法的北京城市公园植物景观美学质量评价[J]. 科学技术与工程, 2018, 18(26):45−52. doi: 10.3969/j.issn.1671-1815.2018.26.007. Duan M J, Wang Y R, Xie J F, et al. Scenic beauty estimation of Beijing urban park plant landscape by scenic beauty estimation method[J]. Science Technology and Engineering, 2018, 18(26): 45−52. doi: 10.3969/j.issn.1671-1815.2018.26.007.
[13] 赵越. 森林公园景观美学质量评价研究[D]. 大连: 大连理工大学, 2017. Zhao Y. Research on estimation of landscape aesthetics for forest park[D]. Dalian: Dalian University of Technology, 2017.
[14] 王娜, 钟永德, 黎森. 基于SBE法的城郊森林公园森林林内景观美学质量评价[J]. 西北林学院学报, 2017, 32(1):308−314. doi: 10.3969/j.issn.1001-7461.2017.01.49. Wang N, Zhong Y D, Li S. SBE based evaluation of in-forest landscape aesthetic quality of forest park in suburb[J]. Journal of Northwest Forestry University, 2017, 32(1): 308−314. doi: 10.3969/j.issn.1001-7461.2017.01.49.
[15] Qi T, Zhang G, Wang Y, et al. Research on landscape quality of country parks in Beijing as based on visual and audible senses[J]. Urban Forestry & Urban Greening, 2017, 26: 124−138.
[16] 章志都, 徐程扬, 龚岚, 等. 基于SBE法的北京市郊野公园绿地结构质量评价技术[J]. 林业科学, 2011, 47(8):53−59. doi: 10.11707/j.1001-7488.20110809. Zhang Z D, Xu C Y, Gong L, et al. Assessment on structural quality of landscapes in green space of Beijing suburban parks by SBE method[J]. Scientia Silvae Sinicae, 2011, 47(8): 53−59. doi: 10.11707/j.1001-7488.20110809.
[17] 姚淑华. 广西医学类院校校园景观调查与评价[D]. 南宁: 广西大学, 2019. Yao S H. Investigation and research on campus landscape of Guangxi medical colleges[D]. Nanning: Guangxi University, 2019.
[18] 孙姝亭, 陈美谕, 李苹, 等. 北京市居民小区景观林林内景观质量评价研究[J]. 西北林学院学报, 2016, 31(5):297−305. doi: 10.3969/j.issn.1001-7461.2016.05.49. Sun S T, Chen M Y, Li P, et al. Assessment on in-forest quality of landscape forest in residential area in Beijing[J]. Journal of Northwest Forestry University, 2016, 31(5): 297−305. doi: 10.3969/j.issn.1001-7461.2016.05.49.
[19] 殷明, 肖威, 纪易凡, 等. 高速公路生态景观质量评价指标体系和评价方法: 以江苏南通为例[J]. 应用生态学报, 2018, 29(12):4128−4134. Yin M, Xiao W, Ji Y F, et al. Index system and method for the evaluation of highway ecological landscape quality: a case study of Nantong City, Jiangsu Province, China[J]. Chinese Journal of Applied Ecology, 2018, 29(12): 4128−4134.
[20] 梁爽, 张洁, 戚继忠, 等. 次生林为主的自然风景林林内景观质量评价[J]. 南京林业大学学报, 2015, 39(6):119−124. Liang S, Zhang J, Qi J Z, et al. The forest landscape quality evaluation of the natural scenic beauty mainly made of secondary forest[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2015, 39(6): 119−124.
[21] 刘畅, 刘亚, 刘海轩, 等. 游憩型城镇景观林林内景观斑块类型特征研究[J]. 西北林学院学报, 2016, 31(4):305−311. doi: 10.3969/j.issn.1001-7461.2016.04.51. Liu C, Liu Y, Liu H X, et al. Characteristics of in-forest landscape patch types of recreational landscape forest in urban and suburban area[J]. Journal of Northwest Forestry University, 2016, 31(4): 305−311. doi: 10.3969/j.issn.1001-7461.2016.04.51.
[22] 赵凯, 李金航, 徐程扬. 侧柏人工林林分结构与色彩斑块间的耦合关系[J]. 北京林业大学学报, 2019, 41(1):82−91. Zhao K, Li J H, Xu C Y. Coupling relationship between stand structure and color patch of Platycladus orientalis plantations[J]. Journal of Beijing Forestry University, 2019, 41(1): 82−91.
[23] 史琛媛, 路亚星, 刘佳, 等. 抚育间伐对冀北山地华北落叶松生态景观林林内美景度的影响[J]. 河北农业大学学报, 2016, 39(3):66−72. Shi C Y, Lu Y X, Liu J, et al. Effects of thinning on in-stand scenic beauty of Larix principis-rupprechtii Mayr. ecological landscape forest in the mountainous area of northern Hebei Province[J]. Journal of Hebei Agricultural University, 2016, 39(3): 66−72.
[24] 赵凯, 李金航, 刘海轩, 等. 北京山区侧柏人工林林内景观质量分级技术[J]. 浙江农林大学学报, 2019, 36(3):557−564. doi: 10.11833/j.issn.2095-0756.2019.03.017. Zhao K, Li J H, Liu H X, et al. Landscape quality grading technology for Platycladus orientalis plantations in Beijing mountainous areas[J]. Journal of Zhejiang A&F University, 2019, 36(3): 557−564. doi: 10.11833/j.issn.2095-0756.2019.03.017.
[25] 艾婧文, 刘健, 余坤勇, 等. 群落特征和林分空间结构对森林公园景观美学质量贡献率及影响因子[J]. 浙江农林大学学报, 2017, 34(6):1087−1094. doi: 10.11833/j.issn.2095-0756.2017.06.017. Ai J W, Liu J, Yu K Y, et al. Research on contribution rate of plant community characteristics and stand spatial structure to landscape aesthetics quality of forest parks and its influencing factors[J]. Journal of Zhejiang A&F University, 2017, 34(6): 1087−1094. doi: 10.11833/j.issn.2095-0756.2017.06.017.
[26] 闫笑. 北京城区公园森林景观美景度评价[D]. 北京: 北京林业大学, 2019. Yan X. Scenic evaluation of forest landscape in parks in Beijing urban area[D]. Beijing: Beijing Forestry University, 2019.
[27] 龚岚. 北京城区典型城市森林结构特点分析[D]. 北京: 北京林业大学, 2015. Gong L. Analysis of characteristics of typical urban forest structure in urbanized district of Beijing[D]. Beijing: Beijing Forestry University, 2015.
[28] 庄乾达. 浙江省森林城市综合评价指标体系构建及其实证研究[D]. 杭州: 浙江农林大学, 2016. Zhuang Q D. Research on establishment and empirical analysis of comprehensive evaluation index system of forest city in Zhejiang Province[D]. Hangzhou: Zhejiang A&F University, 2016.
[29] Daniel T C, Boster R S. Measuring landscape aesthetics: the scenic beauty estimation method (USDA Forest Service Research Paper RM-167)[R]. Fort Collins: Rocky Mountain Forest and Range Experiment Station, 1976.
[30] 李建, 李晓宇, 曹静, 等. 长白山次生针阔混交林群落结构特征及动态[J]. 生态学报, 2020, 40(4):1−12. Li J, Li X Y, Cao J, et al. Community structure and dynamics of secondary coniferous and broad-leaved mixed forest in Changbai Mountains[J]. Acta Ecologica Sinica, 2020, 40(4): 1−12.
[31] 张喜, 霍达, 向凯旋, 等. 样地面积对黔中喀斯特石漠灌丛林植物多样性的影响[J]. 生态学杂志, 2019, 38(5):1305−1313. Zhang X, Huo D, Xiang K X, et al. The effect of plot size on shrub plant diversity in a karst desertification area, central Guizhou Province, China[J]. Chinese Journal of Ecology, 2019, 38(5): 1305−1313.
[32] 陈鑫峰, 贾黎明. 京西山区森林林内景观评价研究[J]. 林业科学, 2003, 39(4):59−66. doi: 10.3321/j.issn:1001-7488.2003.04.010. Chen X F, Jia L M. Research on evaluation of in-forest landscapes in west Beijing mountain area[J]. Scientia Silvae Sinicae, 2003, 39(4): 59−66. doi: 10.3321/j.issn:1001-7488.2003.04.010.
[33] 莫可, 赵天忠, 蓝海洋, 等. 基于因子分析的小班尺度用材林森林质量评价:以福建将乐国有林场为例[J]. 北京林业大学学报, 2015, 37(1):48−54. Mo K, Zhao T Z, Lan H Y, et al. Quality assessment at subcompartment level of forests used for timber production based on factor analysis: a case study in Jiangle National Forest Farm, Fujian Province[J]. Journal of Beijing Forestry University, 2015, 37(1): 48−54.
[34] 刘邦奇, 李鑫. 基于智慧课堂的教育大数据分析与应用研究[J]. 远程教育杂志, 2018, 36(3):84−93. Liu B Q, Li X. Research on analysis and application of educational big data based on smart class[J]. Journal of Distance Education, 2018, 36(3): 84−93.
[35] 杨威, 庞永锋, 史加荣. 不完全权重信息的区间直觉模糊不确定语言TOPSIS方法[J]. 模糊系统与数学, 2015, 29(2):125−131. Yang W, Pang Y F, Shi J R. New interval-valued intuitionistic fuzzy uncertain linguistic TOPSIS with partly known attribute weight information[J]. Fuzzy Systems and Mathematics, 2015, 29(2): 125−131.
[36] 张荣, 翟明普, 阎海平. 国内外风景游憩林抚育研究进展[J]. 北京林业大学学报, 2004, 26(2):109−113. doi: 10.3321/j.issn:1000-1522.2004.02.022. Zhang R, Zhai M P, Yan H P. Advances of scenic recreational forest tending at home and abroad[J]. Beijing Forestry University, 2004, 26(2): 109−113. doi: 10.3321/j.issn:1000-1522.2004.02.022.
[37] Kellom S S. Forest stand preferences of recreationists[J]. Acta Forestalia Fennica, 1975, 146: 1−36.
[38] Staffelbach E. A new foundation for forest aesthetics[J]. Allgemeine Forstzeitschrift, 1984, 39: 1179−1181.
[39] 杨鑫霞, 亢新刚, 杜志, 等. 基于SBE法的长白山森林景观美学评价[J]. 西北农林科技大学学报(自然科学版), 2012, 40(6):86−90, 98. Yang X X, Kang X G, Du Z, et al. SBE method-based forest landscape aesthetic quality evaluation of Changbai Mountain[J]. Journal of Northwest A & F University (Natural Science Edition), 2012, 40(6): 86−90, 98.
[40] 梅光义, 孙玉军. 基于SBE法的杉木风景游憩林的评价及经营技术[J]. 中南林业科技大学学报, 2012, 32(8):28−32. Mei G Y, Sun Y J. Evaluation and management techniques of scenic recreational forest of Cunninghamia lanceolata based on SBE[J]. Journal of Central South University of Forestry & Technology, 2012, 32(8): 28−32.
[41] 史琛媛, 张志伟, 魏浩亮, 等. 冀北山地不同疏伐密度下油松风景林美景度的研究[J]. 河北林果研究, 2015, 30(4):335−339. Shi C Y, Zhang Z W, Wei H L, et al. Study of the scenic beauty values of Pinus tabulaeformis under different thinning intensity in the northern mountain region of Hebei Province[J]. Forestry and Ecological Sciences, 2015, 30(4): 335−339.
[42] 李苹, 毛斌, 许丽娟, 等. 密度、灌草盖度和树干形态对油松人工风景林林内景观指数的影响[J]. 北京林业大学学报, 2018, 40(10):115−122. Li P, Mao B, Xu L J, et al. Effects of density, shrub-herb coverage and trunk shape on the in-forest patch index of planted Pinus tabuliformis forests[J]. Beijing Forestry University, 2018, 40(10): 115−122.
[43] 陈青法, 方灵兰. 简明林业辞典[M]. 兰州: 甘肃人民出版社, 1981. Chen Q F, Fang L L. Concise forestry dictionary[M]. Lanzhou: Gansu People’s Publishing House, 1981.
-
期刊类型引用(12)
1. 于宏影,闫晓娜,王晓红,王思瑶,韦睿,黄艳. 东北茶藨子果实氨基酸组成分析. 林业科技通讯. 2024(09): 72-76 . 百度学术
2. 刘哲,叶英,罗黎霞,王虹,张祎睿. 狭果茶藨子营养成分分析与氨基酸提取工艺优化及评价. 食品与发酵工业. 2022(13): 188-195 . 百度学术
3. 刘九庆,谢力. 植物导管中穿孔板的流体力学建模与流阻分析. 森林工程. 2022(05): 93-103 . 百度学术
4. 罗敏蓉. 基于不同方法的毛茛族(毛茛科)导管穿孔板比较研究. 广西植物. 2021(01): 123-132 . 百度学术
5. 邓睿,张梅丽,周明,郑宝江. 中国茶藨子属1新记录种. 南京林业大学学报(自然科学版). 2021(02): 231-233 . 百度学术
6. 杜习武,叶康,胡永红,邵文,陈奕飞,廖梓洋,曾丽,秦俊. 淹水胁迫对星花玉兰木质部水分运输的影响. 植物生理学报. 2021(10): 1963-1973 . 百度学术
7. 张丽,乔枫. 茶藨子属植物逆境生理研究进展. 世界林业研究. 2018(01): 18-22 . 百度学术
8. 王美娟,赵千里,李芯妍,郑宝江. 12种茶藨子属植物叶表皮微形态特征及其分类学意义. 植物研究. 2018(04): 490-496 . 百度学术
9. 刘虹,薛青,黄文,覃瑞. 茶藨子属ITS2序列二级结构的预测和比较分析. 中南民族大学学报(自然科学版). 2018(03): 42-47 . 百度学术
10. 杜婉,王丰,潘彪,陈昕. 花楸属3种1变种植物茎次生构造的比较. 安徽农业大学学报. 2017(05): 857-861 . 百度学术
11. 刘灵,韦睿,于宏影,王千雪,申方圆. 东北茶藨子果实性状变异研究. 西南林业大学学报(自然科学). 2017(06): 23-29 . 百度学术
12. 韦睿,黄艳,王晓红,刘灵. 东北茶藨子研究现状及开发前景展望. 北方园艺. 2016(14): 202-206 . 百度学术
其他类型引用(12)
计量
- 文章访问数:
- HTML全文浏览量:
- PDF下载量:
- 被引次数: 24