高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

温带云冷杉混交林凋落物养分的空间分布特征

秦倩倩 王海燕 郑永林 雷相东

秦倩倩, 王海燕, 郑永林, 雷相东. 温带云冷杉混交林凋落物养分的空间分布特征[J]. 北京林业大学学报, 2021, 43(3): 73-84. doi: 10.12171/j.1000-1522.20200065
引用本文: 秦倩倩, 王海燕, 郑永林, 雷相东. 温带云冷杉混交林凋落物养分的空间分布特征[J]. 北京林业大学学报, 2021, 43(3): 73-84. doi: 10.12171/j.1000-1522.20200065
Qin Qianqian, Wang Haiyan, Zheng Yonglin, Lei Xiangdong. Spatial distribution characteristics of litter nutrients in temperate spruce-fir mixed forests[J]. Journal of Beijing Forestry University, 2021, 43(3): 73-84. doi: 10.12171/j.1000-1522.20200065
Citation: Qin Qianqian, Wang Haiyan, Zheng Yonglin, Lei Xiangdong. Spatial distribution characteristics of litter nutrients in temperate spruce-fir mixed forests[J]. Journal of Beijing Forestry University, 2021, 43(3): 73-84. doi: 10.12171/j.1000-1522.20200065

温带云冷杉混交林凋落物养分的空间分布特征

doi: 10.12171/j.1000-1522.20200065
基金项目: 国家重点研发计划重点专项(2017YFC0504002)
详细信息
    作者简介:

    秦倩倩,博士生。主要研究方向:植物营养学、生态学。Email:qinqianqian19@163.com 地址:100083北京市海淀区清华东路 35 号北京林业大学林学院

    责任作者:

    王海燕,博士,副教授。主要研究方向:土壤学、植物营养学。Email:haiyanwang72@aliyun.com 地址:同上

  • 中图分类号: S718.5

Spatial distribution characteristics of litter nutrients in temperate spruce-fir mixed forests

  • 摘要:   目的  凋落物层是森林生态系统的重要组分,研究其养分的空间分布特征对于维持森林生态环境和可持续经营具有独特且关键的意义。  方法  以温带云冷杉混交林为研究对象,基于等距离网格布点法对4块1 hm2的固定样地进行林分调查和凋落物收集,测定分析半分解(F)层和完全分解(H)层凋落物样品各400个,采用地统计分析和克里格插值方法探究不同分解程度凋落物的养分特征和空间分布及其影响因素。  结果  (1)天然云冷杉针阔混交林F层凋落物的有机碳(OC)、全氮(TN)及全磷(TP)含量分别为421.68、18.86和1.26 g/kg,而在H层中分别为350.78、17.80和2.68 g/kg,OC和TN均随分解程度的增加而减小,TP随分解程度的增加而增加;各样地凋落物OC、TN和TP变异系数范围为10.94% ~ 65.63%,其中F层凋落物OC和TP的空间变异程度较H层小。(2)凋落物OC、TN和TP的空间异质性在森林群落尺度上均主要受结构性因素影响,空间自相关性较强;各样地凋落物OC、TN和TP呈明显的条带状和斑块状梯度性分布,且F和H层OC在同一样地内表现为相似的空间格局,而F层TN和TP高值出现的位置在H层往往较低;F层凋落物OC和TP的分形维数较H层大,其空间结构特征较复杂,而F层凋落物TN较H层具有更好的结构性,空间依赖性较强。(3)H层凋落物OC和TN与凋落物现存量均呈显著负相关(P < 0.05),且受持水率影响显著,而TP与凋落物现存量呈显著正相关;凋落物OC、TN和TP及其生态化学计量比之间具有显著的相关关系。F层凋落物TN和TP受生物多样性指数和物种数等指标的显著影响,而H层主要受到针叶树种及株数比例的显著影响,林分特征对OC的影响较TN和TP小。  结论  温带天然云冷杉针阔混交林凋落物层养分空间分布特征受凋落物性质(分解程度和持水率等)和林分结构(树种和林分密度等)因子的共同作用。

     

  • 图  1  凋落物养分的描述性统计特征(n = 100)

    图中为均值(标准差)。P < 0.01表示半分解(F)层和完全分解(H)层凋落物养分含量差异极显著,P < 0.05表示F层和H层凋落物养分含量差异显著。Data in the figure are mean(standard deviation). P < 0.01 indicates extremelysignificant difference between semi-decomposed horizon (F) and complete decomposed horizon (H), while P < 0.05 indicates significant difference between F and H horizons.

    Figure  1.  Descriptive statistical characteristics of litter nutrient concentrations (n = 100)

    图  2  半分解层凋落物养分的空间分布格局

    Figure  2.  Spatial distribution pattern of litter nutrient concentrations in semi-decomposed horizon (F)

    图  3  完全分解层凋落物养分的空间分布格局

    Figure  3.  Spatial distribution pattern of litter nutrient concentrations in completely decomposed horizon (H)

    表  1  样地基本概况

    Table  1.   Characteristics of experimental sample plots

    样地
    Sample plot
    海拔
    Altitude/m
    坡度
    Slope degree/(°)
    坡向
    Slope aspect
    间伐强度
    Thinning intensity/%
    蓄积量/
    (m3·hm−2)
    Volume/(m3·ha−1)
    林分密度/(株·hm−2)
    Stand density/
    (stem·ha−1)
    平均树高
    Mean tree height/m
    平均胸径
    Mean DBH/cm
    树种组成
    Tree
    species
    郁闭度
    Canopy density
    7423东北 Northeast21.21173.89 93413.914.52冷2落1云1红1椴1枫1白1杂0.74
    7325东北 Northeast6.29201.00116711.412.32冷1红1白1云1落1椴1枫1杨1杂0.76
    7695东北 Northeast11.22218.10130113.613.72落2云1冷1红1白1枫1杨1椴0.78
    7733东北 Northeast0.00209.10143715.114.02落2水1红1冷1枫1白1云0.81
    注:云. 鱼鳞云杉;冷. 臭冷杉;落. 长白落叶松;红. 红松;椴. 紫椴 ;枫.枫桦;白. 白桦 ;杨. 大青杨;水. 水曲柳 ;杂. 杂木。Notes: 云, Picea jezoensis var. microsperma; 冷, Abies nephrolepis; 落, Larix olgensis; 红, Pinus koraiensis; 椴, Tilia amurensis; 枫, Betula costata; 白, Betula platyphylla; 杨, Populus ussuriensis; 水, Fraxinus mandschurica; 杂, others.
    下载: 导出CSV

    表  2  凋落物养分空间分析的半方差函数的模型类型及参数(n = 100)

    Table  2.   Semivariogram theoretical models and parameters for litter nutrient concentrations (n = 100)

    指标
    Index
    样地
    Sample
    plot
    分层
    Horizon
    模型
    Model
    块金值
    Nugget
    (C0)
    基台值
    Sill
    (C0 + C)
    变程
    Range
    (A)/m
    结构比
    Structural variance
    ratio (C0/(C0 + C))/%
    决定系数
    Determination
    coefficients (R2)
    分形维数
    Fractal
    dimension (D)
    有机碳
    Organic
    carbon
    F 球状模型
    Spherical model
    0.001 0.358 17.4 0.28 0.579 1.941
    H 指数模型
    Exponential model
    0.107 0.738 30.0 14.50 0.967 1.900
    F* 指数模型
    Exponential model
    0.031 0.413 10.5 7.02 0.775 1.995
    H 球状模型
    Spherical model
    0.031 0.619 18.2 5.16 0.716 1.941
    F 球状模型
    Spherical model
    0.005 0.605 14.2 0.83 0.173 1.964
    H 球状模型
    Spherical model
    0.001 0.574 11.9 0.17 0.560 1.996
    F* 指数模型
    Exponential model
    0.001 0.776 13.5 0.13 0.253 1.954
    H 指数模型
    Exponential model
    0.317 1.136 39.9 27.90 0.935 1.892
    全氮
    Total
    nitrogen
    F 球状模型
    Spherical model
    0.425 2.973 78.9 14.30 0.998 1.687
    H 球状模型
    Spherical model
    0.010 8.706 17.3 0.11 0.824 1.952
    F 指数模型
    Exponential model
    0.980 7.490 24.3 13.08 0.952 1.924
    H 指数模型
    Exponential model
    0.320 7.309 11.7 4.38 0.317 1.975
    F 指数模型
    Exponential model
    0.250 4.710 14.1 5.31 0.835 1.971
    H 指数模型
    Exponential model
    0.060 8.058 6.3 0.74 0.419 1.974
    F 指数模型
    Exponential model
    0.010 7.990 25.5 0.13 0.888 1.899
    H 指数模型
    Exponential model
    0.760 7.340 26.7 10.35 0.847 1.912
    全磷
    Total
    phosphorus
    F 指数模型
    Exponential model
    0.003 0.120 9.9 2.52 0.276 1.988
    H* 球状模型
    Spherical model
    0.157 0.385 71.3 40.78 0.975 1.818
    F 高斯模型
    Gauss model
    0.014 0.031 40.5 45.81 0.999 1.815
    H 高斯模型
    Gauss model
    0.001 0.198 14.5 0.51 0.615 1.949
    F 指数模型
    Exponential model
    0.005 0.151 17.1 3.45 0.727 1.952
    H 球状模型
    Spherical model
    0.375 0.786 51.4 47.71 0.989 1.855
    F 指数模型
    Exponential model
    0.008 0.083 11.1 0.10 0.222 1.978
    H 指数模型
    Exponential model
    0.067 0.685 11.4 9.78 0.412 1.986
    注:*表示数据因不符合正态分布进行Box-Cox转换。Notes: * means that the data disobeying the normal distribution are transformed using Box-Cox.
    下载: 导出CSV

    表  3  凋落物养分与凋落物因子的相关系数 (n = 100)

    Table  3.   Correlation coefficients of litter nutrient concentration with litter factors (n = 100)

    指标
    Index
    样地
    Sample plot
    分层
    Horizon
    现存量
    Standing crop
    持水率
    Water holding rate
    有机碳(或全氮)
    OC (TN)
    全氮(或全磷)
    TN (TP)
    碳氮比
    OC/TN
    碳磷比
    OC/TP
    氮磷比
    TN/TP
    有机碳
    Organic carbon
    F 0.081 0.118 0.266* 0.205* 0.202* 0.178 0.628**
    H −0.143 0.324** 0.374** 0.186 0.686** 0.616** 0.031
    F −0.008 0.080 0.200* −0.040 0.563** 0.000 0.434**
    H −0.188 0.654** 0.364** −0.069 0.582** 0.659** 0.281**
    F −0.041 −0.129 0.197* −0.065 0.850** 0.084 0.688**
    H −0.209* 0.388** 0.342** 0.078 0.747** 0.563** 0.015
    F 0.166 −0.010 0.100 −0.370 0.699** −0.108 0.717**
    H −0.164 0.420** 0.008 0.025 0.885** 0.714** 0.022
    全氮
    Total nitrogen
    F −0.115 0.077 0.226* 0.091 −0.607** 0.796** 0.017
    H −0.260** 0.407** 0.374** 0.223* −0.394** 0.147 0.447**
    F −0.090 0.086 0.200* 0.112 −0.616** 0.409** 0.084
    H −0.428** 0.517** 0.364** 0.248* −0.494** 0.038 0.425**
    F 0.063 −0.025 0.197* 0.233* −0.322** 0.305** −0.065
    H −0.290** 0.529** 0.342** 0.163 −0.334** 0.015 0.279**
    F 0.058 0.070 0.100 0.279** −0.562** 0.415** −0.244
    H −0.427** 0.506** 0.008 −0.016 −0.420** −0.008 0.435**
    全磷
    Total phosphorus
    F 0.090 −0.133 0.023 0.236* −0.243* −0.725** −0.342**
    H −0.003 0.050 0.186 0.223* 0.036 −0.587** −0.710**
    F 0.060 0.061 0.084 0.091 −0.007 −0.758** −0.771**
    H −0.149 0.075 −0.069 0.248* −0.248* −0.745** −0.730**
    F −0.151 0.060 0.011 0.230* −0.131 −0.689** −0.835**
    H 0.000 0.089 0.078 0.163 −0.042 −0.714** −0.823**
    F −0.013 −0.078 0.046 0.271** −0.101 −0.609** −0.690**
    H 0.232* −0.116 0.025 −0.016 0.024 −0.598** −0.858**
    注:**表示影响极显著(P < 0.01),*表示影响显著(P < 0.05)。下同。Notes: ** means very significant influences at P< 0.01 level. * means significant influences at P< 0.05 level. The same below.
    下载: 导出CSV

    表  4  凋落物养分与林分因子的相关系数(n = 100)

    Table  4.   Correlation coefficients of litter nutrient concentration with stand factors (n = 100)

    指标
    Index
    样地
    Sample plot
    分层
    Horizon
    郁闭度
    Canopy
    density
    物种数
    Species
    number
    株数
    Stem
    number
    生物多样性指数
    Biodiversity index
    针叶树种比例
    Proportion of
    coniferous species
    针叶株数比例
    Proportion of
    coniferous stem

    DBH
    胸高
    断面积
    Basal area
    DH'J
    有机碳
    Organic
    carbon
    F 0.174 −0.012 0.020 −0.012 −0.044 −0.064 −0.118 −0.159 −0.088 −0.100
    H 0.055 −0.114 −0.209* −0.114 −0.103 −0.067 −0.014 −0.043 0.125 0.145
    F −0.129 0.071 0.103 0.071 0.029 −0.049 0.011 −0.113 0.121 0.097
    H 0.051 0.000 −0.001 0.000 0.034 0.093 0.058 0.023 −0.024 −0.029
    F 0.049 −0.012 −0.021 −0.012 0.026 0.070 0.110 0.074 0.159 0.138
    H 0.057 0.117 0.139 0.117 0.138 0.139 −0.149 −0.208* 0.092 0.091
    F 0.024 0.089 0.004 0.089 0.072 0.064 0.100 0.106 −0.121 −0.127
    H −0.057 −0.164 −0.099 −0.164 −0.136 0.008 0.037 −0.067 −0.079 −0.099
    全氮
    Total
    nitrogen
    F −0.117 −0.007 −0.061 −0.007 −0.045 −0.045 0.075 0.087 −0.022 −0.046
    H −0.044 −0.175 −0.168 −0.175 −0.192 −0.114 −0.099 −0.033 0.095 0.113
    F −0.166 −0.072 −0.121 −0.072 −0.052 0.015 −0.425** −0.438** 0.059 0.013
    H −0.001 0.007 0.070 0.007 −0.040 −0.085 −0.002 −0.003 −0.073 −0.073
    F −0.105 −0.282** −0.125 −0.282** −0.328** −0.183 0.227* 0.232* 0.078 0.064
    H 0.132 0.134 0.017 0.134 0.160 0.185 −0.107 −0.114 0.166 0.146
    F −0.146 −0.235* −0.239* −0.235* −0.208* −0.018 0.010 0.019 −0.009 −0.023
    H −0.041 −0.039 0.029 −0.039 −0.101 −0.123 0.195 0.258** 0.074 0.032
    全磷
    Total
    phosphorus
    F −0.106 −0.038 −0.077 −0.038 −0.066 −0.105 0.010 0.007 −0.097 −0.111
    H −0.012 −0.105 −0.220* −0.105 −0.070 0.072 0.021 −0.056 0.156 0.141
    F 0.262** 0.013 −0.109 0.013 0.043 0.058 −0.038 −0.021 0.038 0.042
    H −0.218* −0.162 −0.024 −0.162 −0.186 −0.146 −0.060 −0.056 −0.026 −0.033
    F 0.147 0.206* 0.148 0.206* 0.222* 0.123 0.023 −0.097 0.093 −0.087
    H 0.114 0.076 −0.009 0.076 0.094 0.038 −0.034 −0.150 0.153 0.146
    F 0.037 0.195 −0.030 0.195 0.212* 0.126 −0.035 −0.133 −0.057 −0.058
    H 0.134 0.033 −0.052 0.033 0.065 0.132 −0.240* −0.160 −0.029 −0.017
    注:D. Gleason指数;H'. Shannon-Wiener多样性指数;J. Pielou均匀度指数。Notes: D, Gleason index; H', Shannon-Wiener diversity index; J. Pielou evenness index.
    下载: 导出CSV
  • [1] Enez K, Aricak B, Sariyildiz T. Effects of harvesting activities on litter decomposition rates of Scots pine, Trojan fir, and sweet chestnut[J]. Sumarski List, 2015, 139(7): 361−368.
    [2] Nugroho J D. Litterfall and soil characteristics under plantations of five tree species in Irian Jaya[J]. Science in New Guinea, 1997, 23(1): 17−26.
    [3] Quested H M, Press M C, Callaghan T V. Litter of the hemiparasite, Bartsia alpina, enhances plant growth: evidence for a functional role in nutrient cycling[J]. Oecologia, 2003, 135(4): 606−614. doi: 10.1007/s00442-003-1225-4
    [4] Ukonmaanaho L, Merilä P, Nöjd P, et al. Litterfall production and nutrient return to the forest floor in Scots pine and Norway spruce stands in Finland[J]. Boreal Environment Research, 2008, 13: 67−91.
    [5] Godoy O, Castro-Díez P, Logtestijn R S P V, et al. Leaf litter traits of invasive species slow down decomposition compared to Spanish natives: a broad phylogenetic comparison[J]. Oecologia, 2010, 162(3): 781−790. doi: 10.1007/s00442-009-1512-9
    [6] Papamichos N. Forest soils[M]. Thessaloniki: Aristotle University of Thessaloniki, 1990.
    [7] Kavvadias V A, Alifragis D, Tsiontsis A, et al. Litterfall, litter accumulation and litter decomposition rates in four forest ecosystems in northern Greece[J]. Forest Ecology and Management, 2001, 144(1): 113−127.
    [8] Piovesan G, Alessandrini A, Baliva M, et al. Structural patterns, growth processes, carbon stocks in an Italian network of old-growth beech forests[J]. L’Italia Forestale e Montana, 2010, 65(5): 557−590.
    [9] Zederer D P, Talkner U, Spohn M, et al. Microbial biomass phosphorus and C/N/P stoichiometry in forest floor and a horizons as affected by tree species[J]. Soil Biology and Biochemistry, 2017, 111: 166−175. doi: 10.1016/j.soilbio.2017.04.009
    [10] 郑路, 卢立华. 我国森林地表凋落物现存量及养分特征[J]. 西北林学院学报, 2012, 27(1):63−69. doi: 10.3969/j.issn.1001-7461.2012.01.13

    Zheng L, Lu L H. Standing crop and nutrient characteristics of forest floor litter in China[J]. Journal of Northwest Forestry University, 2012, 27(1): 63−69. doi: 10.3969/j.issn.1001-7461.2012.01.13
    [11] Burghouts T B A, Straalen N M V, Bruijnzeel L A. Spatial heterogeneity of element and litter turnover in a Bornean rain forest[J]. Journal of Tropical Ecology, 1998, 14(4): 477−506. doi: 10.1017/S0266467498000352
    [12] 乔璐, 阮桢媛, 白冰, 等. 中山湿性常绿阔叶林凋落物的空间输入格局[J]. 福建林业科技, 2017, 44(2):13−18.

    Qiao L, Ruan Z Y, Bai B, et al. Spatial pattern of litterfall input and its correlation with soil nutrients in the montane moist evergreen broad-leaved forest in Ailao Mountains, Yunnan[J]. Journal of Fujian Forestry Science and Technology, 2017, 44(2): 13−18.
    [13] Parsons S A, Congdon R A, Shoo L P, et al. Spatial variability in litterfall, litter standing crop and litter quality in a tropical rain forest region[J]. Biotropica, 2014, 46(4): 378−386. doi: 10.1111/btp.12113
    [14] Lu S W, Liu C P. Patterns of litterfall and nutrient return at different altitudes in evergreen hardwood forests of central Taiwan[J]. Annals of Forest Science, 2012, 69(8): 877−886. doi: 10.1007/s13595-012-0213-4
    [15] 杨阳, 王根绪, 冉飞, 等. 西藏高原主要森林类型凋落物碳储量及空间分布格局[J]. 生态学杂志, 2016, 35(3):559−566.

    Yang Y, Wang G X, Ran F, et al. Litter carbon stock and spatial patterns of main forest types in Tibet[J]. Chinese Journal of Ecology, 2016, 35(3): 559−566.
    [16] 刘刚, 朱剑云, 叶永昌, 等. 东莞主要森林群落凋落物碳储量及其空间分布[J]. 山地学报, 2010, 28(1):69−75. doi: 10.3969/j.issn.1008-2786.2010.01.009

    Liu G, Zhu J Y, Ye Y C, et al. Organic carbon storage and its distribution in forest litters among forest communities in Dongguan, south China[J]. Journal of Mountain Science, 2010, 28(1): 69−75. doi: 10.3969/j.issn.1008-2786.2010.01.009
    [17] Kang H, Xin Z, Berg B, et al. Global pattern of leaf litter nitrogen and phosphorus in woody plants[J]. Annals of Forest Science, 2010, 67(8): 811. doi: 10.1051/forest/2010047
    [18] Li H, Reynolds J F. On definition and quantification of heterogeneity[J]. Oikos, 1995, 73(2): 280−284. doi: 10.2307/3545921
    [19] Burt T P, Butcher D P. Topographic controls of soil moisture distributions[J]. European Journal of Soil Science, 2010, 36(3): 469−486.
    [20] 刘颖, 韩士杰, 林鹿. 长白山四种森林类型凋落物动态特征[J]. 生态学杂志, 2009, 28(1):7−11.

    Liu Y, Han S J, Lin L. Dynamic characteristics of litterfalls in four forest types of Changbai Mountains, China[J]. Chinese Journal of Ecology, 2009, 28(1): 7−11.
    [21] 鲍士旦. 土壤农化分析[M]. 北京: 中国农业出版社, 2000.

    Bao S D. Soil agricultural chemistry analysis[M]. Beijing: China Agricultural Press, 2000.
    [22] 郑金萍, 郭忠玲, 徐程扬, 等. 长白山北坡主要森林群落凋落物现存量月动态[J]. 生态学报, 2011, 31(15):4299−4307.

    Zheng J P, Guo Z L, Xu C Y, et al. Seasonal dynamics of litter accumulation in major forest communities on the northern slope of Changbai Mountain, Northeast China[J]. Acta Ecologica Sinica, 2011, 31(15): 4299−4307.
    [23] 崔建国, 镡娟. 辽西油松蒙古栎林下凋落物现存量及持水能力的研究[J]. 水土保持研究, 2008, 15(2):154−155.

    Cui J G, Chan J. Studying litter standing crop of Quercus mongolica and Pinus koraiensis in west of Liaoning[J]. Research of Soil and Water Conservation, 2008, 15(2): 154−155.
    [24] 祁有祥, 骆汉, 赵廷宁. 基于鱼眼镜头的林冠郁闭度简易测量方法[J]. 北京林业大学学报, 2009, 31(6):60−66.

    Qi Y X, Luo H, Zhao T N. Simplified approach to measure canopy closure based on fish lenses[J]. Journal of Beijing Forestry University, 2009, 31(6): 60−66.
    [25] 孟宪宇. 测树学[M]. 北京: 中国林业出版社, 2006.

    Meng X Y. Forest mensuration[M]. Beijing: China Forestry Publishing House, 2006.
    [26] Goovaerts P. Geostatistics for natural resources evaluation[M]. New York: Oxford University Press, 1997.
    [27] Burgos P A, Madejón E, Pérez-de-Mora A, et al. Spatial variability of the chemical characteristics of a trace-element-contaminated soil before and after remediation[J]. Geoderma, 2006, 130(1): 157−175.
    [28] Cressie N A C N. Statistics for spatial data[M]. New York: John Wiley and Sons, 1993.
    [29] Wang Y Q, Shao M A. Spatial variability of soil physical properties in a region of the Loess Plateau of PR China subject to wind and water erosion[J]. Land Degradation and Development, 2013, 24(3): 296−304. doi: 10.1002/ldr.1128
    [30] 秦倩倩, 王海燕, 李翔, 等. 东北天然针阔混交林凋落物磷素空间异质性及其影响因素[J]. 生态学报, 2019, 39(12):4519−4529.

    Qin Q Q, Wang H Y, Li X, et al. Spatial heterogeneity and factors affecting phosphorous in the litter of a natural Picea jezoensis var. microsperma (Lindl.) W. C. Cheng & L. K. Fu and Abies nephrolepis (Trautv.) Maxim. mixed forest in northeastern China[J]. Acta Ecologica Sinica, 2019, 39(12): 4519−4529.
    [31] Liu L, Wang H Y, Dai W, et al. Spatial variability of soil organic carbon in the forestlands of northeast China[J]. Journal of Forestry Research, 2014, 25(4): 867−876. doi: 10.1007/s11676-014-0533-3
    [32] 曾春阳, 唐代生, 唐嘉锴. 森林立地指数的地统计学空间分析[J]. 生态学报, 2010, 30(13):3465−3471.

    Zeng C Y, Tang D S, Tang J K. Spatial pattern analysis of forest ecosystem site index using geostatistical technology[J]. Acta Ecologica Sinica, 2010, 30(13): 3465−3471.
    [33] 郭旭东, 傅伯杰. 河北省遵化平原土壤养分的时空变异特征—变异函数与kriging插值分析[J]. 地理学报, 2000, 1(5):555−566. doi: 10.11821/xb200005005

    Guo X D, Fu B J. The Spatio-temporal variability of soil nutrients in Zunhua Plain of Hebei Province: semivariogram and kriging analysis[J]. Acta Geographica Sinica, 2000, 1(5): 555−566. doi: 10.11821/xb200005005
    [34] 李哈滨, 王政权, 王庆成. 空间异质性定量研究理论与方法[J]. 应用生态学报, 1998, 9(6):93−99.

    Li H B, Wang Z Q, Wang Q C. Theory and methodology of spatial heterogeneity quantification[J]. Chinese Journal of Applied Ecology, 1998, 9(6): 93−99.
    [35] Burrough P A. Fractal dimensions of landscapes and other environmental data[J]. Nature, 1981, 294: 240−242. doi: 10.1038/294240a0
    [36] Burrough P A. Multiscale sources of spatial variation in soil ( II): a non-rownian fractal model and its application in soil survey[J]. European Journal of Soil Science, 1983, 34(3): 599−620. doi: 10.1111/j.1365-2389.1983.tb01058.x
    [37] Pastor J, Bockheim J G. Distribution and cycling of nutrients in an aspen-mixed-hardwood-spodosol ecosystem in northern Wisconsin[J]. Ecology, 1984, 65(2): 339−353. doi: 10.2307/1941398
    [38] 常雅军, 曹靖, 李建建, 等. 秦岭西部山地针叶林凋落物层的化学性质[J]. 生态学杂志, 2009, 28(7):1308−1315.

    Chang Y J, Cao J, Li J J, et al. Chemical properties of litter layers in coniferous forests of western Qinling Mountains[J]. Chinese Journal of Ecology, 2009, 28(7): 1308−1315.
    [39] 钟国辉, 辛学兵. 西藏色季拉山暗针叶林凋落物层化学性质研究[J]. 应用生态学报, 2004, 15(1):167−169. doi: 10.3321/j.issn:1001-9332.2004.01.038

    Zhong G H, Xin X B. Chemical properties of litter in dark coniferous forest of Sejila Mountains in Tibet[J]. Chinese Journal of Applied Ecology, 2004, 15(1): 167−169. doi: 10.3321/j.issn:1001-9332.2004.01.038
    [40] 李叙勇, 孙继坤, 常直海, 等. 天山森林凋落物和枯枝落叶层的研究[J]. 土壤学报, 1997, 34(4):406−417. doi: 10.3321/j.issn:0564-3929.1997.04.008

    Li X Y, Sun J K, Chang Z H, et al. A study on litter and forest floor in Tianshan Mountains[J]. Acta Pedologica Sinica, 1997, 34(4): 406−417. doi: 10.3321/j.issn:0564-3929.1997.04.008
    [41] 齐泽民, 王开运, 宋光煜, 等. 川西亚高山箭竹群落枯枝落叶层生物化学特性[J]. 生态学报, 2004, 24(6):1230−1236. doi: 10.3321/j.issn:1000-0933.2004.06.021

    Qi Z M, Wang K Y, Song G Y, et al. Bio-chemical properties of the forest floor in subalpine bamboo communities in western Sichuan[J]. Acta Ecologica Sinica, 2004, 24(6): 1230−1236. doi: 10.3321/j.issn:1000-0933.2004.06.021
    [42] 张万儒, 许本彤, 杨承栋, 等. 山地森林土壤枯枝落叶层结构和功能的研究[J]. 土壤学报, 1990, 27(2):121−131.

    Zhang W R, Xu B T, Yang C D, et al. Studies on structure and function of forest floors of mountain forest soils[J]. Acta Pedologica Sinica, 1990, 27(2): 121−131.
    [43] 刘文耀, 荆桂芬. 滇中常绿阔叶林及云南松林调落和死地被物中的养分动态[J]. 植物学报, 1990, 32(8):637−646.

    Liu W Y, Xin G F. Nutrient dynamics in the litter-fall and forest floor of evergreen broad-leaved forest and Pinus Yunnanensis forest in central Yunnan[J]. Acta Botanica Sinica, 1990, 32(8): 637−646.
    [44] 于明坚, 陈启常, 李铭红, 等. 青冈常绿阔叶林死地被层和土壤性质特征的研究[J]. 林业科学, 1996, 32(2):103−110.

    Yu M J, Chen Q C, Li M H, et al. Studies on the characteristics of the forest floor and the soil in the evergreen broad-leaved forest dominated by Cyclobalanopsis glauca in Zhejiang, China[J]. Scientia Silvae Sinicae, 1996, 32(2): 103−110.
    [45] 宋影, 辜夕容, 严海元, 等. 中亚热带马尾松林凋落物分解过程中的微生物与酶活性动态[J]. 环境科学, 2014, 35(3):1151−1158.

    Song Y, Gu X R, Yan H Y, et al. Dynamics of microbes and enzyme activities during litter decomposition of Pinus massoniana forest in mid-subtropical area[J]. Environmental Sience, 2014, 35(3): 1151−1158.
    [46] Chang Y H, Scrimshaw M D, Emmerson R H C, et al. Geostatistical analysis of sampling uncertainty at the tollesbury managed retreat site in Blackwater Estuary, Essex, UK: kriging and cokriging approach to minimise sampling density[J]. Science of the Total Environment, 1998, 221(1): 43−57. doi: 10.1016/S0048-9697(98)00262-9
    [47] Gower S T, Son Y. Differences in soil and leaf litterfall nitrogen dynamics for five forest plantations[J]. Soil Science Society of America Journal, 1992, 56(6): 1959−1966. doi: 10.2136/sssaj1992.03615995005600060051x
    [48] Lovett G M, Weathers K C, Arthur M A, et al. Nitrogen cycling in a northern hardwood forest: do species matter?[J]. Biogeochemistry, 2004, 67(3): 289−308. doi: 10.1023/B:BIOG.0000015786.65466.f5
    [49] Trum F, Titeux H, Ranger J, et al. Influence of tree species on carbon and nitrogen transformation patterns in forest floor profiles[J]. Annals of Forest Science, 2011, 68(4): 837−847. doi: 10.1007/s13595-011-0080-4
    [50] 肖银龙, 涂利华, 胡庭兴, 等. 模拟氮沉降对华西雨屏区苦竹林凋落物养分输入量的早期影响[J]. 生态学报, 2013, 33(23):7355−7363. doi: 10.5846/stxb201208301224

    Xiao Y L, Tu L H, Hu T X, et al. Early effects of simulated nitrogen deposition on annual nutrient input from litterfall in a Pleioblastus amarus plantation in rainy area of West China[J]. Acta Ecologica Sinica, 2013, 33(23): 7355−7363. doi: 10.5846/stxb201208301224
    [51] 李鑫, 曾全超, 安韶山, 等. 黄土高原纸坊沟流域不同植物叶片及枯落物的生态化学计量学特征研究[J]. 环境科学, 2015(3):1084−1091.

    Li X, Zeng Q C, An S S, et al. Ecological stoichiometric characteristics in leaf and litter under different vegetation types of Zhifanggou Watershed on the Loess Plateau, China[J]. Environmental Science, 2015(3): 1084−1091.
    [52] 刘志鹏. 黄土高原地区土壤养分的空间分布及其影响因素[D]. 北京: 中国科学院研究生院, 2013.

    Liu Z P. Spatial distribution and its affecting factors of soil nutrients in the Loess Plateau[D]. Beijing: Graduate School of Chinese Academy of Science, 2013.
    [53] 严俊霞, 孙琦, 李君剑, 等. 不同取样尺度和数量下针阔混交林土壤呼吸的空间异质性[J]. 环境科学, 2019, 40(1):385−393.

    Yan J X, Sun Q, Li J J, et al. Effect of the sampling scale and number on the heterogeneity of soil respiration in a mixed broadleaf-conifer forest[J]. Environmental Science, 2019, 40(1): 385−393.
  • 加载中
图(3) / 表(4)
计量
  • 文章访问数:  411
  • HTML全文浏览量:  136
  • PDF下载量:  33
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-12
  • 修回日期:  2020-05-08
  • 网络出版日期:  2021-03-10
  • 刊出日期:  2021-04-16

目录

    /

    返回文章
    返回