高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

‘84K’杨组氨酸激酶基因PaHK3a的表达及功能分析

鲁俊倩 武舒 钟姗辰 张伟溪 苏晓华 张冰玉

鲁俊倩, 武舒, 钟姗辰, 张伟溪, 苏晓华, 张冰玉. ‘84K’杨组氨酸激酶基因PaHK3a的表达及功能分析[J]. 北京林业大学学报, 2021, 43(2): 46-53. doi: 10.12171/j.1000-1522.20200070
引用本文: 鲁俊倩, 武舒, 钟姗辰, 张伟溪, 苏晓华, 张冰玉. ‘84K’杨组氨酸激酶基因PaHK3a的表达及功能分析[J]. 北京林业大学学报, 2021, 43(2): 46-53. doi: 10.12171/j.1000-1522.20200070
Lu Junqian, Wu Shu, Zhong Shanchen, Zhang Weixi, Su Xiaohua, Zhang Bingyu. Expression and function analysis of histidine kinase gene PaHK3a of poplar ‘84K’[J]. Journal of Beijing Forestry University, 2021, 43(2): 46-53. doi: 10.12171/j.1000-1522.20200070
Citation: Lu Junqian, Wu Shu, Zhong Shanchen, Zhang Weixi, Su Xiaohua, Zhang Bingyu. Expression and function analysis of histidine kinase gene PaHK3a of poplar ‘84K’[J]. Journal of Beijing Forestry University, 2021, 43(2): 46-53. doi: 10.12171/j.1000-1522.20200070

‘84K’杨组氨酸激酶基因PaHK3a的表达及功能分析

doi: 10.12171/j.1000-1522.20200070
基金项目: 国家自然基金项目(31770710),转基因生物新品种培育重大课题(2018ZX08020002)
详细信息
    作者简介:

    鲁俊倩。主要研究方向:林木遗传育种。Email:lujq115@163.com 地址:100091北京市海淀区青龙桥街道中国林业科学研究院国家重点实验室

    责任作者:

    张冰玉,博士,研究员。主要研究方向:林木遗传育种。Email:byzhang@caf.ac.cn 地址:同上

  • 中图分类号: S792.11

Expression and function analysis of histidine kinase gene PaHK3a of poplar ‘84K’

  • 摘要:   目的  干旱、高盐等逆境胁迫严重影响了植物的生长发育。研究表明,组氨酸激酶在植物逆境响应中起重要作用。本研究对银腺杨‘84K’组氨酸激酶基因PaHK3a在不同组织的表达模式分析,检测了其对生长素、细胞分裂素等植物激素处理下及人工干旱、盐碱等非生物胁迫下的表达,结合干旱、盐碱条件下丙二醛(MDA)及保护酶活性等生化指标,对该基因的功能进行了初步鉴定,为杨树抗逆分子育种研究奠定基础。  方法  以‘84K’杨无菌苗为材料,通过实时定量PCR(qRT-PCR)技术分析PaHK3a基因在不同组织的表达模式。对‘84K’杨无菌苗进行浓度为10 mmol/L植物激素处理(ABA、6-BA、IBA、GA3及水杨酸(SA))及非生物胁迫处理(42 ℃高温、0 ℃低温、200 mmol/L NaCl和5% PEG6000),采用qRT-PCR技术分析PaHK3a基因对不同植物激素及非生物胁迫的表达响应;进一步对温室‘84K’杨进行自然干旱处理(6、8、10 d)、200 mmol/L NaCl(2、4、6 d)处理,测定不同胁迫时间点叶片PaHK3a基因的表达,以及超氧化物歧化酶(SOD)、过氧化物酶(POD)活性及MDA含量,并分析PaHK3a基因表达与生理指标的相关性,初步鉴定杨树PaHK3a基因的功能。  结果  qRT-PCR结果显示,PaHK3a基因在叶片中表达量最高,根部中等,茎段最低。与正常条件下相比,在高温、低温、NaCl及PEG模拟干旱处理时,PaHK3a基因表达量与对照相比明显增高,分别为对照的2.63、1.49、1.54、1.58倍。用IBA诱导处理时,基因表达量与对照相比差异不大,而在6-BA、ABA、GA3及SA处理时,基因表达量与对照相比均呈现显著下调。在温室干旱、盐碱胁迫处理过程中,PaHK3a基因表达均显著高于对照,呈现先上升后下降的表达模式,MDA含量也呈现类似的趋势,而SOD活性则随处理时间的延长而持续升高,POD活性在干旱胁迫时先上升后下降,而高盐胁迫时呈上升趋势。生理指标与PaHK3a基因表达量相关系分析发现,在干旱和盐胁迫下,PaHK3a基因表达量与叶片MDA含量、SOD活性和POD活性均呈正相关。  结论  PaHK3a基因在‘84K’杨根茎叶中均有表达,且叶中表达量最高;PaHK3a基因表达受细胞分裂素6-BA、GA3及ABA及SA等植物激素的负调控,同时,受温度胁迫、盐胁迫、水分胁迫等非生物胁迫正调控;温室人工干旱盐碱胁迫过程中,PaHK3a基因表达量升高,且与叶片MDA含量、SOD活性、POD活性均具有正相关性。研究结果初步显示,杨树PaHK3a基因参与杨树植物激素激素信号响应,并在抗逆境胁迫过程中发挥重要调控作用。

     

  • 图  1  PaHK3a基因在‘84K’杨根、茎和叶中的表达情况

    *表示差异显著,P < 0.05;**表示差异极显著,P < 0.01。下同。* means significant difference, P < 0.05; ** means very significant difference, P < 0.01. The same below.

    Figure  1.  Expression of PaHK3a in roots, stems and leaves of ‘84K’ poplar

    图  2  非生物胁迫处理下‘84K’杨叶片PaHK3a基因的表达差异

    CK. 对照;HT. 42 ℃高温处理;LT. 0 ℃低温处理。下同。CK, control; HT, 42 ℃ high temperature treatment; LT, 0 ℃ low temperature treatment. The same below.

    Figure  2.  Expression differences of PaHK3a in ‘84K’leaves under abiotic stresses

    图  3  不同植物激素处理下‘84K’杨叶片PaHK3b基因的表达差异

    Figure  3.  Expression differences of PaHK3a in ‘84K’ leaves under several plant hormone treatments

    图  4  ‘84K’杨温室干旱(A)及盐胁迫(B)下叶片PaHK3a基因表达量

    Figure  4.  Expression of PaHK3a in leaves of ‘84K’ under drought (A) and salt (B) stresses in greenhouse

    图  5  ‘84K’杨温室干旱(A)及盐(B)胁迫下叶片MDA的含量

    Figure  5.  MDA contents in leaves of ‘84K’ under drought (A) and salt (B) stresses in greenhouse

    图  6  ‘84K’杨温室干旱(A)及盐胁迫(B)下叶片SOD活性

    Figure  6.  SOD activity in leaves of ‘84K’ under drought (A) and salt (B) stresses in greenhouse

    图  7  ‘84K’杨温室干旱(A)及盐胁迫(B)下叶片POD活性

    Figure  7.  POD activity in leaves of ‘84K’ under drought (A) and salt (B) stresses in greenhouse

    表  1  qRT-PCR引物序列

    Table  1.   Primer sequences of qRT-PCR

    引物名称
    Primer name
    引物序列(5′→3′)
    Primer sequence (5′→3′)
    产物长度
    Product length/bp
    PaHK3a-q-F CTCAGTTTCTTGCTACAGTTTCCC 243
    PaHK3a-q-R ACATCATCCATTATTGCCCTCA
    Actin-F AAACTGTAATGGTCCTCCCTCCG 193
    Actin-R GCATCATCACAATCACTCTCCGA
    下载: 导出CSV

    表  2  干旱、盐胁迫下PaHK3a基因表达与生理指标相关性分析

    Table  2.   Correlation analysis between expression of PaHK3a and physiological indexes under drought and salt stresses

    生理指标
    Physiological index
    干旱胁迫
    Drought stress
    盐胁迫
    Salt stress
    MDA0.9010.994**
    SOD0.7910.734
    POD0.954*0.690
    下载: 导出CSV
  • [1] Muller B, Sheen J. Arabidopsis cytokinin signaling pathway [J/OL]. Science Signaling STKE, 2007, 2007(407): cm5 [2020−02−13]. https://stke.sciencemag.org/content/2007/407/cm5.
    [2] Werner T, Schmulling T. Cytokinin action in plant development[J]. Current Opinion in Plant Biology, 2009, 12(5): 527−538.
    [3] Tran L S, Urao T, Qin F, et al. Functional analysis of AHK1/ATHK1 and cytokinin receptor histidine kinases in response to abscisic acid, drought, and salt stress in Arabidopsis[J]. PNAS, 2007, 104(51): 20623−20628.
    [4] Jeon J, Kim N Y, Kim S, et al. A subset of cytokinin two-component signaling system plays a role in cold temperature stress response in Arabidopsis[J]. Journal of Biological Chemistry, 2010, 285: 23371−23386.
    [5] Sheen J. Phosphorelay and transcription control in cytokinin signal transduction[J]. Science, 2002, 296: 1650−1652.
    [6] Heyl A, Schmülling T. Cytokinin signal perception and transduction[J]. Current Opinion in Plant Biology, 2003, 6(5): 480−488.
    [7] Schaller F, Zerbe P, Reinbothe S, et al. The allene oxide cyclase family of Arabidopsis thaliana: localization and cyclization[J]. FEBS Journal, 2008, 275(10): 2428−2441.
    [8] Hwang I, Chen H C, Sheen J, et al. Two-component signal transduction pathways in Arabidopsis[J]. Plant Physiol, 2002, 129(5): 500−515.
    [9] Maruyama-Nakashita A, Nakamura Y, Yamaya T, et al. A novel regulatory pathway of sulfate uptake in Arabidopsis roots: implication of CRE1/WOL/AHK4 mediated cytokinin-dependent regulation[J]. Plant Journal, 2004, 38(5): 779−789.
    [10] Chefdor F, Héricourt F, Koudounas K, et al. Highlighting type ARRs as potential regulators of the dkHK1 multi-step phosphorelay pathway in Populus[J]. Plant Science, 2018, 277: 68−78.
    [11] Kim H J, Ryu H, Hong S H, et al. Cytokinin-mediated control of leaf longevity by AHK3 through phosphorylation of ARR2 in Arabidopsis[J]. Proc Natl Acad Sci USA, 2006, 103(3): 814−819.
    [12] Riefler M, Novsk O, Strnad M, et al. Arabidopsis cytokinin receptor mutants reveal functions in shoot growth, leaf senescence, seed size, germination, root development, and cytokinin metabolism[J]. Plant Cell, 2006, 18: 40−54.
    [13] Dello I R, Linhares F S, Scacchi E, et al. Cytokinins determine Arabidopsis root meristem size by controlling cell differentiation[J]. Current Biology, 2007, 17(8): 678−682.
    [14] Higuchi M, Pischke M S , Mhnen A P , et al. In planta functions of the Arabidopsis cytokinin receptor family[J]. PNAS, 2004, 101(23): 8821−8826.
    [15] Bartrina I, Jensen H, Novák O, et al. Gain-of-function mutants of the cytokinin receptors AHK2 and AHK3 regulate plant organ size, flowering time and plant longevity[J]. Plant Physiology, 2007, 173(3): 1783−1797.
    [16] Kang N Y, Cho C, Kim N Y, et al. Cytokinin receptor-dependent and receptor-independent pathways in the dehydration response of Arabidopsis thaliana[J]. Journal of Plant Physiology, 2012, 169(14): 1382−1391.
    [17] Jin J, Nan Y K, Sunmi K, et al. A subset of cytokinin two-component signaling system plays a role in cold temperature stress response in Arabidopsis[J]. Journal of Biological Chemistry, 2010, 285(30): 23371−23386.
    [18] Cortleven A, Nitschke S, Klaumünzer M, et al. A novel protective function for cytokinin in the light stress response is mediated by the Arabidopsis histidine kinase2 and Arabidopsis histidine kinase3 receptors[J]. Plant Physiology, 2014, 164(3): 1470−1483.
    [19] Nieminen K, Immanen J, Laxell M, et al. Cytokinin signaling regulates cambial development in poplar[J]. Proceedings of the National Academy of Sciences, 2008, 105(50): 20032−20037.
    [20] Sun J, Niu Q W, Tarkowski P, et al. The Arabidopsis AtIPT8/PGA22 gene encodes an isopentenyl transferase that is involved in de novo cytokinin biosynthesis[J]. Plant Physiology, 2003, 131(1): 167−176.
    [21] Verslues P E. ABA and cytokinins: challenge and opportunity for plant stress research[J]. Plant Molecular Biology, 2016, 91(6): 629−640.
    [22] Tran L S, Shinozaki K, Yamaguchi-Shinozaki K, et al. Role of cytokinin responsive two component system in ABA and osmotic stress signaling[J]. Plant Signal & Behavior, 2010, 5(2): 148−150.
    [23] Ramsong N, Praveen S, Ratna K, et al. Histidine kinases in plants: cross talk between hormone and stress responses[J]. Plant Signaling & Behavio, 2012, 7(10): 1230−1237.
    [24] Wang B, Guo B, Xie X, et al. A novel histidine kinase gene, ZmHK9, mediate drought tolerance through the regulation of stomatal development in Arabidopsis[J]. Gene, 2012, 501(2): 171−179.
    [25] Vernooij B, Friedrich L, Weymann K, et al. A central role of salicylic acid in plant disease resistance[J]. Science, 1994, 266: 1247−1250.
    [26] Yusuf M, Hasan S A, Ali B, et al. Effect of salicylic acid on salinity-induced changes in Brassica juncea[J]. Journal of Integrative Plant Biology, 2008, 50(9): 1096−1102.
    [27] Brito G, Costa A, Fonseca H M A C, et al. Response of Olea europaea ssp. maderensis in vitro shoots exposed to osmotie stress[J]. Scientia Horticulturae, 2003, 97(S3−S4): 411−417.
    [28] 张磊, 谢锦忠, 张玮, 等. 模拟干旱环境下伐桩注水对毛竹生理特性的影响[J]. 林业科学研究, 2017, 30(1):145−153.

    Zhang L, Xie J Z, Zhang W, et al. Effects of water storage in bamboo stumps on physiological characteristicsof phyllostachys edulis under simulated drought environment[J]. Forest Research, 2017, 30(1): 145−153.
    [29] 党晓宏, 高永, 蒙仲举, 等. 3种滨藜属植物幼苗叶片对NaCl胁迫的生理响应[J]. 北京林业大学学报, 2016, 38(10):38−49.

    Dang X H, Gao Y, Meng Z J, et al. Leaf physiological characteristics of seedlings of three Atriplex species under NaCl stress[J]. Journal of Beijing Forestry University, 2016, 38(10): 38−49.
    [30] Sofo A, Dichio B, Xiloyannis C, et al. Effects of different irradiance levels on some antioxidant enzymes and on malondialdehyde content during rewatering in olive tree[J]. Plant Science, 2004, 166(2): 293−302.
    [31] Kong J, Dong Y, Xu L, et al. Role of exogenous nitric oxide in alleviating iron deficiency-induced peanut chlorosis on calcareous soil[J]. Journal of Plant Interactions, 2014, 9(1): 450−459.
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  829
  • HTML全文浏览量:  320
  • PDF下载量:  45
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-16
  • 修回日期:  2020-06-09
  • 网络出版日期:  2020-12-26
  • 刊出日期:  2021-02-24

目录

    /

    返回文章
    返回