高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氮添加及接种处理对1年生樟子松苗木根系形态及养分含量的影响

郝龙飞 郝文颖 刘婷岩 张敏 许吉康 斯钦毕力格

郝龙飞, 郝文颖, 刘婷岩, 张敏, 许吉康, 斯钦毕力格. 氮添加及接种处理对1年生樟子松苗木根系形态及养分含量的影响[J]. 北京林业大学学报, 2021, 43(4): 1-7. doi: 10.12171/j.1000-1522.20200071
引用本文: 郝龙飞, 郝文颖, 刘婷岩, 张敏, 许吉康, 斯钦毕力格. 氮添加及接种处理对1年生樟子松苗木根系形态及养分含量的影响[J]. 北京林业大学学报, 2021, 43(4): 1-7. doi: 10.12171/j.1000-1522.20200071
Hao Longfei, Hao Wenying, Liu Tingyan, Zhang Min, Xu Jikang, Siqinbilige. Responses of root morphology and nutrient content of Pinus sylvestris var. mongolica seedlings to nitrogen addition and inoculation treatments[J]. Journal of Beijing Forestry University, 2021, 43(4): 1-7. doi: 10.12171/j.1000-1522.20200071
Citation: Hao Longfei, Hao Wenying, Liu Tingyan, Zhang Min, Xu Jikang, Siqinbilige. Responses of root morphology and nutrient content of Pinus sylvestris var. mongolica seedlings to nitrogen addition and inoculation treatments[J]. Journal of Beijing Forestry University, 2021, 43(4): 1-7. doi: 10.12171/j.1000-1522.20200071

氮添加及接种处理对1年生樟子松苗木根系形态及养分含量的影响

doi: 10.12171/j.1000-1522.20200071
基金项目: 中国博士后科学基金项目(2018M643778XB),内蒙古自治区科技计划项目(2020GG0029、2020GG0075),内蒙古自治区级大学生创新创业训练计划项目(201910129017),内蒙古农业大学林学院青年教师科研基金项目
详细信息
    作者简介:

    郝龙飞,博士,讲师。主要研究方向:菌根生物技术。Email:haolongfei_00@126.com 地址:010019 内蒙古自治区呼和浩特市赛罕区新建东街275号内蒙古农业大学林学院

    责任作者:

    斯钦毕力格,副教授。主要研究方向:苗木培育技术。Email:ndsqblg@126.com 地址:同上

Responses of root morphology and nutrient content of Pinus sylvestris var. mongolica seedlings to nitrogen addition and inoculation treatments

  • 摘要:   目的  探究1年生樟子松苗木根系构型和养分吸收对氮添加及接种外生菌根真菌的响应机制。  方法  以1年生樟子松菌根苗(8种外生菌根真菌混合接种,HJ)和非菌根苗(未接种,WJ)为研究材料,设置4个氮添加处理试验,分别为:不施氮(CK,0 kg/(hm2·a))、低氮(LN,15 kg/(hm2·a))、中氮(MN,30 kg/(hm2·a))和高氮(HN,60 kg/(hm2·a)),对比分析氮添加和接种处理对苗木根系形态(总根长、总表面积、总体积、分叉数、根尖数、平均直径等)和养分含量的影响。  结果  (1)在CK、MN、HN处理下,接种处理间苗木生物量存在显著差异;CK处理下,菌根苗生物量较非菌根苗提高了54.3%;而MN和HN处理下,菌根苗生物量较非菌根苗分别下降17.8%、23.7%。(2)氮添加和接种处理显著影响1年生樟子松苗木直径0 ~ 0.5 mm根系的总根长、总表面积、根尖数;在WJ处理下,随着氮添加量递增,樟子松苗木根系形态指标均呈先上升后下降的趋势;而在HJ处理下,随着氮添加量递增,其根系形态指标均呈下降的趋势。(3)与CK相比,氮添加显著增加非菌根苗氮、磷养分含量;而对菌根苗氮、磷养分含量的影响表现为LN处理促进,HN处理抑制。  结论  低氮添加和接种处理对苗木根系形态和养分含量表现为协同效应,而高氮添加处理削弱接种处理对苗木根系形态和养分含量的影响。

     

  • 图  1  氮添加和接种处理对樟子松苗木生物量的影响

    不同小写字母表示不同处理间差异显著(P < 0.05);WJ. 未接种;HJ. 混合接种;CK. 不施肥;LN. 低氮;MN. 中氮;HN. 高氮。下同。Different lowercase letters indicate significant differences between the treatments (P < 0.05); WJ, no inoculation; HJ, mixed inoculation; CK, no nitrogen; LN, low nitrogen; MN, middle nitrogen; HN, high nitrogen. The same below.

    Figure  1.  Biomass of P. sylvestris var. mongolica seedlings under nitrogen addition and inoculation treatments

    图  2  氮添加和接种处理对樟子松苗木氮含量的影响

    Figure  2.  Nitrogen content of P. sylvestris var. mongolica seedlings under nitrogen addition and inoculation treatments

    图  3  氮添加和接种处理对樟子松苗木磷含量的影响

    Figure  3.  Phosphorus content of P. sylvestris var. mongolica seedlings under nitrogen addition and inoculation treatments

    表  1  氮添加和接种处理对樟子松苗木根系形态的影响

    Table  1.   Root morphology of P. sylvestris var. mongolica seedlings under nitrogen addition and inoculation treatments

    处理
    Treatment
    总根长
    Total root length/cm
    总表面积
    Total surface area/cm2
    根系总体积
    Root total volume/cm3
    平均直径
    Average diameter/mm
    分叉数
    Bifurcation number
    根尖数
    Root tip number
    WJCK314.97 ± 26.58ab40.23 ± 3.71a0.41 ± 0.04a0.41 ± 0.01cd1 075 ± 110a956 ± 122b
    LN340.07 ± 50.07ab45.69 ± 6.74a0.49 ± 0.07a0.43 ± 0.00abcd1 162 ± 182a1 087 ± 138ab
    MN361.04 ± 86.11ab51.02 ± 13.50a0.58 ± 0.17a0.44 ± 0.02ab1 473 ± 424a1 012 ± 226ab
    HN330.89 ± 38.35ab45.59 ± 6.56a0.50 ± 0.09a0.43 ± 0.01abcd1 147 ± 116a955 ± 94b
    HJCK458.22 ± 71.51a58.19 ± 9.19a0.59 ± 0.09a0.40 ± 0.00d1 500 ± 286a1 376 ± 146a
    LN399.03 ± 76.19ab52.38 ± 10.38a0.55 ± 0.10a0.42 ± 0.00bcd1 482 ± 316a1 177 ± 192ab
    MN324.16 ± 26.35ab47.17 ± 5.59a0.55 ± 0.09a0.46 ± 0.02a1 027 ± 144a978 ± 91ab
    HN284.76 ± 16.46b38.98 ± 2.03a0.42 ± 0.02a0.44 ± 0.00abc1 006 ± 101a877 ± 53b
    注:同列不同小写字母表示不同处理间差异显著(P < 0.05)。下同。Notes: different lowercase letters in the same column indicate significant differences between the treatments (P < 0.05)。 The same below.
    下载: 导出CSV

    表  2  氮添加和接种处理对樟子松苗木直径0 ~ 0.5 mm的根系形态的影响

    Table  2.   Root morphology of P. sylvestris var. mongolica seedlings with a diameter of 0−0.5 mm under nitrogen addition and inoculation treatments

    处理 Treatment总根长 Total root length/cm总表面积 Total surface area/cm2总体积 Total volume/cm3根尖数 Root tip number
    WJCK283.08 ± 23.75ab27.85 ± 2.43ab0.24 ± 0.02ab936 ± 239b
    LN291.29 ± 43.80ab29.60 ± 4.41ab0.26 ± 0.04ab1 038 ± 268ab
    MN308.18 ± 70.18ab31.05 ± 7.18ab0.27 ± 0.06ab986 ± 439ab
    HN284.79 ± 27.88ab29.61 ± 3.40ab0.27 ± 0.03ab931 ± 179b
    HJCK412.73 ± 63.33a40.00 ± 5.82a0.34 ± 0.05a1 352 ± 284a
    LN353.95 ± 63.45ab34.74 ± 5.97ab0.30 ± 0.05ab1 151 ± 378ab
    MN283.68 ± 24.00ab29.49 ± 2.34ab0.27 ± 0.02ab952 ± 175ab
    HN242.48 ± 17.84b24.71 ± 1.61b0.22 ± 0.01b829 ± 92b
    下载: 导出CSV
  • [1] Johnson D W, Turner J. Nitrogen budgets of forest ecosystems: a review[J]. Forest Ecology and Management, 2014, 318: 370−379. doi: 10.1016/j.foreco.2013.08.028
    [2] 杨涵越. 模拟氮沉降对克氏针茅草原N2O排放及氮去向的影响研究[D]. 北京: 清华大学, 2017.

    Yang H Y. Study on the effect of stimulated N deposition on N2O emission and fate of nitrogen in a Stipa krylovii steppe[D]. Beijing: Tsinghua University, 2017.
    [3] 张菊, 康荣华, 赵斌, 等. 内蒙古温带草原氮沉降的观测研究[J]. 环境科学, 2013, 34(9):3552−3556.

    Zhang J, Kang R H, Zhao B, et al. Monitoring nitrogen deposition on temperate grassland in Inner Mongolia[J]. Environmental Science, 2013, 34(9): 3552−3556.
    [4] 鲁显楷, 莫江明, 张炜, 等. 模拟大气氮沉降对中国森林生态系统影响的研究进展[J]. 热带亚热带植物学报, 2019, 27(5):500−522.

    Lu X K, Mo J M, Zhang W, et al. Effects of simulated atmospheric nitrogen deposition on forest ecosystems in China: an overview[J]. Journal of Tropical and Subtropical Botany, 2019, 27(5): 500−522.
    [5] 李化山, 汪金松, 法蕾, 等. 模拟氮沉降对油松幼苗生长的影响[J]. 应用与环境生物学报, 2013, 19(5):774−780. doi: 10.3724/SP.J.1145.2013.00774

    Li H S, Wang J S, Fa L, et al. Effects of simulated nitrogen deposition on seedling growth of Pinus tabulaeformis[J]. Chinese Journal of Applied and Environmental Biology, 2013, 19(5): 774−780. doi: 10.3724/SP.J.1145.2013.00774
    [6] 辛月, 尚博, 陈兴玲, 等. 氮沉降对臭氧胁迫下青杨光合特性和生物量的影响[J]. 环境科学, 2016, 37(9):3642−3649.

    Xin Y, Shang B, Chen X L, et al. Effects of elevated ozone and nitrogen deposition on photosynthetic characteristics and biomass of Populus cathayana[J]. Environmental Science, 2016, 37(9): 3642−3649.
    [7] 刘瑞雪, 吴泓瑾, 黄国柱, 等. 氮添加对树木根系特性的影响[J]. 应用生态学报, 2019, 30(5):1735−1742.

    Liu R X, Wu H J, Huang G Z, et al. Effects of nitrogen addition on tree root traits[J]. Chinese Journal of Applied Ecology, 2019, 30(5): 1735−1742.
    [8] 祁金玉, 邓继峰, 尹大川, 等. 外生菌根菌对油松幼苗抗氧化酶活性及根系构型的影响[J]. 生态学报, 2019, 39(8):2826−2832.

    Qi J Y, Deng J F, Yin D C, et al. Effects of inoculation of exogenous mycorrhizal fungi on the antioxidant and root configuration enzyme activity of Pinus tabulaeformis seedlings[J]. Acta Ecologica Sinica, 2019, 39(8): 2826−2832.
    [9] Liu M H, Sun J, Li Y, et al. Nitrogen fertilizer enhances growth and nutrient uptake of Medicago sativa inoculated with Glomus tortuosum grown in Cd-contaminated acidic soil[J]. Chemosphere, 2017, 167: 204−211. doi: 10.1016/j.chemosphere.2016.09.145
    [10] 赵敏, 郝文颖, 宁心哲, 等. 红花尔基樟子松优良抗旱菌树组合的筛选[J]. 植物研究, 2020, 40(1):133−140.

    Zhao M, Hao W Y, Ning X Z, et al. Screening of excellent ectomycorrhizal fungi-tree for drought resistant with Pinus sylvestris var. mongolica[J]. Bulletin of Botanical Research, 2020, 40(1): 133−140.
    [11] Goodale C L. Multiyear fate of a 15N tracer in a mixed deciduous forest: retention, redistribution, and differences by mycorrhizal association[J]. Global Change Biology, 2017, 23(2): 867−880. doi: 10.1111/gcb.13483
    [12] Avis P G, Mueller G M, Lussenhop J. Ectomycorrhizal fungal communities in two North American oak forests respond to nitrogen addition[J]. New Phytologist, 2008, 179(2): 472−483. doi: 10.1111/j.1469-8137.2008.02491.x
    [13] 王凯, 赵成姣, 张日升, 等. 不同密度樟子松人工林土壤碳氮磷化学计量特征[J]. 生态学杂志, 2020, 39(3):741−748.

    Wang K, Zhao C J, Zhang R S, et al. Soil carbon, nitrogen and phosphorus stoichiometry of Pinus sylvestris var. mongolica plantations with different densities[J]. Chinese Journal of Ecology, 2020, 39(3): 741−748.
    [14] 蔚晓燕, 李静, 唐明. 施氮与接种外生菌根真菌对油松幼苗生物量和光合特性的影响[J]. 西北农林科技大学学报(自然科学版), 2013, 41(10):42−48,58.

    Wei X Y, Li J, Tang M. Effects of nitrogen application and inoculating ectomycorrhizal fungi on biomass and photosynthetic characteristics of Pinus tabulaeformis seedlings[J]. Journal of Northwest A&F University (Natural Science Edition), 2013, 41(10): 42−48,58.
    [15] Lin J X, Wang Y G, Sun S N, et al. Effects of arbuscular mycorrhizal fungi on the growth, photosynthesis and photosynthetic pigments of Leymus chinensis seedlings under salt-alkali stress and nitrogen deposition[J]. Science of the Total Environment, 2017, 576: 234−241. doi: 10.1016/j.scitotenv.2016.10.091
    [16] 张中峰, 张金池, 黄玉清, 等. 水分胁迫和接种菌根真菌对青冈栎根系形态的影响[J]. 生态学杂志, 2015, 34(5):1198−1204.

    Zhang Z F, Zhang J C, Huang Y Q, et al. Effects of water stress and mycorrhizal fungi on root morphology of Cyclobalanopsis glauca seedlings[J]. Chinese Journal of Ecology, 2015, 34(5): 1198−1204.
    [17] 宋平, 张一, 张蕊, 等. 低磷胁迫下马尾松无性系磷效率性状对氮沉降的响应[J]. 植物营养与肥料学报, 2017, 23(2):502−511.

    Song P, Zhang Y, Zhang R, et al. Responses of phosphorus efficiency to simulated nitrogen deposition under phosphorus deficiency in Pinus massoniana clones[J]. Journal of Plant Nutrition and Fertilizer, 2017, 23(2): 502−511.
    [18] 吴斐. 氮及丛枝菌根真菌对欧美杨107生长的影响机制研究[D]. 咸阳: 西北农林科技大学, 2018.

    Wu P. Effects of nitrogen and arbuscular mycorrhizal fungi on the growth of Populus × Canadensis ‘NEVA’[D]. Xianyang: Northwest A&F University, 2018.
    [19] 王如岩, 于水强, 张金池, 等. 干旱胁迫下接种菌根真菌对滇柏和楸树幼苗根系的影响[J]. 南京林业大学学报(自然科学版), 2012, 36(6):23−27.

    Wang R Y, Yu S Q, Zhang J C, et al. Effects of mycorrhizal fungus inoculation on the root of Cupressus duclouxiana and Catalpa bungei seedlings under drought stress[J]. Journal of Nanjing Forestry University (Natural Science Edition), 2012, 36(6): 23−27.
    [20] 闫国永, 王晓春, 邢亚娟, 等. 兴安落叶松林细根解剖结构和化学组分对N沉降的响应[J]. 北京林业大学学报, 2016, 38(4):36−43.

    Yan G Y, Wang X C, Xing Y J, et al. Response of root anatomy and tissue chemistry to nitrogen deposition in larch forest in the Great Xing’an Mountains of northeastern China[J]. Journal of Beijing Forestry University, 2016, 38(4): 36−43.
    [21] 陈冠陶, 郑军, 彭天驰, 等. 扁刺栲不同根序细根形态和化学特征及其对短期氮添加的响应[J]. 应用生态学报, 2017, 28(11):3461−3468.

    Chen G T, Zheng J, Peng T C, et al. Fine root morphology and chemistry characteristics in different branch orders of Castanopsis platyacantha and their responses to nitrogen addition[J]. Chinese Journal of Applied Ecology, 2017, 28(11): 3461−3468.
    [22] 张蓓蓓, 张辉, 景琦, 等. 两种水分条件下真菌接种及氮肥施加对小麦生长、生理及氮磷吸收的影响[J]. 干旱地区农业研究, 2019, 37(1):214−220.

    Zhang B B, Zhang H, Jing Q, et al. Effect of mycorrhizal fungi inoculation and nitrogen fertilization on physiological characteristics, growth, and nitrogen and phosphorus uptake of wheat under two distinct water regimes[J]. Agricultural Research in the Arid Areas, 2019, 37(1): 214−220.
    [23] 王文娜, 王燕, 王韶仲, 等. 氮有效性增加对细根解剖、形态特征和菌根侵染的影响[J]. 应用生态学报, 2016, 27(4):1294−1302.

    Wang W N, Wang Y, Wang S Z, et al. Effects of elevated N availability on anatomy, morphology and mycorrhizal colonization of fine roots: a review[J]. Chinese Journal of Applied Ecology, 2016, 27(4): 1294−1302.
    [24] Eissenstat D M, Kucharski J M, Zadworny M, et al. Linking root traits to nutrient foraging in arbuscular mycorrhizal trees ina temperate forest[J]. New Phytologist, 2015, 208(1): 114−124. doi: 10.1111/nph.13451
    [25] 王艺, 丁贵杰. 水分胁迫下外生菌根对马尾松幼苗养分吸收的影响[J]. 林业科学研究, 2013, 26(2):227−233.

    Wang Y, Ding G J. Influence of ectomycorrhiza on nutrient absorption of Pinus massoniana seedlings under water stress[J]. Forest Research, 2013, 26(2): 227−233.
    [26] 吴强盛, 袁芳英, 费永俊, 等. 丛枝菌根真菌对白三叶根系构型和糖含量的影响[J]. 草业学报, 2014, 23(1):199−204.

    Wu Q S, Yuan F Y, Fei Y J, et al. Effects of arbuscular mycorrhizal fungi on root system architecture and sugar contents of white clover[J]. Acta Prataculturae Sinica, 2014, 23(1): 199−204.
    [27] 陈伟立, 李娟, 朱红惠, 等. 根际微生物调控植物根系构型研究进展[J]. 生态学报, 2016, 36(17):5285−5297.

    Chen W L, Li J, Zhu H H, et al. A review of the regulation of plant root system architecture by rhizosphere microorganisms[J]. Acta Ecologica Sinica, 2016, 36(17): 5285−5297.
    [28] 王永壮, 陈欣, 史奕. 农田土壤中磷素有效性及影响因素[J]. 应用生态学报, 2013, 24(1):260−268.

    Wang Y Z, Chen X, Shi Y. Phosphorus availability in cropland soils of China and related affecting factors[J]. Chinese Journal of Applied Ecology, 2013, 24(1): 260−268.
    [29] 赵青华, 孙立涛, 王玉, 等. 丛枝菌根真菌和施氮量对茶树生长、矿质元素吸收与茶叶品质的影响[J]. 植物生理学报, 2014, 50(2):164−170.

    Zhao Q H, Sun L T, Wang Y, et al. Effects of arbuscular mycorrhizal fungi and nitrogen regimes on plant growth, nutrient uptake and tea quality in Camellia sinensis (L.) O. Kuntze[J]. Plant Physiology Journal, 2014, 50(2): 164−170.
    [30] 陈廷廷. 土壤增温和氮沉降对杉木幼苗细根解剖、形态特征和菌根侵染的影响[D]. 福州: 福建师范大学, 2018.

    Chen T T. Effects of soil warming and nitrogen deposition on fine root anatomical and morphological traits and arbuscular mycorrhizal colonization of Chinese fir seedlings[D]. Fuzhou: Fujian Normal University, 2018.
  • 加载中
图(3) / 表(2)
计量
  • 文章访问数:  440
  • HTML全文浏览量:  129
  • PDF下载量:  44
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-14
  • 修回日期:  2020-07-14
  • 网络出版日期:  2021-04-17
  • 刊出日期:  2021-04-30

目录

    /

    返回文章
    返回