Variation characteristics of leaf functional traits of Populus davidiana in Wudalianchi Volcano, northeastern China
-
摘要:
目的 探讨五大连池火山山杨叶功能性状特征,揭示植物对火山生境的适应,以及对不同坡向的生存策略,为特殊生境和微地形生境下植物的适应机制提供参考依据。 方法 以5座火山共有植物山杨为对象,测定叶面积(LS)、叶厚度(LT)、比叶面积(SLA)、叶干物质量(LDMC)、叶碳含量(LCC)、叶氮含量(LNC)、叶磷含量(LPC)和叶氮磷比(LNP)等8种功能性状在坡向间、火山间的变化规律和变异特征,分析叶功能性状间相互关系和主成分。 结果 (1)除LCC外,其他7种功能性状在南北坡向间均具有显著差异,LT、LDMC、LNC、LNP表现为南坡大于北坡,而LS、LCC、LPC表现为南坡小于北坡。(2)山杨SLA、LCC、LPC在新、老期火山间差异显著,但在老期火山间差异不显著。(3)火山南坡、北坡山杨LT与LDMC呈显著负相关,南、北坡向及火山间山杨LNP与LNC均呈极显著正相关、与LPC呈极显著的负相关关系。(4)火山环境中山杨LNP、LPC、LNC和LS在叶功能性状分化中起到主要贡献作用。 结论 五大连池火山山杨叶功能性状的变异与火山喷发的特殊性有关,山杨通过调节自身功能性状形成不同的生存策略来适应南、北坡向和不同火山环境,在生长过程中更容易受到氮元素缺乏的限制。火山森林生态系统是一个特殊环境,研究火山植被演替和植物功能性状等问题需要结合火山喷发的特殊情况深入讨论。 Abstract:Objective Considering the leaf functional traits of Populus davidiana in Wudalianchi Volcano of northeastern China, thus we can recognize the adaptation of plant to volcanic environment and their resource utilization strategies to slopes, so as to provide reference for plant adaptation mechanism in special habitat and micro terrain habitat. Method The variations of leaf traits of P. davidiana in different slopes and ages of volcanoes were studied, such as leaf area (LS), leaf thickness (LT), specific leaf area (SLA), leaf dry matter content (LDMC), leaf carbon content (LCC), leaf nitrogen content (LNC), leaf phosphorus content (LPC), and leaf nitrogen phosphorus ratio (LNP), further the correlation and principal components of leaf functional characters were analyzed. Result (1) Except for LCC, other leaf functional characters were significantly different between north and south slopes. LT, LDMC, LNC and LNP of the south slope were higher than those of the north slope, while LS, LCC and LPC of the south slope were smaller than those of the north slope. (2) There were significant differences in SLA, LCC and LPC between new and old volcanoes, but not in old volcanoes. (3) LT and LDMC were negatively correlated on the south and north slopes, LNP and LNC were positively correlated, LNP and LPC were negatively correlated on the south slopes, north slopes and volcanoes. (4) In volcanic environment, LNP, LPC, LNC and LS play an important role in the differentiation of leaf functional traits. Conclusion The variation of functional traits of P. davidiana is related to the particularity of volcanic eruption in Wudalianchi Volcano, P. davidiana adapts to the north-south slope environment by adjusting its functional traits to form different survival strategies, and the growth of P. davidiana is mainly limited by nitrogen in Wudalianchi. The volcanic forest ecosystem is a special environment, studying the volcanic vegetation succession and plant functional properties needs to be further discussed in combination with the special situation of volcanic eruption. -
Key words:
- Wudalianchi Volcano /
- leaf functional trait /
- variation /
- survival strategy
-
图 1 不同年代火山间及坡向山杨叶功能性状的箱点图
中位数以水平横线代表,25%和75%的数据范围以箱和标准差表示,独立的圆点代表极端数据,不相同字母表示地区间有效成分含量有显著性差异(P < 0.05)。下同。Median is represented by the horizontal line, quartiles (25% and 75% percentiles) are represented by boxes and SD. Extreme data are plotted with individual round dots. Different letters denote significant differences in effective component contents between areas at P < 0.05 level. The same below.
Figure 1. Box-plots of leaf functional traits of P. davidiana in volcanoes of different ages and varied slope aspects
表 1 五大连池不同年代火山样地基本情况
Table 1. Basic situation of sample plots of different age volcanoes in Wudalianchi
研究区
Study area地理位置
Geographical
position海拔
Altitude/m土壤类型
Soil type喷发时间
Eruption time坡向
Slope aspect优势树种
Dominant plant species比例
Proportion/%树龄/a
Tree age/
yearL 48°42′32″N 126°07′06″ E 340 火山灰土
Volcanic ash soil300年前
300 years ago南坡
South slope山杨 Populus davidiana 50 21 白桦 Betula platyphylla 45 36 北坡
North slope落叶松 Larix gmelinii 72 36 山杨 Populus davidiana 25 25
D48°39′13″N 126°16′30″E 340 暗棕壤
Dark brown soil170 000 ~ 190 000年前
170 000−190 000 years ago南坡
South slope蒙古栎 Quercus mongolica 50 57 山杨 Populus davidiana 10 55 北坡
North slope白桦 Betula platyphylla 55 63 山杨 Populus davidiana 15 59 X 48°40′45″N 126°22′06″E 380 暗棕壤
Dark brown soil280 000 ~ 360 000年前
280 000−360 000 years ago南坡
South slope蒙古栎 Quercus mongolica 83 55 山杨Populus davidiana 10 49 北坡
North slope白桦 Betula platyphylla 48 50 山杨 Populus davidiana 10 51 W 48°47′23″N 126°15′26″E 400 暗棕壤
Dark brown soil400 000 ~ 500 000年前
400 000−500 000 years ago南坡
South slope蒙古栎 Quercus mongolica 78 58 山杨 Populus davidiana 10 50 北坡
North slope白桦 Betula platyphylla 52 57 山杨 Populus davidiana 10 52
BG48°44′42″N 126°00″23″E 415 暗棕壤
Dark brown soil700 000 ~ 800 000年前
700 000−800 000 years ago南坡
South slope蒙古栎 Quercus mongolica 80 50 山杨 Populus davidiana 12 36 北坡
North slope黑桦 Betula davurica 50 48 山杨Populus davidiana 10 37 注:L表示老黑山;D表示东焦得布山;X表示小孤山;W表示尾山;BG表示北格拉球山。下同。
Notes: L represents Laohei Volcano; D represents Dongjiaodebu Volcano; X represents Xiaogu Volcano; W represents Weishan Volcano; BG represents Beigelaqiu Volcano. The same below.表 2 五大连池不同火山、南北坡向间山杨叶功能性状变异系数
Table 2. Variation coefficients of leaf functional traits of P. davidiana in different volcanoes and its north-south slope aspects in Wudalianchi
% 变量
Variable老黑山 L 东焦得布山 D 小孤山 X 尾山 W 北格拉球山 BG 南坡South slope 北坡North slope 火山Volcano 南坡South slope 北坡North slope 火山Volcano 南坡South slope 北坡North slope 火山Volcano 南坡South slope 北坡North slope 火山Volcano 南坡South slope 北坡North slope 火山Volcano LS 31.37 21.46 30.27 16.57 21.92 20.88 28.74 26.50 32.91 18.80 22.15 23.80 15.17 11.93 14.74 LT 4.23 3.57 6.68 3.83 2.90 4.39 5.63 4.47 6.32 5.65 6.28 6.36 5.42 5.78 6.44 SLA 9.70 10.74 14.61 14.30 22.20 12.80 13.68 15.69 14.58 11.45 9.09 10.32 13.94 14.16 13.97 LDMC 5.93 4.94 7.51 5.54 3.84 4.96 7.91 5.97 7.27 7.96 5.76 7.37 7.52 5.46 6.95 LCC 4.65 3.72 3.99 10.17 6.46 8.03 2.13 2.74 2.36 6.30 4.25 6.03 6.67 2.98 5.67 LNC 13.45 6.25 9.88 6.87 8.15 18.29 20.32 11.09 18.24 11.71 6.76 9.11 9.98 7.07 11.40 LPC 8.60 8.97 33.61 9.26 11.13 9.65 22.82 17.33 19.79 13.74 24.13 18.47 12.56 8.14 10.69 LNP 9.60 12.38 35.07 9.19 12.59 21.05 33.21 19.83 25.63 15.65 19.05 17.53 22.96 10.22 18.97 表 3 五大连池火山山杨叶功能性状方差分析
Table 3. ANOVA for leaf functional traits of P. davidiana in Wudalianchi Volcano
变量
Variable火山间
Between volcanoes坡向间
Between slope aspectsF P F P LS 68.662 0.000 12.061 0.001 LT 27.037 0.000 20.767 0.000 SLA 9.805 0.000 21.237 0.000 LDMC 115.674 0.000 21.824 0.000 LCC 1.934 0.049 2.438 0.20 LNC 4.965 0.002 0.678 0.001 LPC 4.181 0.006 10.507 0.030 LNP 5.413 0.001 2.796 0.002 表 4 五大连池火山南坡(对角线上部)、北坡(对角线下部)山杨叶功能性状相关系数
Table 4. Pearson correlation coefficients between leaf functional traits of P. davidiana on north (upper diagonal) and south (lower diagonal) slope of volcanoes in Wudalianchi
变量 Variable LS LT SLA LDMC LCC LNC LPC LNP LS 1.000 0.127 0.273 −0.272 0.283 0.166 0.046 0.109 LT 0.031 1.000 −0.182 −0.580** 0.084 0.296 0.202 0.022 SLA 0.529** 0.084 1.000 −0.291 −0.024 0.056 −0.354 0.241 LDMC −0.271 −0.653** −0.056 1.000 −0.100 −0.106 0.104 −0.179 LCC 0.024 0.140 −0.058 −0.204 1.000 0.210 −0.255 0.389 LNC −0.275 0.138 0.236 −0.083 0.242 1.000 0.165 0.577** LPC −0.273 0.261 −0.018 0.125 −0.355 0.005 1.000 −0.674** LNP 0.016 −0.128 0.152 −0.166 0.381 0.557** −0.789** 1.000 注 **表示P < 0.01,*表示P < 0.05。Notes: ** and * represent P < 0.01 and P < 0.05, respectively. 表 5 五大连池火山山杨叶功能性状相关系数
Table 5. Pearson correlation coefficients between leaf functional traits of P. davidiana in Wudalianchi Volcano
变量 Variable LS LT SLA LDMC LCC LNC LPC LNP LS 1.000 −0.365** 0.155 −0.476** −0.006 0.233 −0.285* 0.279 LT 1.000 −0.284* −0.068 0.213 −0.125 0.380** −0.316* SLA 1.000 −0.078 −0.006 0.012 −0.277 0.204 LDMC 1.000 −0.041 −0.261 0.232 −0.315* LCC 1.000 0.128 −0.251 0.275 LNC 1.000 −0.078 0.618** LPC 1.000 −0.778** LNP 1.000 -
[1] Mcintyre S, Lavorel S, Landsberg J, et al. Disturbance response in vegetation: towards a global perspective on functional traits[J]. Journal of Vegetation Science, 1999, 10(5): 621−630. doi: 10.2307/3237077. [2] Cornelissen J H C, Lavorel S, Garnier E, et al. A handbook of protocols for standardised and easy measurement of plant functional traits worldwide[J]. Australian Journal of Botany, 2003, 51(4): 335−380. doi: 10.1071/BT02124. [3] Sack L, Scoffoni C, John G P, et al. How do leaf veins influence the worldwide leaf economic spectrum? Review and synthesis[J]. Journal of Experimental Botany, 2013, 64(13): 4053−4080. doi: 10.1093/jxb/ert316. [4] Prach K, Pyšek P, Řehounková K. Role of substrate and landscape context in early succession: an experimental approach[J]. Perspectives in Plant Ecology Evolution and Systematics, 2014, 16(4): 174−179. doi: 10.1016/j.ppees.2014.05.002. [5] 周胜男, 梁宇, 贺红士, 等. 火山喷发后植被演替的影响因子[J]. 生态学杂志, 2016, 35(1):234−242.Zhou S N, Liang Y, He H S, et al. Factors affecting vegetation succession after volcano eruptions[J]. Chinese Journal of Ecology, 2016, 35(1): 234−242. [6] 谢立红, 曹宏杰, 黄庆阳, 等. 五大连池新期火山熔岩台地3种共有植物的叶功能性状及其相互关系[J]. 西北植物学报, 2018, 38(5):967−975. doi: 10.7606/j.issn.1000-4025.2018.05.0967.Xie L H, Cao H J, Huang Q Y, et al. Leaf functional traits and interrelationships of 3 plant species in lava plateau of new volcanic of Wudalianchi[J]. Acta Botanica Boreali Occidentalia Sinica, 2018, 38(5): 967−975. doi: 10.7606/j.issn.1000-4025.2018.05.0967. [7] 盘远方, 陈兴彬, 姜勇, 等. 桂林岩溶石山灌丛植物叶功能性状和土壤因子对坡向的响应[J]. 生态学报, 2018, 38(5):1581−1589.Pan Y F, Chen X B, Jiang Y, et al. Changes in leaf functional traits and soil environmental factors in response to slope gradient in karst hills of Guilin[J]. Acta Ecologica Sinica, 2018, 38(5): 1581−1589. [8] 陈莹婷, 许振柱. 植物叶经济谱的研究进展[J]. 植物生态学报, 2014, 38(10):1135−1153. doi: 10.3724/SP.J.1258.2014.00108.Chen Y T, Xu Z Z. Review on research of leaf economics spectrum[J]. Chinese Journal of Plant Ecology, 2014, 38(10): 1135−1153. doi: 10.3724/SP.J.1258.2014.00108. [9] 刘晓娟, 马克平. 植物功能性状研究进展[J]. 中国科学: 生命科学, 2015, 45(4):325−339. doi: 10.1360/N052014-00244.Liu X J, Ma K P. Plant functional taits concepts, applications and future directions[J]. Scientia Sinica (Vitae), 2015, 45(4): 325−339. doi: 10.1360/N052014-00244. [10] Reich P B, Oleksyn J. Global patterns of plant leaf N and P in relation to temperature and latitude[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(30): 11001−11006. doi: 10.1073/pnas.0403588101. [11] 王瑞丽, 于贵瑞, 何念鹏, 等. 气孔特征与叶片功能性状之间关联性沿海拔梯度的变化规律:以长白山为例[J]. 生态学报, 2016, 36(8):2175−2184.Wang R L, Yu G R, He N P, et al. Altitudinal variation in the covariation of stomatal traits with leaf functional traits in Changbai Mountain[J]. Acta Ecologica Sinica, 2016, 36(8): 2175−2184. [12] 胡耀升, 么旭阳, 刘艳红, 等. 长白山不同演替阶段森林植物功能性状及其与地形因子间的关系[J]. 生态学报, 2014, 34(20):5915−5924.Hu Y S, Yao X Y, Liu Y H, et al. The functional traits of forests at different succession stages and their relationship to terrain factors in Changbai Mountains[J]. Acta Ecologica Sinica, 2014, 34(20): 5915−5924. [13] 钟悦鸣, 王文娟, 王健铭, 等. 极端干旱区绿洲植物叶功能性状及其对土壤水盐因子的响应[J]. 北京林业大学学报, 2019, 41(10):20−29.Zhong Y M, Wang W J, Wang J M, et al. Leaf functional traits of oasis plants in extremely arid areas and its response to soil water and salt factors[J]. Journal of Beijing Forestry University, 2019, 41(10): 20−29. [14] Julie M, Mcgill B J, Lechowicz M J. How do traits vary across ecological scales? A case for trait-based ecology[J]. Ecology Letters, 2010, 13(7): 838−848. doi: 10.1111/j.1461-0248.2010.01476.x. [15] Mcgill B J. Exploring predictions of abundance from body mass using hierarchical comparative approaches[J]. American Naturalist, 2008, 172(1): 88−101. doi: 10.1086/588044. [16] Cornwell W, Ackerly D. Community assembly and shifts in plant trait distributions across an environmental gradient in coastal California[J]. Ecological Monographs, 2009, 79(1): 109−126. doi: 10.1890/07-1134.1. [17] 董雪, 辛智鸣, 李永华, 等. 沙冬青(Ammopiptanthus mongolicus)叶性状对环境因子的响应[J]. 中国沙漠, 2019, 39(6):126−134.Dong X, Xin Z M, Li Y H, et al. Responses of Ammopiptanthus mongolicus leaf traits to environmental factors[J]. Journal of Desert Research, 2019, 39(6): 126−134. [18] 刘广路, 范少辉, 蔡春菊, 等. 毛竹向撂荒地扩展过程中叶功能性状变化[J]. 南京林业大学学报(自然科学版), 2017, 41(2):41−46.Liu G L, Fan S H, Cai C J, et al. Adaptive strategies of leaf functional traits of Moso bamboo during its expansion to Chinese fir forests[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2017, 41(2): 41−46. [19] 欧晓岚, 刘艳红. 不同坡向及径级油松异龄叶的功能性状[J]. 南京林业大学学报 (自然科学版), 2017, 41(4):80−88.Ou X L, Liu Y H. Effect of age, slope aspects and diameter classes on leaf functional traits of Pinus tabuliformis in Songshan, Beijing[J]. Journal of Nanjing Forestry University (Natural Science Edition), 2017, 41(4): 80−88. [20] 王雪艳, 曹建军, 张小芳, 等. 地形因子对黄土高原山杏叶片功能性状的影响[J]. 应用生态学报, 2019, 30(8):2591−2599.Wang X Y, Cao J J, Zhang X F, et al. Effects of topographic factors on leaf traits of apricot in the Loess Plateau, Northwest China[J]. Chinese Journal of Applied Ecology, 2019, 30(8): 2591−2599. [21] 福英, 白学良, 张乐, 等. 五大连池火山熔岩地貌苔藓植物对土壤养分积累的作用[J]. 生态学报, 2015, 35(10):3288−3297.Fu Y, Bai X L, Zhang L, et al. The effect of bryophytes on nutrient accumulation in surface soil in the Wudalianchi Volcanic area[J]. Acta Ecologica Sinica, 2015, 35(10): 3288−3297. [22] 周志强, 徐丽娇, 张玉红, 等. 黑龙江五大连池的生态价值分析[J]. 生物多样性, 2011, 19(1):63−70. doi: 10.3724/SP.J.1003.2011.08262.Zhou Z Q, Xu L J, Zhang Y H, et al. An analysis of the ecological value of Wudalianchi, Heilongjiang Province, China[J]. Biodiversity Science, 2011, 19(1): 63−70. doi: 10.3724/SP.J.1003.2011.08262. [23] 黄庆阳, 曹宏杰, 王立民, 等. 五大连池火山熔岩台地植物多样性与土壤养分的关系[J]. 浙江农林大学学报, 2019, 36(1):80−87. doi: 10.11833/j.issn.2095-0756.2019.01.011.Huang Q Y, Cao H J, Wang L M, et al. Species diversity and soil nutrients in lava platforms of Wudalianchi Volcanoes, China[J]. Journal of Zhejiang A& F University, 2019, 36(1): 80−87. doi: 10.11833/j.issn.2095-0756.2019.01.011. [24] 黄庆阳, 曹宏杰, 谢立红, 等. 五大连池火山熔岩台地草本层物种多样性及环境解释[J]. 生物多样性, 2020, 28(6):658−667. doi: 10.17520/biods.2019371.Huang Q Y, Cao H J, Xie L H, et al. Species diversity and environmental interpretation of herb layer in lava platform of Wudalianchi, China[J]. Biodiversity Science, 2020, 28(6): 658−667. doi: 10.17520/biods.2019371. [25] 谢立红, 黄庆阳, 曹宏杰, 等. 五大连池火山色木槭叶功能性状特征[J]. 生物多样性, 2019, 27(3):286−296. doi: 10.17520/biods.2018300.Xie L H, Huang Q Y, Cao H J, et al. Leaf functional traits of Acer mono in Wudalianchi Volcano, China[J]. Biodiversity Science, 2019, 27(3): 286−296. doi: 10.17520/biods.2018300. [26] Tomimatsu H, Hori Y. Effect of soil moisture on leaf ecophysiology of Parasenecio yatabei, a summer-green herb in a cool-temperate forest understory in Japan[J]. Journal of Plant Research, 2008, 121(1): 43−53. doi: 10.1007/s10265-007-0122-z [27] 刘旻霞, 马建祖. 阴阳坡植物功能性状与环境因子的变化特征[J]. 水土保持研究, 2013, 20(1):11−13.Liu M X, Ma J Z. Feature variations of plant functional traits and environmental factor in south-and north-facing slope[J]. Research of Soil and Water Conservation, 2013, 20(1): 11−13. [28] 刘玉平, 刘贵峰, 达福白乙拉, 等. 地形因子对大青沟自然保护区不同森林群落叶性状的影响[J]. 林业科学, 2017, 53(3):154−162. doi: 10.11707/j.1001-7488.20170317.Liu Y P, Liu G F, Dafubaiyila, et al. Effects of topographic factors on leaf traits of dominant species in different forest communities in Daqinggou Nature Reserves[J]. Scientia Silvae Sinicae, 2017, 53(3): 154−162. doi: 10.11707/j.1001-7488.20170317. [29] 刘旻霞, 马建祖. 甘南高寒草甸植物功能性状和土壤因子对坡向的响应[J]. 应用生态学报, 2012, 23(12):3295−3300.Liu M X, Ma J Z. Responses of plant functional traits and soil factors to slope aspect in alpine meadow of south Gansu, Northwest China[J]. Chinese Journal of Applied Ecology, 2012, 23(12): 3295−3300. [30] Wright I J, Reich P B, Westoby M. Strategy shifts in leaf physiology, structure and nutrient content between species of high- and low-rainfall and high- and low-nutrient habitats[J]. Functional Ecology, 2001, 15(4): 423−434. doi: 10.1046/j.0269-8463.2001.00542.x. [31] 施宇, 温仲明, 龚时慧. 黄土丘陵区植物叶片与细根功能性状关系及其变化[J]. 生态学报, 2011, 31(22):164−173.Shi Y, Wen Z M, Gong S H. Comparisons of relationships between leaf and fine root traits in hilly area of the Loess Plateau, Yanhe River Basin, Shaanxi Province, China[J]. Acta Ecologica Sinica, 2011, 31(22): 164−173. [32] 戚德辉, 温仲明, 杨士梭, 等. 基于功能性状的铁杆蒿对环境变化的响应与适应[J]. 应用生态学报, 2015, 26(7):1921−1927.Qi D H, Wen Z M, Yang S S, et al. Trait-based responses and adaptation of Artemisia sacrorum to environmental changes[J]. Chinese Journal of Applied Ecology, 2015, 26(7): 1921−1927. [33] Güsewell S. N: P ratios in terrestrial plants: variation and functional significance[J]. New Phytologist, 2004, 164(2): 243−266. [34] Garnier E, Shipley B, Roumet C, et al. A tsandardized protocol for the determination of specific leaf area and leaf dry matter content[J]. Functional Ecology, 2001, 15(5): 688−695. doi: 10.1046/j.0269-8463.2001.00563.x. [35] Elser J J, Bracken M E S, Cleland E E, et al. Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems[J]. Ecology Letters, 2007, 10(12): 1135−1142. doi: 10.1111/j.1461-0248.2007.01113.x. [36] Hallik L, Niinemets L, Wright I J. Are species shade and drought tolerance reflected in leaf-level structural and functional differentiation in northern hemisphere temperate woody flora?[J]. New Phytologist, 2009, 184(1): 257−274. doi: 10.1111/j.1469-8137.2009.02918.x [37] 陈洪洲, 刘永顺, 高峰. 五大连池老黑山火山的两次喷发活动[J]. 自然灾害学报, 2004, 13(1):94−99. doi: 10.3969/j.issn.1004-4574.2004.01.015.Chen H Z, Liu Y S, Gao F. Two-stage eruptions of Laoheishan Volcano in Wudalianchi[J]. Journal of Natural Disasters, 2004, 13(1): 94−99. doi: 10.3969/j.issn.1004-4574.2004.01.015. [38] 刘金环, 曾德慧, don Koo Lee. 科尔沁沙地东南部地区主要植物叶片性状及其相互关系[J]. 生态学杂志, 2006, 25(8):921−925. doi: 10.3321/j.issn:1000-4890.2006.08.010.Liu J H, Zeng D H, don Koo L. Leaf traits and their interrelationships of main plant species in southeast Horqin Sandy Land[J]. Chinese Journal of Ecology, 2006, 25(8): 921−925. doi: 10.3321/j.issn:1000-4890.2006.08.010. [39] 吴统贵, 陈步峰, 肖以华, 等. 珠江三角洲3种典型森林类型乔木叶片生态化学计量学[J]. 植物生态学报, 2010, 34(1):58−63. doi: 10.3773/j.issn.1005-264x.2010.01.009.Wu T G, Chen B F, Xiao Y H, et al. Leaf stoichiometry of trees in three forest types in Pearl River Delta, South China[J]. Chinese Journal of Plant Ecology, 2010, 34(1): 58−63. doi: 10.3773/j.issn.1005-264x.2010.01.009. [40] 朱弘, 朱淑霞, 李涌福, 等. 尾叶樱桃天然种群叶表型性状变异研究[J]. 植物生态学报, 2018, 42(12):1168−1178. doi: 10.17521/cjpe.2018.0196.Zhu H, Zhu S X, Li Y F, et al. Leaf phenotypic variation in natural populations of Cerasus dielsiana[J]. Chinese Journal of Plant Ecology, 2018, 42(12): 1168−1178. doi: 10.17521/cjpe.2018.0196. [41] Saenger P, West P W. Phenotypic variation of the mangrove species Avicennia marina (Forssk.) Vierh. from seven provenances around Australia[J]. Aquatic Botany, 2018, 149: 28−32. doi: 10.1016/j.aquabot.2018.05.004. -