高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

木质素高盐模板碳气凝胶制备及其电化学应用

刘家冉 郭思勤 赵天畅 许凤

刘家冉, 郭思勤, 赵天畅, 许凤. 木质素高盐模板碳气凝胶制备及其电化学应用[J]. 北京林业大学学报, 2020, 42(6): 142-148. doi: 10.12171/j.1000-1522.20200096
引用本文: 刘家冉, 郭思勤, 赵天畅, 许凤. 木质素高盐模板碳气凝胶制备及其电化学应用[J]. 北京林业大学学报, 2020, 42(6): 142-148. doi: 10.12171/j.1000-1522.20200096
Liu Jiaran, Guo Siqin, Zhao Tianchang, Xu Feng. Preparation of lignin-based carbon aerogel under hypersaline template and its electrochemical applications[J]. Journal of Beijing Forestry University, 2020, 42(6): 142-148. doi: 10.12171/j.1000-1522.20200096
Citation: Liu Jiaran, Guo Siqin, Zhao Tianchang, Xu Feng. Preparation of lignin-based carbon aerogel under hypersaline template and its electrochemical applications[J]. Journal of Beijing Forestry University, 2020, 42(6): 142-148. doi: 10.12171/j.1000-1522.20200096

木质素高盐模板碳气凝胶制备及其电化学应用

doi: 10.12171/j.1000-1522.20200096
基金项目: 北京市级大学生创新训练项目(S201810022067),中央高校基本科研业务费专项资金(2015ZCQ-CL-01)
详细信息
    作者简介:

    刘家冉。主要研究方向:林产化学加工工程。Email:LJR9898@126.com 地址:100083北京林业大学材料科学与技术学院

    责任作者:

    许凤,博士,教授。主要研究方向:生物质高值化利用。Email:xfx315@bjfu.edu.cn 地址:同上

  • 中图分类号: TQ351

Preparation of lignin-based carbon aerogel under hypersaline template and its electrochemical applications

  • 摘要: 目的以工业碱木质素和甲醛为原料,在盐的制孔和稳定作用下,水热反应后直接碳化制备多孔碳气凝胶,并检测其结构、理化性质和电化学性能,探究其在超级电容器电极材料中的运用。方法将2 g工业碱木质素分别与3种盐(ZnCl2、NaCl、Na2CO3)混合均匀,各加入1.5 mL甲醛,搅拌成黏稠浆状,转移至反应釜中,160 ℃反应2 h,得到一系列的木质素碳气凝胶(LCA)前驱体,在通氮气保护的管式炉中,以3 ℃/min的升温速率升温至900 ℃,保温3 h进行碳化,自然冷却后取出并洗涤,得到LCA。通过比表面积测定(SSA)、扫描电镜(SEM)、X射线衍射(XRD)表征碳气凝胶的结构和理化性质,将其研磨粉碎后制成超级电容器电极,通过循环伏安测试、恒流充放电测试和开位电路阻抗测试进行电化学储能表征。结果以ZnCl2为模板制备的LCA最高比表面积可达711 m2/g,在SEM下能观察到凝胶状结构,XRD表明LCA以无定形碳为主。在0.2 A/g的电流密度下,比电容达到124 F/g;在10 A/g的高电流密度下,比电容维持在60 F/g,电容保持率约为48%,拥有最佳的倍率性能。结论本实验以价格低廉的工业碱木质素为原料,在盐模板下经过水热和碳化过程直接制备LCA。在ZnCl2盐模板下可以制备出高比表面积,以无定形碳为主的LCA,并拥有优良的电化学性能,可用于超级电容器电极材料。该方法绿色环保、操作简单、成本低,具有潜在的工业化利用前景。

     

  • 图  1  不同盐模板制备的碳气凝胶扫描电镜图

    Figure  1.  SEM diagrams of carbon aerogels prepared by different salt templates

    图  2  不同盐模板制备的碳气凝胶和碱木质素XRD图

    Figure  2.  XRD diagrams of carbon aerogels prepared by different salt templates and alkali lignin

    图  3  不同盐模板的碳气凝胶样品在2 mV/s时循环伏安测试曲线

    Figure  3.  CV curves of carbon aerogel samples with different salt templates at the scan rate of 2 mV/s

    图  4  ZnCl2盐模板不同盐加入量的碳气凝胶样品在2 mV/s时循环伏安测试曲线

    Figure  4.  CV curves of samples with ZnCl2 template at the scan rate of 2 mV/s

    图  5  不同盐模板的碳气凝胶样品在0.2 A/g下恒流充放电曲线

    Figure  5.  GCD curves of carbon aerogel samples with different salt templates at 0.2 A/g

    图  6  LCA/ZnCl2-4在不同电流密度下恒流充放电曲线

    Figure  6.  GCD curves of LCA/ZnCl2-4 under different current densities

    图  7  不同碳气凝胶样品的倍率性能

    Figure  7.  Rate performance of different carbon aerogel samples

    图  8  不同碳气凝胶样品的开位电路阻抗测试曲线

    Figure  8.  Open circuit impedance test curves of different carbon aerogel samples

    表  1  不同盐模板制备的碳气凝胶比表面积

    Table  1.   Specific surface area of carbon aerogels prepared by different salt templates

    前驱体
    Precursor
    盐模板类型 Type of salt template工业碱木质素∶盐
    (质量比)
    Industrial lignin∶salt (mass ratio)
    比表面积 Specific surface area/(m2·g−1)
    LCA/ZnCl2-1ZnCl22∶1490
    LCA/ZnCl2-2ZnCl22∶2719
    LCA/ZnCl2-4ZnCl22∶4711
    LCA/ZnCl2-6ZnCl22∶6616
    LCA/Na2CO3-4 Na2CO32∶4 75
    LCA/NaCl-4NaCl 2∶4 6
    下载: 导出CSV
  • [1] 黄舜天, 锁浩, 崔升, 等. 碳气凝胶在电化学领域中的应用研究进展[J]. 材料导报, 2018, 32(增刊 1):10−15, 36.

    Huang S T, Suo H, Cui S, et al. Research development of carbon aerogels in electrochemical fields[J]. Materials Guide, 2018, 32(Suppl. 1): 10−15, 36.
    [2] Jin Z Y, Lu A H, Xu Y Y, et al. Ionic liquid-assisted synthesis of microporous carbon nanosheets for use in high rate and long cycle life supercapacitors[J]. Advanced Materials, 2014, 26(22): 3700−3705. doi: 10.1002/adma.201306273
    [3] Xu J, Li L, He F, et al. A novel double-shelled C@NiO hollow microsphere: synthesis and application for electrochemical capacitor[J]. Electrochimica Acta, 2014, 148: 211−219. doi: 10.1016/j.electacta.2014.10.061
    [4] 陈媛, 韩雁明, 范东斌, 等. 生物质纤维素基碳气凝胶材料研究进展[J]. 林业科学, 2019, 55(10):88−98.

    Chen Y, Han Y M, Fan D B, et al. Carbon aerogel based on biomass cellulose[J]. Scientia Silvae Sinicae, 2019, 55(10): 88−98.
    [5] 黄兴, 冯坚, 张思钊, 等. 纤维素基气凝胶功能材料的研究进展[J]. 材料导报, 2016, 30(7):9−14, 27.

    Huang X, Feng J, Zhang S Z, et al. Development of cellulose-based aerogel functional materials[J]. Material Guide, 2016, 30(7): 9−14, 27.
    [6] Qian Y, Ismail I M, Stein A. Ultralight, high-surface-area, multifunctional graphene-based aerogels from self-assembly of graphene oxide and resol[J]. Carbon, 2014, 68: 221−231. doi: 10.1016/j.carbon.2013.10.082
    [7] 张振. 木材纳米纤维碳气凝胶电极材料的制备与性能研究[D]. 长沙: 中南林业科技大学, 2019.

    Zhang Z. Preparation and properties of carbon aerogel electrode materials for wood cellulose nanofibers[D]. Changsha: Central South University of Forestry and Technology, 2019.
    [8] 朱红艳, 赵建国, 庞明俊, 等. 石墨烯/δ-MnO2复合材料的制备及其超级电容器性能[J]. 化工学报, 2017, 68(12):4824−4832.

    Zhu H Y, Zhao J G, Pang M J, et al. Preparation of graphene/δ-MnO2 composites and supercapacitor performance[J]. Journal of Chemical Industry, 2017, 68(12): 4824−4832.
    [9] Moreno-Castilla C, Maldonado-Hódar F J. Carbon aerogels for catalysis applications: an overview[J]. Carbon, 2004, 43(3): 455−465.
    [10] 徐文彪. 漆酶活化纤维素乙醇木质素制备无醛胶黏剂的研究[D]. 吉林: 北华大学, 2015.

    Xu W B. Research on the non-formaldehyde adhesive produced by laccase activation of cellulosic ethanol lignin[D]. Jilin: Beihua University, 2015.
    [11] Zhang J L, Chen G L, Zhang Q, et al. Self-assembly synthesis of N-doped carbon aerogels for supercapacitor and electrocatalytic oxygen reduction[J]. ACS Applied Materials & Interfaces, 2015, 7(23): 12760−12766.
    [12] 张璇, 杨佳兴, 金秋阳, 等. 超盐环境下含氮碳气凝胶的制备及其在超级电容器中的应用[J]. 化工学报, 2019, 70(7):2748−2757.

    Zhang X, Yang J X, Jin Q Y, et al. Preparation of nitrogen-doped carbon aerogel under hypersaline condition and its application for supercapacitors[J]. Acta Chemical Engineering, 2019, 70(7): 2748−2757.
    [13] Fechler N, Wohlgemuth S A, Jaker P, et al. Salt and sugar: direct synthesis of high surface area carbon materials at low temperatures via hydrothermal carbonization of glucose under hypersaline conditions[J]. Journal of Materials Chemistry A, 2013, 1(33): 9418−9421. doi: 10.1039/c3ta10674h
    [14] Huang X, Yu H, Chen J, et al. Ultrahigh rate capabilities of lithium-ion batteries from 3D ordered hierarchically porous electrodes with entrapped active nanoparticles configuration[J]. Advanced Materials, 2014, 26(8): 1296−1303. doi: 10.1002/adma.201304467
    [15] 喻伯鸣, 杜珂, 敖日格勒. 木质素基多孔纳米碳纤维在超级电容器电极材料中的应用[J]. 造纸科学与技术, 2018, 37(3):25−32.

    Yu B M, Du K, Aorigle. Porous carbon nanofibers as an electrode materials for supercapacitors[J]. Paper Science and Technology, 2018, 37(3): 25−32.
    [16] 郑云武, 王继大, 刘灿, 等. Ni-P/HZSM-5催化木质素降解制备酚类化学品[J/OL]. 化工进展, 2020. [2020−01−03]. DOI: 10.16085/j.issn.1000-6613.2019-1444.

    Zheng Y W, Wang J D, Liu C, et al. Selectivity catalytic depolymerization of the hydrolyzed lignin to product phenolic chemicals over nickel phosphides supported on HZSM-5 catalysts[J/OL]. Chemical Progress, 2020. [2020−01−03]. DOI: 10.16085/j.issn.1000-6613.2019-1444.
    [17] 郑志锋, 郑云武, 顾继友, 等. 生物基木材胶粘剂[J]. 粘接, 2015, 36(2):32−40. doi: 10.3969/j.issn.1001-5922.2015.02.006

    Zheng Z F, Zheng Y W, Gu J Y, et al. Bio-based wood adhesive[J]. Adhesive, 2015, 36(2): 32−40. doi: 10.3969/j.issn.1001-5922.2015.02.006
    [18] Totong S, Daorattanachai P, Quitain A T, et al. Catalytic depolymerization of alkaline lignin into phenolic-based compounds over metal-free carbon-based catalysts[J]. Industrial & Engineering Chemistry Research, 2019, 58(29): 13041−13052.
    [19] Hita I, Deuss P J, Bonura G, et al. Biobased chemicals from the catalytic depolymerization of Kraft lignin using supported noble metal-based catalysts[J]. Fuel Processing Technology, 2018, 179: 143−153. doi: 10.1016/j.fuproc.2018.06.018
    [20] 杨喜, 刘杏娥, 马建锋, 等. 生物质基碳气凝胶制备及应用研究[J]. 材料导报, 2017, 31(7):45−53. doi: 10.11896/j.issn.1005-023X.2017.07.007Fabrication

    Yang X, Liu X E, Ma J F, et al. Fabrication and application of carbon aerogel derived from biomass materials[J]. Material Guide, 2017, 31(7): 45−53. doi: 10.11896/j.issn.1005-023X.2017.07.007Fabrication
    [21] 黄岚. 石墨化多孔碳和氟掺杂碳超级电容器电极材料的制备及其性能研究[D]. 南宁: 广西大学, 2018.

    Huang L. Preparation and properties of graphitized porous carbon and F-doped carbon electrode materials for supercapacitor[D]. Nanning: Guangxi University, 2018.
    [22] 姚庆鑫, 谢建军, 赵玉双, 等. 膨润土/木质素磺酸钠−g−丙烯酰胺−马来酸酐选择性吸附树脂的制备与表征[J]. 复合材料学报, 2016, 33(4):797−805.

    Yao Q X, Xie J J, Zhao Y S, et al. Preparation and characterization of selective adsorbent resin comprising of bentonite/sodium lignosulfonate graft-ploymerized with acrylamide and maleic anhydride[J]. Acta Materiae Compositae Sinica, 2016, 33(4): 797−805.
    [23] 张文, 许升, 吕宗泽, 等. 氮氧掺杂木质素基炭材料的制备及其电化学性能[J]. 林产化学与工业, 2018, 38(3):55−62. doi: 10.3969/j.issn.0253-2417.2018.03.007

    Zhang W, Xu S, Lü Z Z, et al. Synthesis of nitrogen and oxygen-doped lignin-based electrode materials and its electrochemical performance[J]. Forest Chemistry and Industry, 2018, 38(3): 55−62. doi: 10.3969/j.issn.0253-2417.2018.03.007
    [24] 周王帆, 陈新, 曹红亮, 等. 法国梧桐枯叶基活性炭的制备及其在超级电容器中的应用[J]. 化工学报, 2017, 68(7):2918−2924.

    Zhou W F, Chen X, Cao H L, et al. Preparation of platanus leaf-based activated carbon and its application to supercapacitors[J]. Acta Chemical Engineering, 2017, 68(7): 2918−2924.
    [25] 朱裔荣, 潇如, 吴尚霖, 等. 多孔硫化镍中空亚微球的制备及其超电容性能研究[J]. 湖南工业大学学报, 2019,33(5):1−7. doi: 10.3969/j.issn.1673-9833.2019.05.001

    Zhu Y R, Xiao R, Wu S L, et al. Research on the preparation and supercapacitive properties of porous nickel sulfide hollow submicrospheres[J]. Journal of Hunan University of Technology, 2019,33(5): 1−7. doi: 10.3969/j.issn.1673-9833.2019.05.001
    [26] Zhao J, Lai H W, Lyu Z Y, et al. Hydrophilic hierarchical nitrogen-doped carbon nanocages for ultrahigh supercapacitive performance[J]. Advanced Materials, 2015, 27(23): 3541−3545. doi: 10.1002/adma.201500945
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  1588
  • HTML全文浏览量:  323
  • PDF下载量:  36
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-01
  • 修回日期:  2020-04-27
  • 网络出版日期:  2020-06-03
  • 刊出日期:  2020-07-01

目录

    /

    返回文章
    返回