• Scopus收录期刊
  • CSCD(核心库)来源期刊
  • 中文核心期刊
  • 中国科技核心期刊
  • F5000顶尖学术来源期刊
  • RCCSE中国核心学术期刊
高级检索

晋西黄土残塬沟壑区刺槐林土壤入渗特征及影响因素分析

崔艳红, 毕华兴, 侯贵荣, 王宁, 王珊珊, 赵丹阳, 马晓至, 云慧雅

崔艳红, 毕华兴, 侯贵荣, 王宁, 王珊珊, 赵丹阳, 马晓至, 云慧雅. 晋西黄土残塬沟壑区刺槐林土壤入渗特征及影响因素分析[J]. 北京林业大学学报, 2021, 43(1): 77-87. DOI: 10.12171/j.1000-1522.20200122
引用本文: 崔艳红, 毕华兴, 侯贵荣, 王宁, 王珊珊, 赵丹阳, 马晓至, 云慧雅. 晋西黄土残塬沟壑区刺槐林土壤入渗特征及影响因素分析[J]. 北京林业大学学报, 2021, 43(1): 77-87. DOI: 10.12171/j.1000-1522.20200122
Cui Yanhong, Bi Huaxing, Hou Guirong, Wang Ning, Wang Shanshan, Zhao Danyang, Ma Xiaozhi, Yun Huiya. Soil infiltration characteristics and influencing factors of Robinia pseudoacacia plantation in the loess gully region of western Shanxi Province, northern China[J]. Journal of Beijing Forestry University, 2021, 43(1): 77-87. DOI: 10.12171/j.1000-1522.20200122
Citation: Cui Yanhong, Bi Huaxing, Hou Guirong, Wang Ning, Wang Shanshan, Zhao Danyang, Ma Xiaozhi, Yun Huiya. Soil infiltration characteristics and influencing factors of Robinia pseudoacacia plantation in the loess gully region of western Shanxi Province, northern China[J]. Journal of Beijing Forestry University, 2021, 43(1): 77-87. DOI: 10.12171/j.1000-1522.20200122

晋西黄土残塬沟壑区刺槐林土壤入渗特征及影响因素分析

基金项目: 国家自然科学基金面上项目(31971725),国家重点研发计划项目(2016YFC0501704)
详细信息
    作者简介:

    崔艳红,博士生。主要研究方向:林业生态工程。Email:cui1519326449@163.com 地址:100083 北京市海淀区清华东路35号北京林业大学水土保持学院

    责任作者:

    毕华兴,教授,博士生导师。主要研究方向:水土保持与林业生态工程。Email:bhx@bjfu.edu.cn 地址:同上

  • 中图分类号: S714.7

Soil infiltration characteristics and influencing factors of Robinia pseudoacacia plantation in the loess gully region of western Shanxi Province, northern China

  • 摘要:
      目的  研究晋西黄土残塬沟壑区刺槐林在不同林龄和密度条件下土壤入渗特征及其影响因素,为林分结构精准提升提供功能导向的调控依据。
      方法  在野外采用双环法测定不同林龄(15、25和35年)以及不同密度(800、1 200、1 600、1 800和2 200株/hm2)刺槐林的土壤入渗过程,并测定了土壤理化性质,分析了土壤孔隙度、土壤密度、有机质含量等土壤理化性质与土壤渗透速率的相关性。
      结果  (1)在一定程度上,稳渗速率在同一密度条件下随林龄的增大而增大;在同一林龄条件下,随着密度的增大而增大;初始入渗速率和平均入渗速率随林龄增大而增大;(2)对不同林龄及不同密度刺槐林的土壤入渗过程模拟发现常用的4种模型(Horton模型、Kostiakov模型、Philip模型和通用经验模型)对该研究区刺槐人工林的模拟效果均较好,其中通用经验模型的平均回归系数(0.977) > Horton模型的平均回归系数(0.958) > Kostiakov模型的回归系数(0.953) > Philip模型的回归系数(0.945),即认为通用经验模型拟合效果更好;(3)通过主成分和相关性分析可知,土壤入渗性能与土壤密度、有机质含量和水稳性团聚体呈极显著相关性;土壤初始含水量是影响初始入渗速率的主要因子;1 ~ 2 mm水稳性团聚体、土壤密度和毛管孔隙度是影响稳渗速率的主要因子;影响平均入渗速率主要因子是土壤初始含水量和0.5 ~ 1 mm水稳性团聚体。
      结论  在一定林分密度范围内(800 ~ 2 200株/hm2),随着刺槐林林龄和林分密度的增加土壤结构不断改善,土壤入渗性能逐渐提升,且在相同林分密度条件下35年刺槐人工林土壤入渗性能更好。
    Abstract:
      Objective  This paper aims to study the soil infiltration characteristics and its influencing factors of Robinia pseudoacacia forest in the loess gully region of western Shanxi Province of northern China, which could provide functional guidance for the precise improvement of stand structure.
      Method  We selected the stand age of 15, 25, and 35 years and the density of 800, 1 200, 1 600, 1 800, and 2 200 plant/ha Robinia pseudoacacia forest for double-ring infiltration test. Correlation between the physical and chemical properties of soil, such as soil porosity, bulk density, organic matter, and soil infiltration rate, was analyzed.
      Result  (1) To some extent, the steady infiltration rate increased with the increase of forest age and stand density. The initial infiltration rate and average infiltration rate increased with the increase of stand age. (2) Four models (Horton, Kostiakov, Philip, and general empirical model) were used to simulate the infiltration process of Robinia pseudoacacia forest in different stand ages and densities. The results showed that the average regression coefficient of general empirical model (0.977) > Horton model (0.958) > Kostiakov model (0.953) > Philip model (0.945). Therefore, the fitting effect of general empirical model was best. (3) According to principal component and correlation analysis, the soil infiltration performance was significantly correlated with the soil bulk density, organic matter, and water-stable aggregates. The initial soil moisture content was the main factor affecting the initial infiltration rate. The 1−2 mm water-stable aggregates, soil bulk density, and capillary porosity were the main factors affecting stable infiltration rate. The main factors affecting average infiltration rate were the initial soil moisture content and 0.5−1 mmwater-stable aggregates.
      Conclusion  In a certain range (800−2 200 plant/ha), with the increase of age and density of Robinia pseudoacacia forest, the soil structure is improved, and the soil infiltration performance is gradually improved. Under the same stand density, the 35-year Robinia pseudoacacia forest shows better infiltration performance than others.
  • 图  1   黄土高原蔡家川小流域刺槐林样地布设

    Figure  1.   Sample plot layout of Robinia pseudoacacia plantation at Caijiachuan Watershed of the Loess Plateau

    图  2   同一林龄不同密度和同一密度不同林龄的刺槐林土壤入渗特征

    不同小写字母表示初始入渗速率、平均入渗速率和稳定入渗速率分别在同一林龄不同密度或同一密度不同林龄的条件下的差异显著性(P < 0.05)。Different lowercase letters indicate the significant differences of initial infiltration rate, average infiltration rate, stable infiltration rate, respectively under the same forest age with varied densities or same density with varied forest ages (P < 0.05).

    Figure  2.   Soil infiltration characteristics of Robinia pseudoacacia plantation at same forest age withdifferent densities and same density with varied forest ages

    图  3   同一林龄不同密度和同一密度不同林龄的刺槐林的土壤入渗过程

    Figure  3.   Soil infiltration process of Robinia pseudoacacia plantation at same forest age with different densities and same density with varied forest ages

    表  1   样地基本概况

    Table  1   Basic situation of sample plots

    林龄/a
    Stand age/year
    密度/(株·hm−2)
    Density/(plant·ha−1)
    海拔
    Altitude/m
    坡度
    Slope degree/(°)
    坡向
    Slope aspect
    平均树高
    Average tree height/m
    平均胸径
    Mean DBH/cm
    郁闭度
    Canopy density
    15 1 200 1 075 23 阴坡 Shady slope 7.90 9.15 0.50
    1 600 950 18 阳坡 Sunny slope 9.90 11.21 0.68
    1 800 980 13 阳坡 Sunny slope 10.54 12.98 0.62
    2 200 1 090 28 半阳坡 Semi-sunny slope 8.04 9.22 0.70
    25 800 1 210 24 半阴坡 Semi-shady slope 7.81 10.13 0.41
    1 200 1 160 13 半阳坡 Semi-sunny slope 9.80 13.32 0.48
    1 600 1 150 25 半阴坡 Semi-shady slope 7.64 9.98 0.52
    2 200 1 170 20 半阴坡 Semi-shady slope 6.65 8.08 0.58
    35 1 200 1 220 28 半阴坡 Semi-shady slope 8.14 11.51 0.58
    1 600 1 230 24 阳坡 Sunny slope 6.55 8.94 0.58
    1 800 1 229 37 半阳坡 Semi-sunny slope 7.87 10.18 0.60
    2 200 1 230 25 半阴坡 Semi-shady slope 7.25 9.63 0.52
    下载: 导出CSV

    表  2   土壤理化性质

    Table  2   Physical and chemical properties of soil

    林龄/a
    Stand
    age/year
    密度/
    (株·hm−2)
    Density/
    (plant·ha−1)
    土壤初始
    含水量
    Initial moisture
    content of soil/%
    土壤密度
    Soil bulk
    density/
    (g·cm−3)
    土壤总
    孔隙度
    Total porosity
    of soil/%
    毛管
    孔隙度
    Capillary
    porosity/%
    非毛管
    孔隙度
    Non-capillary
    porosity/%
    有机质含量
    Organic
    matter
    content/%
    水稳性团聚体
    Water-stable aggregate/mm
    > 5 2 ~ 5 1 ~ 2 0.5 ~ 1 0.25 ~ 0.5
    15120010.76ab1.26ab0.48ab0.45ab0.03de1.01b0.36c2.63c3.92c5.68b11.13a
    16007.30b1.15ab0.52a0.50a0.02d1.06b0.77c4.22c6.64bc6.72b9.24a
    180010.57ab1.13b0.53a0.51a0.02d1.12b4.29a6.77b7.62b7.25b10.28a
    22009.27b1.09bc0.54b0.50ab0.04e1.18b2.55bc5.89bc8.51ab9.99ab12.38a
    258008.76b1.28a0.45b0.42b0.03c1.08b1.60bc3.96c4.06c6.42b11.96a
    120013.14a1.18ab0.51ab0.46ab0.05c1.12b1.88bc5.30c7.60b10.15ab10.62a
    16008.46b1.16ab0.52ab0.49ab0.03d1.22b2.39bc5.49c6.09bc5.94b8.85a
    22006.70b1.05bc0.54a0.48ab0.06b1.26b5.55da9.89a10.15ab9.39b10.86a
    3512006.76b1.14b0.49ab0.42b0.07a1.14b1.38bc5.39c8.77ab12.13ab11.91a
    16006.24b1.11b0.53ab0.49ab0.04c1.16b3.02b5.86bc9.74ab13.78a10.60a
    18009.98ab1.11bc0.53a0.50ab0.03d1.24b3.28b4.32c10.98a13.68a10.73a
    22007.15b0.97c0.54ab0.51ab0.03d2.04a2.51bc5.38c9.56ab11.3ab12.78a
    注:小写字母表示在P < 0.05水平上的差异显著性。Note: lowercase letters mean significant differences at P < 0.05 level.
    下载: 导出CSV

    表  3   土壤入渗模型模拟

    Table  3   Simulation on soil infiltration model

    林龄/a
    Stand
    age/year
    密度/(株·hm−2)
    Density/
    (plant·ha−1)
    Horton 模型
    Horton model
    Koistakov 模型
    Koistakov model
    Philip 模型
    Philip model
    通用模型
    General model
    fsfofsβR2abR2SfsR2afsbR2
    15 1 200 1.799 18.046 0.806 0.979 8.384 0.583 0.945 19.068 0.843 0.954 8.490 0.572 0.052 0.994
    1 600 1.605 26.798 0.879 0.933 10.557 0.587 0.942 21.402 1.815 0.943 14.416 0.439 3.017 0.954
    1 800 2.410 18.666 0.833 0.980 9.294 0.522 0.973 22.028 0.185 0.872 8.805 0.555 0.355 0.994
    2 200 2.923 20.600 0.757 0.975 10.857 0.499 0.957 22.973 0.144 0.917 12.727 0.419 1.504 0.960
    25 800 2.695 25.103 1.014 0.955 10.629 0.540 0.972 19.112 0.624 0.973 11.595 0.495 0.701 0.973
    1 200 1.864 21.811 0.829 0.979 9.470 0.587 0.958 22.474 1.379 0.964 11.835 0.471 1.839 0.964
    1 600 2.073 24.885 1.117 0.960 9.180 0.597 0.926 24.142 0.958 0.989 8.690 0.627 0.321 0.996
    2 200 2.262 23.984 0.760 0.971 10.959 0.540 0.973 25.635 0.884 0.978 13.567 0.438 2.007 0.990
    35 1 200 1.954 33.780 0.810 0.925 13.712 0.502 0.920 19.426 1.213 0.927 22.707 0.321 7.474 0.950
    1 600 3.207 35.086 1.103 0.979 13.050 0.539 0.936 27.598 1.210 0.951 16.410 0.445 2.577 0.992
    1 800 2.642 21.209 1.089 0.937 9.173 0.546 0.961 29.314 0.352 0.908 7.692 0.651 1.028 0.986
    2 200 2.890 34.562 1.229 0.918 12.139 0.558 0.968 29.068 1.208 0.969 13.691 0.504 1.134 0.969
    下载: 导出CSV

    表  4   土壤入渗性能与影响因子的相关性分析

    Table  4   Correlation analysis of soil infiltration performance and influencing factors

    影响因素
    Influencing factor
    初始入渗速率
    Initial infiltration rate
    平均入渗速率
    Average infiltration rate
    稳定入渗速率
    Stable infiltration rate
    土壤初始含水量
    Initial moisture content of soil
    −0.785** −0.672* −0.201
    土壤密度
    Soil bulk density
    −0.425 −0.440 −0.751**
    有机质含量
    Organic matter content
    0.418 0.256 0.647*
    土壤总孔隙度
    Total porosity of soil
    0.238 0.277 0.663*
    毛管孔隙度
    Capillary porosity
    −0.004 0.006 0.681*
    非毛管孔隙度
    Non-capillary porosity
    0.548 0.614* 0.054
    水稳性团聚体
    Water-stable aggregate
    > 5 mm 0.030 −0.016 0.385
    2 ~ 5 mm 0.199 0.504 0.169
    1 ~ 2 mm 0.461 0.382 0.789**
    0.5 ~ 1 mm 0.544 0.666* 0.754**
    0.5 ~ 0.25 mm 0.243 0.360 0.359
    注:**表示在P < 0.01水平呈极显著水平,*表示在P < 0.05水平呈显著水平。Notes: ** means very significant difference at P < 0.01 level; * means significant difference at P < 0.05 level.
    下载: 导出CSV

    表  5   土壤入渗影响因子的主成分分析分析

    Table  5   Principal component analysis on influencing factors of soil infiltration

    主成分
    Principal component
    F1F2F3
    土壤初始含水量
    Initial moisture content of soil
    −0.423 0.334 −0.648
    土壤密度
    Soil bulk density
    −0.926 −0.121 0.104
    有机质含量
    Organic matter content
    0.610 0.730 −0.216
    土壤总孔隙度
    Total porosity of soil
    0.923 −0.070 0.206
    毛管孔隙度
    Capillary porosity
    0.799 0.252 0.456
    非毛管孔隙度
    Non-capillary porosity
    0.391 −0.695 −0.504
    水稳性团聚体
    Water-stable aggregate
    > 5 mm 0.733 −0.176 0.456
    2 ~ 5 mm 0.719 −0.389 0.244
    1 ~ 2 mm 0.946 −0.004 −0.082
    0.5 ~ 1 mm 0.671 0.203 −0.329
    0.25 ~ 0.5 mm 0.158 0.628 −0.410
    特征值
    Characteristic value
    5.477 2.712 1.533
    贡献率
    Contribution rate/%
    49.788 15.559 13.939
    累积贡献率
    Cumulative contribution rate/%
    49.788 65.347 79.287
    下载: 导出CSV
  • [1]

    Chen Y P, Wang K B, Lin Y S, et al. Balancing green and grain trade[J]. Nature Geoscience, 2015, 10(8): 739−741.

    [2]

    Shao M A, Wang Y Q, Xia Y Q, et al. Soil drought and water carrying capacity for vegetation in the critical zone of the Loess Plateau: a review[J]. Vadose Zone Journal, 2018, 17(1): 1−8. doi: 10.2136/vzj2018.01.0021.

    [3]

    Wang Y Q, Shao M A, Liu Z P, et al. Investigation of factors controlling the regional-scale distribution of dried soil layers under forestland on the Loess Plateau, China[J]. Surveys in Geophysics, 2012, 33(2): 311−330. doi: 10.1007/s10712-011-9154-y.

    [4]

    Babaei F, Zolfaghari A A, Yazdani M R, et al. Spatial analysis of infiltration in agricultural lands in arid areas of Iran[J]. Catena, 2018, 170: 25−35. doi: 10.1016/j.catena.2018.05.039.

    [5]

    Dashtaki S G, Homaee M, Mahdian M H, et al. Site-dependence performance of infiltration models[J]. Water Resources Management, 2009, 23(13): 2777−2790. doi: 10.1007/s11269-009-9408-3.

    [6] 吕振豫, 刘姗姗, 秦天玲, 等. 土壤入渗研究进展及方向评述[J]. 中国农村水利水电, 2019(7):1−5. doi: 10.3969/j.issn.1007-2284.2019.07.001.

    Lü Z Y, Liu S S, Qin T L, et al. Comment on the progress and major direction of soil infiltration research[J]. Journal of Rural Water Conservancy and Hydropower in China, 2019(7): 1−5. doi: 10.3969/j.issn.1007-2284.2019.07.001.

    [7]

    Huang L, Zhang P, Hu T G, et al. Vegetation succession and soil infiltration characteristics under different aged refuse dumps at the Heidaigou opencast coal mine[J]. Global Ecology and Conservation, 2015, 4: 255−263. doi: 10.1016/j.gecco.2015.07.006.

    [8] 李平, 王冬梅, 丁聪, 等. 黄土高寒区典型植被类型土壤入渗特征及其影响因素[J]. 生态学报, 2020, 40(5):1−11.

    Li P, Wang D M, Ding C, et al. Soil infiltration characteristics and its influencing factors of typical vegetation type in loess alpine region[J]. Acta Ecologica Sinica, 2020, 40(5): 1−11.

    [9] 阿茹·苏里坦. 天山林区不同群落土壤水分入渗特性的对比分析与模拟[D]. 乌鲁木齐: 新疆大学, 2019.

    Sulitan A. Comparative analysis and simulation of soil moisture infiltration characteriscs in different communities in the forests of Tianshan Mountains, China[D]. Urumqi: Xinjiang University, 2019.

    [10] 阿茹·苏里坦, 常顺利, 张毓涛. 天山林区不同群落土壤水分入渗特性的对比分析与模拟[J]. 生态学报, 2019, 39(24):1−8.

    Sulitan A, Chang S L, Zhang Y T. Comparative analysis and simulation of soil moisture infiltration characteriscs in different communities in the forests of Tianshan Mountains, China[J]. Acta Ecologica Sinica, 2019, 39(24): 1−8.

    [11] 勃海锋, 刘国彬, 王国梁. 黄土丘陵区退耕地植被恢复过程中土壤入渗特征的变化[J]. 水土保持通报, 2007, 27(3):1−5. doi: 10.3969/j.issn.1000-288X.2007.03.001.

    Bo H F, Liu G B, Wang G L. Changes of infiltration characteristics of abandoned cropland with plant restoration in loess hilly region[J]. Bulletin of Soil and Water Conservation, 2007, 27(3): 1−5. doi: 10.3969/j.issn.1000-288X.2007.03.001.

    [12]

    Deng L, Shangguan Z P, Li R. Effects of the grain-for-green program on soil erosion in China[J]. International Journal of Sediment Research, 2012, 27: 120−127. doi: 10.1016/S1001-6279(12)60021-3.

    [13]

    Hou G R, Bi H X, Wei X, et al. Optimal configuration of stand structures in a low-efficiency Robinia pseudoacacia forest based on a comprehensive index of soil and water conservation ecological benefits[J/OL]. Ecological Indicators, 2020, 114: 106308 [2020−03−22]. https://www.sciencedirect.com/science/article/pii/S1470160X20302454.

    [14] 杨亚辉. 黄土丘陵沟壑区植被恢复对土壤理化性质影响分析[D]. 北京: 中国科学院大学, 2017.

    Yang Y H. Impacts of vegetation restoration on soil physical and chemical properties in the loess hilly gully region of Loess Plateau[D]. Beijing: University of Chinese Academy of Sciences, 2017.

    [15] 赵小婵, 高楠, 李紫恬,等. 不同林分密度对林地土壤物理性质的影响: 以华北土石山区油松人工林为例[J]. 安徽农业科学, 2015, 43(34):211−214. doi: 10.3969/j.issn.0517-6611.2015.34.079.

    Zhao X C, Gao N, Li Z T, et al. Soil physical properties of pine forest under different forest management in rocky mountain area of northern China[J]. Journal of Anhui Agri Sci, 2015, 43(34): 211−214. doi: 10.3969/j.issn.0517-6611.2015.34.079.

    [16]

    Zhang X, Zhang L, Mcvicar T, et al. Modelling the impact of afforestation on average annual streamflow in the Loess Plateau[J]. Hydrological Processes, 2008, 22: 1996−2004. doi: 10.1002/hyp.6784.

    [17] 王高敏. 晋西黄土区退耕16—20年间不同林地土壤理化性质和水文功能研究[D]. 北京: 北京林业大学, 2015.

    Wang G M. Research on the soil physical and chemical properties and water capacity of forestlands converted of farmland during 16−20 years in western Shanxi Province[D]. Beijing: Beijing Forestry University, 2015.

    [18] 茹豪. 晋西黄土区典型林地水文特征及功能分析[D]. 北京: 北京林业大学, 2015.

    Ru H. Analysis of hydrological characteristics and functions of typical forest stands in the Loss Plateau area of western Shanxi Province[D]. Beijing: Beijing Forestry University, 2015.

    [19] 张孝中. 黄土高原土壤颗粒组成及质地分区研究[J]. 中国水土保持, 2002(3):11−13. doi: 10.3969/j.issn.1000-0941.2002.03.005.

    Zhang X Z. Study on the composition of soil particles and texture zoning of the Loess Plateau[J]. Soil and Water Conservation in China, 2002(3): 11−13. doi: 10.3969/j.issn.1000-0941.2002.03.005.

    [20] 侯贵荣, 毕华兴, 魏曦, 等. 黄土残塬沟壑区刺槐林枯落物水源涵养功能综合评价[J]. 水土保持学报, 2019, 33(2):251−257.

    Hou G R, Bi H X, Wei X, et al. Comprehensive evaluation of water conservation function of litters of Robinia pseudoacacia forest lands in gully region on Loess Plateau[J]. Journal of Soil and Water Conservation, 2019, 33(2): 251−257.

    [21] 刘春成, 李毅, 任鑫, 等. 四种入渗模型对斥水土壤入渗规律的适用性[J]. 农业工程学报, 2011, 27(5):62−67. doi: 10.3969/j.issn.1002-6819.2011.05.010.

    Liu C C, Li Y, Ren X, et al. Applicability of four infiltration models to infiltration characteristics of water repellent soils[J]. Transactions of the CSAE, 2011, 27(5): 62−67. doi: 10.3969/j.issn.1002-6819.2011.05.010.

    [22] 徐敬华. 黄土丘陵区人工植被恢复对土壤水力性质的影响[D]. 杨凌: 西北农林科技大学, 2008.

    Xu J H. The impact of artificial vegetation restoration on soil hydraulic and hydrolgical properties in loess hilly region[D]. Yangling: Northwest A&F University, 2008.

    [23] 刘江, 吕涛, 张立欣, 等. 基于主成分分析的不同种植年限甘草地土壤质量评价[J]. 草业学报, 2020, 29(6):162−171.

    Liu J, Lü T, Zhang L X, et al. Soil quality assessment by principal component analysis in Glycyrrhiza uralensis stands of differing ages[J]. Acta Prataculturae Sinica, 2020, 29(6): 162−171.

    [24] 吴思萱, 刘卉芳, 陈彩虹, 等. 晋西黄土区土壤水分入渗的时空分布研究[J]. 泥沙研究, 2019, 44(4):60−65.

    Wu S X, Liu H F, Chen C H, et al. Study on the temporal and spatial distribution of soil moisture infiltration in the west Shanxi Province[J]. Journal of Sediment Research, 2019, 44(4): 60−65.

    [25] 陈楚楚, 黄新会, 刘芝芹, 等. 滇西北高原湿地不同植被类型下的土壤入渗特性及其影响因素[J]. 水土保持通报, 2016, 36(2):82−87.

    Chen C C, Huang X H, Liu Z Q, et al. Infiltration characteristics and influencing factors of surface soil in plateau wetland of northwest Yunnan Province[J]. Bulletin of Soil and Water Conservation, 2016, 36(2): 82−87.

    [26] 刘新平, 张铜会, 赵哈林, 等. 干旱半干旱区沙漠化土地水分动态研究进展[J]. 水土保持研究, 2005, 12(1):63−68. doi: 10.3969/j.issn.1005-3409.2005.01.019.

    Liu X P, Zhang T H, Zhao H L, et al. Research advaaces on moisture dynamic of desertified lands in arid and semi-arid regions[J]. Research of Soil and Water Conservation, 2005, 12(1): 63−68. doi: 10.3969/j.issn.1005-3409.2005.01.019.

    [27]

    Six J, Paustian K, Elliott E T, et al. Soil structure and organic matter (I): distribution of aggregate-size classes and aggregate-associated carbon[J]. Soil Science Society of America Journal, 2000, 64: 681−689. doi: 10.2136/sssaj2000.642681x.

    [28] 王鑫皓, 王云琦, 马超, 等. 根系构型对土壤渗透性能的影响[J]. 中国水土保持科学, 2018, 16(4):73−82.

    Wang X H, Wang Y Q, Ma C, et al. Effect of root architecture on soil permeability[J]. Science of Soil and Water Conservation, 2018, 16(4): 73−82.

    [29] 刘秀萍, 陈丽华, 陈吉虎. 刺槐和油松根系密度分布特征研究[J]. 干旱区研究, 2007, 24(5):647−651.

    Liu X P, Chen L H, Chen J H. Study on the distribution of root density of Robinia pseudoacacia L. and Pinus tabuliformis Carr.[J]. Arid Zone Research, 2007, 24(5): 647−651.

    [30] 李卓, 吴普特, 冯浩, 等. 容重对土壤水分入渗能力影响模拟试验[J]. 农业工程学报, 2009, 9, 25(6):40−45. doi: 10.3969/j.issn.1002-6819.2009.06.007.

    Li Z, Wu P T, Feng H, et al. Simulated experiment on effect of soil bulk density on soil infiltration capacity[J]. Transactions of the CSAE, 2009, 9, 25(6): 40−45. doi: 10.3969/j.issn.1002-6819.2009.06.007.

    [31] 丁康, 徐学选, 陈文媛, 等. 长武塬边坡不同植被下土壤团聚体及入渗特征[J]. 北京林业大学学报, 2017, 39(12):44−51.

    Ding K, Xu X Y, Chen W Y, et al. Soil aggregates and infiltration characteristics under different vegetation in Changwu tableland slope of northwestern China[J]. Journal of Beijing Forestry University, 2017, 39(12): 44−51.

    [32] 王意锟, 金爱武, 方升佐. 浙西南毛竹林覆盖对土壤渗透性及生物特征的影响[J]. 应用生态学报, 2017, 28(5):1431−1440.

    Wang Y K, Jin A W, Fang S Z. Effects of mulching management of Phyllostachys heterocycla forests on the characteristics of soil infiltration and biometrics in southwest Zhejiang Province, China[J]. Chinese Journal of Applied Ecology, 2017, 28(5): 1431−1440.

  • 期刊类型引用(6)

    1. 刘树超,邵全琴,杨帆,郭兴健,王东亮,黄海波,汪阳春,刘纪远,樊江文,李愈哲. 黄河源区放牧家畜数量及空间分布无人机遥感调查. 地球信息科学学报. 2021(07): 1286-1295 . 百度学术
    2. 郑硕,薛兴盛,白杨,吴艳兰. 徐淮地区冬季AOD时空特征及气象因子研究. 环境科学与技术. 2020(01): 78-85 . 百度学术
    3. 柴曼,周滨,徐威杰,陈晨,刘文权. 基于多尺度分割GF-1影像地表覆盖信息提取研究. 内蒙古煤炭经济. 2020(06): 1-4 . 百度学术
    4. 贾亮亮,汪小钦,苏华,王峰. 台湾岛高分一号卫星WFV数据气溶胶反演与验证. 环境科学学报. 2018(03): 1117-1127 . 百度学术
    5. 李裕冬,罗艳,赵海涛,王程亮,杜杰. 基于MaxEnt模型的九寨沟国家级自然保护区川金丝猴适宜生境研究. 四川动物. 2018(05): 585-591 . 百度学术
    6. 贾亮亮,汪小钦,王峰. 基于波段运算和纹理特征的高分一号多光谱数据云检测. 遥感信息. 2018(05): 62-68 . 百度学术

    其他类型引用(6)

图(3)  /  表(5)
计量
  • 文章访问数:  1565
  • HTML全文浏览量:  357
  • PDF下载量:  70
  • 被引次数: 12
出版历程
  • 收稿日期:  2020-04-27
  • 修回日期:  2020-10-04
  • 网络出版日期:  2020-12-13
  • 发布日期:  2021-02-04

目录

    /

    返回文章
    返回
    x 关闭 永久关闭