高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

长白山云冷杉林林隙冠层特征及与幼苗幼树的关系

李晖 杨华 谢榕

李晖, 杨华, 谢榕. 长白山云冷杉林林隙冠层特征及与幼苗幼树的关系[J]. 北京林业大学学报, 2021, 43(7): 54-62. doi: 10.12171/j.1000-1522.20200131
引用本文: 李晖, 杨华, 谢榕. 长白山云冷杉林林隙冠层特征及与幼苗幼树的关系[J]. 北京林业大学学报, 2021, 43(7): 54-62. doi: 10.12171/j.1000-1522.20200131
Li Hui, Yang Hua, Xie Rong. Canopy characteristics in gaps and its relationship with seedlings and saplings in a spruce-fir forest in the Changbai Mountain area of northeastern China[J]. Journal of Beijing Forestry University, 2021, 43(7): 54-62. doi: 10.12171/j.1000-1522.20200131
Citation: Li Hui, Yang Hua, Xie Rong. Canopy characteristics in gaps and its relationship with seedlings and saplings in a spruce-fir forest in the Changbai Mountain area of northeastern China[J]. Journal of Beijing Forestry University, 2021, 43(7): 54-62. doi: 10.12171/j.1000-1522.20200131

长白山云冷杉林林隙冠层特征及与幼苗幼树的关系

doi: 10.12171/j.1000-1522.20200131
基金项目: 国家重点研发计划课题(2017YFC0504101)
详细信息
    作者简介:

    李晖。主要研究方向:森林资源监测与评价。Email:lihui9128@qq.com 地址:100083 北京市海淀区清华东路35号北京林业大学林学院

    责任作者:

    杨华,教授。主要研究方向:森林资源监测与评价。Email:huayang8747@163.com 地址:同上

  • 中图分类号: S758.5

Canopy characteristics in gaps and its relationship with seedlings and saplings in a spruce-fir forest in the Changbai Mountain area of northeastern China

  • 摘要:   目的  林隙在森林更新循环中起着重要作用,对林隙内冠层结构和光因子及其与幼苗幼树的数量和生长指标之间的关系进行分析,以探究林隙冠层特征对幼苗幼树的影响,提出促进云冷杉林天然更新的措施,为云冷杉林可持续经营和资源可持续利用提供科学依据。  方法  本研究于2019年8月对吉林省金沟岭林场长白山云冷杉异龄针阔混交林林分内48个林隙的冠层结构、光因子及幼苗幼树进行调查,采用Pearson相关性分析对不同大小林隙内冠层结构和光因子及其与幼苗幼树的关系进行分析。  结果  (1)林隙冠层开度(CO)、叶面积指数(LAI)和总辐射(Tot)主要分布区间分别为12% ~ 20%、2 ~ 3和11% ~ 21%。(2)CO、LAI及光因子在不同大小林隙内差异显著(P < 0.05),CO、散射辐射(TDF)随林隙增大而增大,Tot和直接辐射随林隙增大先减小后增加。(3)各树种幼苗幼树株数随CO和Tot的增大先增加后减少,最适合幼苗幼树存活的CO和Tot区间分别为12% ~ 20%和11% ~ 21%。(4)林隙面积小于120 m2时最适合冷杉幼苗幼树的生长;小于90 m2时最适合色木槭幼苗幼树的生长;云杉幼苗幼树在小于30 m2及60 ~ 90 m2的林隙中生长最好;最适宜红松幼苗幼树生长的林隙面积为60 ~ 90 m2  结论  该林分主要冠层分布区间比较适宜4个树种更新幼苗幼树的生长,当CO和Tot超过一定范围后,幼苗幼树数量反而下降。因此,可以根据林分经营需要减少林隙内更新幼苗幼树的数量,或对林隙面积进行适当调节,为目的树种释放生长空间,促进其更新。

     

  • 图  1  冠层结构和光因子数据采集

    O. 林隙中心;a. 中心与冠缘连线中点;b. 林冠边缘;c. 林冠下。O represents gap center; a represents midpoint from the gap center to the canopy edge; b represents canopy edge; c represents under the canopy.

    Figure  1.  Data collection of canopy structure and light factors

    图  2  冠层因子分布图

    Figure  2.  Distribution of canopy factors

    图  3  冠层因子样本率堆积图

    CO(Ⅰ [8%, 12%)、Ⅱ [12%, 16%)、Ⅲ [16%, 20%)、Ⅳ [20%, 24%)、Ⅴ [24%, 28%)、Ⅵ [28%, 32%)、Ⅶ [32%, 36%));LAI(Ⅰ [1, 1.5)、Ⅱ [1.5, 2)、Ⅲ [2, 2.5)、Ⅳ [2.5, 3)、Ⅴ [3, 3.5)、Ⅵ [3.5, 4)、Ⅶ [4, 4.5));Tot(Ⅰ [6%, 11%)、Ⅱ [11%, 16%)、Ⅲ [16%, 21%)、Ⅳ [21%, 26%)、Ⅴ [26%, 31%)、Ⅵ [31%, 36%)、Ⅶ [36%, 41%));TDR(Ⅰ [0, 8%)、Ⅱ [8%, 16%)、Ⅲ [16%, 24%)、Ⅳ [24%, 32%)、Ⅴ [32%, 40%)、Ⅵ [40%, 48%)、Ⅶ [48%, 56%));TDF(Ⅰ [9%, 15%)、Ⅱ [15%, 21%)、Ⅲ [21%, 27%)、Ⅳ [27%, 33%)、Ⅴ [33%, 39%)、Ⅵ [39%, 45%)、Ⅶ [45%, 51%))

    Figure  3.  Sample rate accumulation diagram of canopy factors

    图  4  冠层开度和总辐射对幼苗幼树株数的影响

    Figure  4.  Effects of CO and Tot on number of seedlings and saplings

    表  1  林隙边缘木特征

    Table  1.   Characteristic of the trees in gap edge

    树种 Tree species数量 Quantity/%平均胸径 Average DBH/cm平均高 Average height/m平均冠幅 Average crown width/m
    冷杉 Abies nephrolepis 39.84 23.26 17.39 4.04
    云杉 Picea koraiensis 5.42 25.17 16.58 4.59
    红松 Pinus koraiensis 23.31 27.06 18.64 4.65
    色木槭 Acer mono 7.32 18.97 17.29 3.84
    白桦 Betula platyphylla 2.98 31.97 20.84 4.91
    枫桦 Betula costata 0.27 5.40 7.80 2.18
    紫椴 Tilia amurensis 20.86 13.70 12.60 3.47
    下载: 导出CSV

    表  2  林隙内主要幼苗幼树特征

    Table  2.   Characteristic of main seedlings and saplings in gaps

    树种 Tree species数量 Quantity/%平均地径 Average ground diameter/mm平均高 Average height/m平均冠幅 Average crown width/m
    冷杉 Abies nephrolepis 68.23 19.63 1.16 0.80
    云杉 Picea koraiensis 9.40 17.59 1.26 0.36
    红松 Pinus koraiensis 2.66 14.88 1.19 0.81
    色木槭 Acer mono 19.71 8.35 0.64 0.58
    下载: 导出CSV

    表  3  冠层因子基本信息

    Table  3.   Basic information of canopy factors

    冠层因子
    Canopy factor
    最小值
    Min. value
    最大值
    Max. value
    平均值
    Mean
    平均偏差
    Average deviation
    标准偏差
    Standard deviation
    CO/%8.6135.0117.260.038 00.047 3
    LAI1.304.152.370.400 80.499 4
    Tot/%6.4140.6116.520.047 70.060 2
    TDR/%0.2451.1511.730.073 10.094 3
    TDF/%9.3048.5221.300.059 90.074 3
    注:CO.冠层开度;LAI.叶面积指数;Tot.总辐射;TDR.直接辐射;TDF.散射辐射。下同。Notes: CO represents canopy openness; LAI represents leaf area index; Tot represents trans total radiation; TDR represents trans direct radiation; TDF represents trans diffuse radiation. The same below.
    下载: 导出CSV

    表  4  不同大小林隙内冠层因子变化

    Table  4.   Change of canopy factors in different size gaps

    林隙面积 Gap size/m2CO/%LAITot/%TDR/%TDF/%
    < 30 15.66 ± 0.39A 2.55 ± 0.05A 15.25 ± 0.62A 13.51 ± 1.23AC 17.00 ± 0.53A
    30 ~ 60 15.86 ± 0.49AB 2.47 ± 0.06A 14.81 ± 0.59A 9.76 ± 0.84B 19.95 ± 0.71B
    60 ~ 90 16.21 ± 0.70AB 2.45 ± 0.07AB 14.86 ± 0.77A 8.92 ± 1.29B 20.70 ± 1.04B
    90 ~ 120 18.17 ± 0.73B 2.21 ± 0.06BC 18.35 ± 1.09B 10.65 ± 1.57ABC 24.13 ± 1.08C
    120 ~ 150 21.60 ± 1.07C 1.92 ± 0.06CD 20.25 ± 1.03BC 12.58 ± 1.80ABC 29.86 ± 1.66D
    ≥ 150 22.71 ± 1.03C 1.90 ± 0.08D 22.76 ± 1.44C 15.05 ± 2.39C 30.47 ± 1.45D
    注:表中数值表示平均值 ± 标准误差;不同大写字母表示不同林隙面积等级之间差异显著(P < 0.05)。Notes: values are presented as the mean ± standard error. Different uppercase letters indicate significant differences among gap size classes (P < 0.05).
    下载: 导出CSV

    表  5  光因子与冷杉和色木槭地径、树高及冠幅的相关性

    Table  5.   Correlations between light factors and ground diameter (DGH), tree height and crown width (CW) of Abies nephrolepis and Acer mono

    林隙面积
    Area of gap/m2
    光因子
    Light factor/%
    冷杉地径
    DGH of Abies nephrolepis
    冷杉树高
    Tree height of Abies nephrolepis
    冷杉冠幅
    CW of Abies nephrolepis
    色木槭地径
    DGH of Acer mono
    色木槭树高
    Tree height of Acer mono
    色木槭冠幅
    CW of Acer mono
    < 30 TDR 0.231** 0.241** 0.135** 0.280** 0.425** 0.116
    TDF 0.112* 0.141** 0.049 −0.177* −0.042 0.114
    Tot 0.205** 0.234** 0.107* 0.040 0.204* 0.138
    30 ~ 60 TDR −0.093* −0.106* −0.082 −0.005 −0.044 0.003
    TDF 0.039 0.116* 0.110* −0.132* −0.116 −0.102
    Tot 0.131 0.112 0.222 −0.091 −0.112 −0.081
    60 ~ 90 TDR 0.249** 0.332** 0.178** 0.411** −0.037 −0.069
    TDF −0.074 −0.027 −0.095* −0.240** 0.086 0.049
    Tot 0.086* 0.184** 0.022 −0.131 0.099 0.058
    90 ~ 120 TDR −0.111* −0.154** −0.098* −0.242* −0.145 −0.084
    TDF 0.277** 0.299** 0.240** −0.152 −0.187 −0.272*
    Tot 0.021 0.076 0.043 −0.396** −0.301** −0.282*
    120 ~ 150 TDR −0.088 −0.152** −0.082 −0.346** −0.482** −0.455**
    TDF −0.274** −0.380** −0.357** −0.317** −0.435** −0.407**
    Tot −0.180** −0.270** −0.213** −0.345** −0.478** −0.450**
    ≥ 150 TDR −0.302** −0.348** −0.236** −0.026 −0.227** −0.075
    TDF −0.043 −0.088** −0.053 0.001 −0.068 0.010
    Tot −0.308** −0.379** −0.252** −0.019 −0.230** −0.048
    注:*代表在0.05水平下的差异显著,**代表在0.01水平下的差异显著。Notes: * represents significant difference at the 0.05 level, ** represents significant difference at the 0.01 level.
    下载: 导出CSV

    表  6  光因子与云杉和红松地径、树高及冠幅的相关性

    Table  6.   Correlations between light factors and DGH, tree height and CW of Picea koraiensis and Pinus koraiensis

    林隙面积
    Area of gap/m2
    光因子
    Light factor/%
    云杉地径
    DGH of Picea koraiensis
    云杉树高
    Tree height of Picea koraiensis
    云杉冠幅
    CW of Picea koraiensis
    红松地径
    DGH of Pinus koraiensis
    红松树高
    Tree height of Pinus koraiensis
    红松冠幅
    CW of Pinus koraiensis
    < 30 TDR 0.382** 0.307* 0.068 −0.015 −0.080 0.047
    TDF −0.079 −0.092 0.123 −0.248 −0.018 −0.157
    Tot 0.164 0.115 0.129 −0.269 −0.038 −0.156
    30 ~ 60 TDR −0.217 −0.279* −0.166 −0.359 −0.239 −0.406*
    TDF −0.183 −0.135 −0.054 0.260 0.158 0.146
    Tot −0.222 −0.239* −0.124 0.005 −0.005 −0.131
    60 ~ 90 TDR 0.086 0.268** 0.016 0.585** 0.587** 0.296
    TDF −0.161 −0.006 −0.159 −0.115 0.007 0.063
    Tot −0.115 0.151 −0.159 0.195 0.301 0.217
    90 ~ 120 TDR −0.219 −0.248* −0.145 0.107 −0.128 −0.063
    TDF 0.229* 0.232* 0.124 −0.034 0.066 0.001
    Tot −0.132 −0.164 −0.102 0.113 −0.117 −0.081
    120 ~ 150 TDR 0.094 −0.142 0.131 −0.281 −0.280 0.051
    TDF −0.29 −0.526** −0.338 −0.449 −0.387 −0.052
    Tot −0.044 −0.298 −0.036 −0.359 −0.333 0.010
    ≥ 150 TDR −0.273** −0.325** −0.211* −0.554** −0.532** −0.458**
    TDF −0.155 −0.227* −0.255** 0.678** 0.646** 0.577**
    Tot −0.325** −0.416** −0.341** 0.239 0.224 0.217
    下载: 导出CSV
  • [1] Watt A S. Pattern and process in the plant community[J]. Journal of Ecology, 1947, 35(1/2): 1−22. doi: 10.2307/2256497
    [2] 郑云峰, 尹准生, 唐孝甲. 树种天然更新影响因素研究[J]. 华东森林经理, 2020, 34(2):1−4. doi: 10.3969/j.issn.1004-7743.2020.02.001

    Zheng Y F, Yin Z S, Tang X J. Study on influencing factors of natural regeneration of tree species[J]. East China Forest Management, 2020, 34(2): 1−4. doi: 10.3969/j.issn.1004-7743.2020.02.001
    [3] He Z S, Wang L J, Jiang L. Effect of microenvironment on species distribution patterns in the regeneration layer of forest gaps and non-gaps in a subtropical natural forest, China[J]. Forests, 2019, 10(2): 90−102. doi: 10.3390/f10020090
    [4] Zhang T, Yan Q L, Wang J. Restoring temperate secondary forests by promoting sprout regeneration: effects of gap size and within-gap position on the photosynthesis and growth of stump sprouts with contrasting shade tolerance[J]. Forest Ecology and Management, 2018, 429: 267−277. doi: 10.1016/j.foreco.2018.07.025
    [5] Moghimian N, Habashi H, Kooch Y. Influence of wind throw events on soil carbon sequestration and fertility status at local scales: a case study in Hyrcanian forest[J]. European Journal of Experimental Biology, 2013, 3: 160−167.
    [6] Vitousek P M, Denslow J S. Nitrogen and phosphorus availability in treefall gaps of a lowland tropical rainforest[J]. Journal of Ecology, 1986, 74(4): 1167−1178. doi: 10.2307/2260241
    [7] Kostrakiewicz G K. The impact of time of gap origin on microsite conditions and seedling recruitment in Molinietum caeruleae meadows[J]. International Journal of Conservation Science, 2015, 6(1): 111−124.
    [8] Meer P J V D, Dignan P, Saveneh A G. Effect of gap size on seedling establishment, growth and survival at three years in mountain ash (Eucalyptus regnans F. Muell.) forest in Victoria, Australia[J]. Forest Ecology and Management, 1999, 117(1/3): 33−42.
    [9] Zhu J J, Matsuzaki T, Lee F Q, et al. Effect of gap size created by thinning on seedling emergency, survival and establishment in a coastal pine forest[J]. Forest Ecology and Management, 2003, 182(1): 339−354.
    [10] Wang Z B, Yang H J, Dong B Q, et al. Effects of canopy gap size on growth and spatial patterns of Chinese pine (Pinus tabulaeformis) regeneration[J]. Forest Ecology and Management, 2017, 385: 46−56. doi: 10.1016/j.foreco.2016.11.022
    [11] 胡振宇, 孙楠, 梁晓东. 长白落叶松人工林不同林隙间伐对林下更新生长的影响[J]. 林业科技, 2016, 41(1):11−13. doi: 10.3969/j.issn.1001-9499.2016.01.004

    Hu Z Y, Sun N, Liang X D. Effects of different gap thinning on undergrowth of larch plantation in Changbai Mountain[J]. Forestry Science and Technology, 2016, 41(1): 11−13. doi: 10.3969/j.issn.1001-9499.2016.01.004
    [12] Huth F, Wagner S. Gap structure and establishment of silver birch regeneration (Betula pendula Roth.) in Norway spruce stands (Picea abies L. Karst.)[J]. Forest Ecology and Management, 2006, 229(1/2/3): 314−324.
    [13] 李谭宝, 李淑静, 王彩云. 黄龙山白皮松林林隙物种多样性动态[J]. 西北林学院学报, 2015, 30(4):66−72. doi: 10.3969/j.issn.1001-7461.2015.04.11

    Li T B, Li S J, Wang C Y. Gap dynamics of species diversity in Pinus bungeana forest in Huanglong Mountain[J]. Journal of Northwest Forestry University, 2015, 30(4): 66−72. doi: 10.3969/j.issn.1001-7461.2015.04.11
    [14] 王永强, 蔡燕茹, 曾焕忱, 等. 不同林冠开度下亚热带林下植物的组成和多样性[J]. 西北农林科技大学学报(自然科学版), 2016, 44(5):64−72.

    Wang Y Q, Cai Y R, Zeng H C, et al. Composition and diversity of understory plant species in subtropical forests under different canopy openness[J]. Journal of Northwest A&F University (Natural Science Edition), 2016, 44(5): 64−72.
    [15] Zerbe S. Restoration of natural broad-leaved woodland in Central Europe on sites with coniferous forest plantations[J]. Forest Ecology and Management, 2002, 167(1): 27−42.
    [16] 陈圣宾, 宋爱琴, 李振基. 森林幼苗更新对光环境异质性的响应研究进展[J]. 应用生态学报, 2005, 16(2):365−370. doi: 10.3321/j.issn:1001-9332.2005.02.034

    Chen S B, Song A Q, Li Z J. Research advance in response of forest seedling regeneration to light environmental heterogeneity[J]. Chinese Journal of Applied Ecology, 2005, 16(2): 365−370. doi: 10.3321/j.issn:1001-9332.2005.02.034
    [17] Runkle J R. Patterns of disturbance in some old-growth mesic forests of eastern North America[J]. Ecology, 1983, 64(4): 623.
    [18] 罗桂生, 马履一, 贾忠奎, 等. 油松人工林林隙天然更新及与环境相关性分析[J]. 北京林业大学学报, 2019, 41(9):59−68.

    Luo G S, Ma L Y, Jia Z K, et al. Correlation analysis between natural regeneration and environment in canopy gap of Chinese pine (Pinus tabuliformis) plantation[J]. Journal of Beijing Forestry University, 2019, 41(9): 59−68.
    [19] 蔡杨新, 黄梅珍, 许鲁东, 等. 闽粤栲天然林种群数量与结构的林隙边缘效应[J]. 四川农业大学学报, 2017, 35(1):31−36.

    Cai Y X, Huang M Z, Xu L D, et al. Gap edge effects on population size and structure in Castanopis fissa natural forest[J]. Journal of Sichuan Agricultural University, 2017, 35(1): 31−36.
    [20] Macfarlane C. Classification method of mixed pixels does not affect canopy metrics from digital images of forest overstorey[J]. Agricultural and Forest Meteorology, 2011, 151(7): 833−840. doi: 10.1016/j.agrformet.2011.01.019
    [21] 刘志理, 金光泽. 小兴安岭白桦次生林叶面积指数的估测[J]. 生态学报, 2013, 33(8):2505−2513. doi: 10.5846/stxb201201120065

    Liu Z L, Jin G Z. Estimation of leaf area index of secondary Betula platyphylla forest in Xiaoxing’ an Mountains[J]. Acta Ecology Sinica, 2013, 33(8): 2505−2513. doi: 10.5846/stxb201201120065
    [22] 马泽清, 刘琪璟, 曾慧卿, 等. 南方人工林叶面积指数的摄影测量[J]. 生态学报, 2008, 28(5):1971−1980. doi: 10.3321/j.issn:1000-0933.2008.05.011

    Ma Z Q, Liu Q J, Zeng H Q, et al. Estimation of leaf area index of planted forests in subtropical China by photogrammetry[J]. Acta Ecology Sinica, 2008, 28(5): 1971−1980. doi: 10.3321/j.issn:1000-0933.2008.05.011
    [23] Gardiner E S, Hodges J D. Growth and biomass distribution of cherry bark oak (Quercus pagoda Raf.) seedlings as influenced by light availability[J]. Forest Ecology and Management, 1998, 108: 127−134. doi: 10.1016/S0378-1127(98)00220-5
    [24] 班宏娜. 樟子松人工林树冠层光分布规律及对生长影响的研究[D]. 哈尔滨: 东北林业大学, 2010.

    Ban H N. The research on canopy light distribution law and growth in fluence on Pinus sylverstris artificial stand [D]. Harbin: Northeast Forestry University, 2010.
    [25] 方怡然, 潘澜, 薛立. 冰雪灾害后的杉木人工林冠层结构与林下光照及土壤生化特性的关系[J]. 生态环境学报, 2018, 27(4):609−616.

    Fang Y R, Pan L, Xue L. Relationships between canopy structure and understory light and soil biochemical property in a Cunninghamia lanceolata stand suffering from ice-snow damage[J]. Ecology and Environmental Sciences, 2018, 27(4): 609−616.
    [26] 刘少冲, 段文标, 陈立新. 小兴安岭阔叶红松林不同大小林隙光照时空分布特征[J]. 东北林业大学学报, 2014, 42(8):46−51. doi: 10.3969/j.issn.1000-5382.2014.08.010

    Liu S C, Duan W B, Chen L X. Spatiotemporal distribution characteristics of light in different size gaps in the mixed broad-leaved Korean pine forest in Xiaoxing’an Mountains[J]. Journal of Northeast Forestry University, 2014, 42(8): 46−51. doi: 10.3969/j.issn.1000-5382.2014.08.010
    [27] Grubb P J, Bellingham P J, Kohyama T S, et al. Disturbance regimes, gap-demanding trees and seed mass related to tree height in warm temperate rain forests worldwide[J]. Biological Reviews, 2013, 88(3): 701−744. doi: 10.1111/brv.12029
    [28] 区余端, 苏志尧. 粤北山地常绿阔叶林自然干扰后冠层结构空间异质性动态[J]. 植物科学学报, 2012, 30(3):223−229.

    Qu Y D, Su Z Y. Spatial heterogeneity dynamics of canopy structure in a montane evergreen broadleaved forest following a natural disturbance in north Guangdong[J]. Piant Science Journal, 2012, 30(3): 223−229.
    [29] 陈龙斌, 孙昆, 张旭, 等. 林隙干扰对森林生态系统的影响[J]. 应用生态学报, 2021, 32(2):701−710.

    Chen L B, Sun K, Zhang X, et al. Effects of forest gap disturbance on forest ecosystem[J]. Chinese Journal of Applied Ecology, 2021, 32(2): 701−710.
    [30] Coble A P, Cavaleri M A. Light drives vertical gradients of leaf morphology in a sugar maple (Acer saccharum) forest[J]. Tree Physiology, 2014, 34(2): 146−158. doi: 10.1093/treephys/tpt126
    [31] 李兵兵, 秦琰, 刘亚茜, 等. 燕山山地油松人工林林隙大小对更新的影响[J]. 林业科学, 2012, 48(6):147−151. doi: 10.11707/j.1001-7488.20120622

    Li B B, Qin Y, Liu Y Q, et al. Effects of gap size on regeneration of Pinus tabulaeformis plantation in the Yanshan Mountain[J]. Scientia Silvae Sinicae, 2012, 48(6): 147−151. doi: 10.11707/j.1001-7488.20120622
    [32] 罗大庆, 郭泉水, 薛会英, 等. 西藏色季拉山冷杉原始林林隙更新研究[J]. 林业科学研究, 2002, 15(5):564−569. doi: 10.3321/j.issn:1001-1498.2002.05.010

    Luo D Q, Guo Q S, Xue H Y, et al. A research of gap regeneration of virgin fir forest in Mount Sejila in Tibet[J]. Forest Research, 2002, 15(5): 564−569. doi: 10.3321/j.issn:1001-1498.2002.05.010
    [33] 周振钊, 范春楠, 郭忠玲, 等. 长白山红松阔叶林林隙及更新特征[J]. 北华大学学报(自然科学版), 2019, 20(2):161−167.

    Zhou Z Z, Fan C N, Guo Z L, et al. Gap and regeneration characteristics of Korean pine broad-leaved forest in Changbai Mountain[J]. Journal of Beihua University (Natural Science), 2019, 20(2): 161−167.
    [34] Downey M, Valkonen S, Heikkinen J. Natural tree regeneration and vegetation dynamics across harvest gaps in Norway spruce dominated forests in southern Finland[J]. Canadian Journal of Forest Research, 2018, 48(5): 524−534. doi: 10.1139/cjfr-2017-0358
  • 加载中
图(4) / 表(6)
计量
  • 文章访问数:  161
  • HTML全文浏览量:  71
  • PDF下载量:  34
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-05
  • 修回日期:  2020-11-17
  • 网络出版日期:  2021-06-16
  • 刊出日期:  2021-07-25

目录

    /

    返回文章
    返回