• Scopus收录期刊
  • CSCD(核心库)来源期刊
  • 中文核心期刊
  • 中国科技核心期刊
  • F5000顶尖学术来源期刊
  • RCCSE中国核心学术期刊
高级检索

结合大斑啄木鸟生境适宜性的林分空间结构优化

盛琪, 董灵波, 刘兆刚

盛琪, 董灵波, 刘兆刚. 结合大斑啄木鸟生境适宜性的林分空间结构优化[J]. 北京林业大学学报, 2021, 43(5): 24-32. DOI: 10.12171/j.1000-1522.20200141
引用本文: 盛琪, 董灵波, 刘兆刚. 结合大斑啄木鸟生境适宜性的林分空间结构优化[J]. 北京林业大学学报, 2021, 43(5): 24-32. DOI: 10.12171/j.1000-1522.20200141
Sheng Qi, Dong Lingbo, Liu Zhaogang. Stand spatial structure optimization combined with habitat suitability of great spotted woodpecker[J]. Journal of Beijing Forestry University, 2021, 43(5): 24-32. DOI: 10.12171/j.1000-1522.20200141
Citation: Sheng Qi, Dong Lingbo, Liu Zhaogang. Stand spatial structure optimization combined with habitat suitability of great spotted woodpecker[J]. Journal of Beijing Forestry University, 2021, 43(5): 24-32. DOI: 10.12171/j.1000-1522.20200141

结合大斑啄木鸟生境适宜性的林分空间结构优化

基金项目: 国家重点研发计划项目(2017YFC0504103),黑龙江省森林可持续经营试验示范区建设项目(201522-2)
详细信息
    作者简介:

    盛琪。主要研究方向:森林可续经营。Email:599540072@qq.com 地址:150040 黑龙江省哈尔滨市和兴路26号东北林业大学林学院

    责任作者:

    刘兆刚,博士,教授。主要研究方向:森林可续经营。Email:lzg19700602@163.com 地址:同上

  • 中图分类号: S759.94;S750

Stand spatial structure optimization combined with habitat suitability of great spotted woodpecker

  • 摘要:
      目的  优化林分空间结构,提高现有林分质量的同时更好地保护野生动物栖息地,为帽儿山地区的森林经营提供理论依据。
      方法  本文以帽儿山林场为研究对象,根据全混交度、角尺度、竞争指数、林层指数4个空间结构指标和生境适宜性指数,采用乘除法思想构建林分空间优化模型。生境适宜性指数以大斑啄木鸟为例根据2016年帽儿山林场森林资源二类调查数据进行计算。利用R语言进行林分优化模拟,比较不同采伐强度下林分结构和生境适宜性指数的变化,分析将生境适宜性指数融入到优化模型中的可行性。
      结果  通过对比不同采伐强度(10%、20%、30%)下各指标和目标函数值(Q)的变化,确定最优采伐强度为20%。最优采伐强度下Q值的最大值为73.28,平均值为49.59,郁闭度为0.62,林分结构平均状态达到最佳,采伐木主要集中于林木密集区域共计采伐133株;林分空间结构优化后林分全混交度和林层指数提高,竞争指数减小,角尺度介于[0.475,0.517]之间,由聚集分布状态调整为随机分布状态;并且生境适宜性指数由0.52提高到0.57属于较适宜区域。
      结论  表明本次优化模拟将生境适宜性指数融入到林分空间优化模型中,在优化林分结构和提高林分质量的基础上,一定程度上提高了生境适宜性指数;为空间结构优化调整和保护帽儿山野生动物的生存环境提供科学依据。
    Abstract:
      Objective  This paper aims to optimize the spatial structure of stand, improve the quality of existing forests and protect the habitat of wild animals, so as to provide a theoretical basis for forest management in Maoershan Mountain of northeastern China.
      Method  Taking Maoershan Mountain Forest Farm as the study area, according to the four spatial structure indices of complete mingling, uniform angle index, competition index, stand layer index and habitat suitability index, a comprehensive spatial structure model was constructed by the idea of multiplication and division. The habitat suitability index was calculated based on the 2016 survey data of the Maoershan Mountain. Taking the great spotted woodpecker as an example, we used the R to compile the stand optimization simulation, compared the changes of stand structure and habitat suitability index under the different thinning intensities, and analyzed the feasibility of integrating the habitat suitability index into the optimization model.
      Result  Compared the changes of each index and optimization function Q-value under different tending intensities (10%, 20% and 30%, respectively), the optimal tending intensity was 20%, the maximum Q-value was 73.28, the average Q-value was 49.59, the canopy density was 0.62 and the cutting trees were mainly located in dense forest areas with a total of 133 trees. After stand optimization, the complete mingling and stand layer index increased, the competition index decreased, the uniform angle index ranged in [0.475, 0.517], which was in a randomly distributed state; and the habitat suitability index increased to 0.57.
      Conclusion  It shows that this optimization simulation optimizes the spatial structure of the stand while improves the habitat suitability index. The conclusion of this study can provide a scientific basis for optimization of the spatial structure and protection for the living environment of wild animals.
  • 图  1   帽儿山林场大斑啄木鸟生境适宜性等级分布

    Figure  1.   Grade distribution of habitat suitability of Dendrocopos major in Maoershan Mountain

    图  2   各采伐强度下最优模拟采伐木位置

    红色为采伐木的位置。The red part represents the location of cutting trees.

    Figure  2.   Optimal simulated location of cutting trees under different thinning intensities

    图  3   优化前后林分径阶分布

    空心圆和实心圆分别代表优化前后径阶分布,三角形代表采伐木径阶分布。The open circle represents the optimized diameter class distribution, and the solid circle represents the optimized diameter class distribution, and the triangles represent the distribution of diameter steps of felled trees.

    Figure  3.   Distribution of diameter grade before and after optimization

    表  1   样地内林木基本信息

    Table  1   Basic information of trees in the sample plots

    树种
    Tree species
    平均胸径
    Average
    DBH/cm
    平均树高
    Average
    tree height/m
    株数
    Tree
    number
    全混交度
    Complete
    mingling
    角尺度
    Uniform
    angle
    竞争指数
    Competition
    index
    林层指数
    Stand layer
    index
    色木槭 Acer mono12.9810.651510.630.543.710.60
    白牛槭 Acer mandshuricum10.939.441370.560.543.640.61
    榆树 Ulmus pumila13.5510.511350.590.544.980.57
    椴树 Tilia tuan22.8314.28880.600.536.220.64
    胡桃楸 Juglans mandshurica39.5319.09680.560.554.660.63
    水曲柳 Fraxinus mandshurica30.9718.42460.610.514.390.72
    青楷槭 Acer tegmentosum 10.578.50430.540.524.120.59
    其他 Others17.6311.741450.610.544.010.61
    下载: 导出CSV

    表  2   大斑啄木鸟生境评价因子等级及类型划分标准

    Table  2   Habitat quality evaluation factor grading and standard of great spotted woodpecker

    评价因子
    Evaluation factor
    类型划分等级 Classification and grading来源文献
    Source literature
    权重
    Weight
    林分类型
    Stand type
    阔叶林
    Broadleaved forest
    针阔混交林
    Coniferous and broadleaved
    mixed forest
    针叶林
    Coniferous forest
    [13, 18-19, 27] 0.15
    林分平均年龄
    Stand average age
    近、成熟林
    Near-mature and
    mature forest
    过熟林
    Overmature forest
    中、幼龄林
    Young and middle aged forest
    [15, 27-28] 0.13
    平均胸径
    Average DBH/cm
    30 ~ 35 20 ~ 30 < 20, > 35 [13, 16, 20, 24-26] 0.23
    枯立木比例
    Dead tree proportion
    0 ~ 0.03 0.03 ~ 0.09 ≥ 0.09, 0 [11, 28-29] 0.18
    水源与栖息地距离
    Distance to water/m
    ≤ 200 200 ~ 600 ≥ 600 [13, 15-16] 0.15
    道路与栖息地距离
    Distance to road/m
    ≥ 400 50 ~ 400 < 50 [11, 16, 30] 0.16
    下载: 导出CSV

    表  3   采伐强度模拟结果

    Table  3   Simulation results of thinning intensity

    样地号
    Sample
    plot No.
    采伐强度
    Thinning
    intensity/%
    目标函数值
    Objective function value (Q)
    郁闭度
    Canopy
    density
    平均值
    Mean value
    最大值
    Max. value
    最小值
    Min. value
    RK011044.0259.0234.420.64
    2049.5973.2831.060.62
    3057.7596.8334.650.57
    下载: 导出CSV

    表  4   不同采伐强度模拟指数变化

    Table  4   Variations in simulation indexes under different thinning intensities

    采伐强度
    Thinning intensity/%
    q
    q value
    全混交度
    Complete mingling
    角尺度
    Uniform angle
    竞争指数
    Competition index
    林层指数
    Stand layer index
    生境适宜性指数
    Habitat suitability index
    目标函数值
    Objective function value
    101.340.600.523.780.630.5559.02
    201.350.610.513.360.640.5773.28
    301.320.620.503.080.630.5796.83
    注:q值为相邻径阶株数之比。下同。Notes: q value is the ratio of the number of adjacent diameter class. The same below.
    下载: 导出CSV

    表  5   优化前后各指数变化

    Table  5   Changes of indexes before and after optimization

    指数
    Index
    优化前
    Before optimization
    优化后
    After optimization
    变化趋势
    Changing trend
    变化幅度
    Changing range/%
    径阶数 Diameter order (D)1515不变 Constant0
    树种数 Tree species number (N)1616不变 Constant0
    qq value1.201.35增加 Increase 2.27
    全混交度 Complete mingling (M)0.590.61增加 Increase 3.38
    角尺度 Uniform angle (W)0.540.51 减小 Decrease 5.56
    林层指数 Stand layer index (S)0.610.64增加 Increase 4.92
    竞争指数 Competition index (CI)4.383.36 减小 Decrease 23.28
    生境适宜性指数 Habitat suitability index (HSI)0.520.57增加 Increase 9.62
    目标函数值 Objective function value (Q)32.6773.28增加 Increase124.30
    下载: 导出CSV
  • [1] 张会儒, 唐守正. 东北天然林可持续经营技术研究[M]. 北京: 中国林业出版社, 2011.

    Zhang H R, Tang S Z. Sustainable management technology of natural forest in Northeast China[M]. Beijing: China Forestry Publishing House, 2011.

    [2] 曹小玉, 李际平. 林分空间结构指标研究进展[J]. 林业资源管理, 2016(4):65−73.

    Cao X Y, Li J P. Research progress on indicators of the stand spatial structure[J]. Forest Resources Management, 2016(4): 65−73.

    [3] 汤孟平, 娄明华, 陈永刚, 等. 不同混交度指数的比较分析[J]. 林业科学, 2012, 48(8):46−53.

    Tang M P, Lou M H, Chen Y G, et al. Comparative analyses on different mingling indices[J]. Scientia Silvae Sinicae, 2012, 48(8): 46−53.

    [4] 赵中华, 惠刚盈, 胡艳波, 等. 角尺度判断林木水平分布格局的新方法[J]. 林业科学, 2016, 52(2):10−16.

    Zhao Z H, Hui G Y, Hu Y B, et al. The new method judged horizontal distribution pattern by uniform angle index[J]. Scientia Silvae Sinicae, 2016, 52(2): 10−16.

    [5] 吕勇, 臧颢, 万献军, 等. 基于林层指数的青椆混交林林层结构研究[J]. 林业资源管理, 2012(3):81−84.

    Lü Y, Zang Y, Wan X J, et al. Storey structure study of Cyclobalanopsis myrsinaefolia mixed stand based on storey index[J]. Forest Resources Management, 2012(3): 81−84.

    [6] 向博文, 曾思齐, 甘世书, 等. 湖南次生栎林空间结构优化[J]. 中南林业科技大学学报, 2019, 39(8):33−40.

    Xiang B W, Zeng S Q, Gan S S, et al. Spatial structure optimization of Quercus in Hunan[J]. Journal of Central South University of Forestry & Technology, 2019, 39(8): 33−40.

    [7] 曹小玉, 李际平, 胡园杰, 等. 杉木生态林林分间伐空间结构优化模型[J]. 生态学杂志, 2017, 6(4):1134−1141.

    Cao X Y, Li J P, Hu Y J, et al. Spatial structure optimizing model of stand thinning of Cunninghamia lanceolata ecological forest[J]. Chinese Journal of Ecology, 2017, 6(4): 1134−1141.

    [8] 姜兴艳, 曾思齐, 贺东北, 等. 基于间伐调整的湖南楠木次生林结构化经营技术[J]. 中南林业科技大学学报, 2019, 39(10):48−54, 70.

    Jiang X Y, Zeng S Q, He D B, et al. Structure-based management technology of Phoebe zhennan secondary forest in Hunan Province based on thinning adjustment[J]. Journal of Central South University of Forestry & Technology, 2019, 39(10): 48−54, 70.

    [9]

    Sousa P J. Habitat suitability index models: hairy woodpecker[M]. Colorado: National Ecology Research Center Fort Collins Co., 1987.

    [10]

    Luo S, Wang C. Forest pests and diseases forecasting based on GIS[J]. Advanced Materials Research, 2011, 250−253: 2945−2948. doi: 10.4028/www.scientific.net/AMR.250-253.2945

    [11] 杨勇. 大斑啄木鸟栖息地选择和适宜性评价研究[D]. 北京: 北京林业大学, 2011.

    Yang Y. Study on habitat selection and habitat assessment of Picoides major[D]. Beijing: Beijing Forestry University, 2011.

    [12] 邓秋香, 周彤, 高玮. 落叶阔叶林中初级洞巢鸟在群落组织结构形成中的作用[J]. 东北林业大学学报, 2006, 34(6):58−60.

    Deng Q X, Zhou T, Gao W. Function of primary cavity-nesting birds on bird community structure in deciduous broad-leaved forest[J]. Journal of Northeast Forestry University, 2006, 34(6): 58−60.

    [13] 李天松, 王翌, 徐境羚, 等. 吉林省左家自然保护区洞巢特征[J]. 北华大学学报(自然科学版), 2016, 17(6):727−730.

    Li T S, Wang Y, Xu J L, et al. Cavity-nesting characteristics in Zuojia Nature Reserve of Jilin Province[J]. Journal of Beihua University (Natural Science), 2016, 17(6): 727−730.

    [14] 赵中和, 张林生, 赵胜国, 等. 大斑啄木鸟控制光肩星天牛调查研究[C]//第七届内蒙古自治区自然科学学术年会优秀论文集.呼和浩特: 内蒙古人民出版社, 2012.

    Zhao Z H, Zhang L S, Zhao S G, et al. Investigation and research on the great spotted woodpecker’s control of bare shoulder Monochamus alternatus[C]//Proceedings of the 7th Inner Mongolia Natural Science Academic Conference. Hohhot: Inner Mongolia People’s Publishing House, 2012.

    [15] 胡加付, 温俊宝, 骆有庆. 大斑啄木鸟研究现状[J]. 安徽农业大学学报, 2008, 35(3):405−410.

    Hu J F, Wen J B, Luo Y Q. Review of study on great spotted woodpecker Picoides major[J]. Journal of Anhui Agricultural University, 2008, 35(3): 405−410.

    [16] 郑丽颖, 温俊宝, 许志春, 等. 内蒙古乌拉特前旗招引大斑啄木鸟研究[J]. 安徽农业科学, 2011, 39(13):7811−7813, 7816.

    Zheng L Y, Wen J B, Xu Z C, et al. Primary study on the attraction of Picoides major in Wulat Front Banner, Inner Mongolia[J]. Journal of Anhui Agricultural Sciences, 2011, 39(13): 7811−7813, 7816.

    [17] 郑丽颖, 温俊宝. 林中枯立木对大斑啄木鸟生存繁衍的影响[J]. 绥化学院学报, 2008, 28(6):191−192.

    Zheng L Y, Wen J B. Impacts of standing deadwoods on existence and breeding of Dendrocopos major[J]. Journal of Suihua University, 2008, 28(6): 191−192.

    [18] 高玮, 张克勤, 姜云垒, 等. 次生阔叶林中四种啄木鸟冬季取食行为的比较研究[J]. 吉林师范大学学报(自然科学版), 2007, 28(3):17−20.

    Gao W, Zhang K Q, Jiang Y L, et al. Comparasion study of four woodpeckers foraging behavior of secondaty deciduous woods in winter[J]. Jilin Normal University Journal (Natural Science Edition), 2007, 28(3): 17−20.

    [19] 罗维桢, 宋榆钧. 大斑啄木鸟取食行为的研究[J]. 生态学杂志, 1992(5):27−29,76.

    Luo W Z, Song Y J. Study on the feeding behavior of great spotted woodpecker[J]. Chinese Journal of Ecology, 1992(5): 27−29,76.

    [20] 戎可, 司雨蕙, 潘麒嫣, 等. 同域分布3种啄木鸟冬季取食的生态位差异[J]. 生态学报, 2018, 38(23):8314−8323.

    Rong K, Si Y H, Pan Q Y, et al. Forage niche differentiation of three sympatric woodpecker species in winter[J]. Acta Ecologica Sinica, 2018, 38(23): 8314−8323.

    [21] 惠刚盈, 胡艳波, 刘瑞红. 森林观察研究中的林分空间优势度分析方法[J]. 温带林业研究, 2019, 2(1):1−6, 12.

    Hui G Y, Hu Y B, Liu R H. Methods of analyzing stand spatial dominance in forest observational studies[J]. Journal of Temperate Forestry Research, 2019, 2(1): 1−6, 12.

    [22] 惠刚盈, 胡艳波, 赵中华. 结构化森林经营研究进展[J]. 林业科学研究, 2018, 31(1):85−93.

    Hui G Y, Hu Y B, Zhao Z H. Research progress of structure-based forest management[J]. Forest Research, 2018, 31(1): 85−93.

    [23] 金格斯·萨哈尔依, 卢山, 黄艳. 大斑啄木鸟对阿勒泰地区蛀干害虫种类的控制与保护利用[J]. 防护林科技, 2012(1):91−93.

    Zingers Sakhari, Lu S, Huang Y. Great spotted woodpecker controls and protects utilization of dry pests in Altay region[J]. Protection Forest Science and Technology, 2012(1): 91−93.

    [24] 邢茂卓, 付林巨, 温俊宝. 斑块质量对大斑啄木鸟冬季觅食行为的影响[J]. 动物学杂志, 2012, 47(4):121−129.

    Xing M Z, Fu L J, Wen J B. Influence of food patch quality on the foraging behavior of great spotted woodpecker in winter[J]. Chinese Journal of Zoology, 2012, 47(4): 121−129.

    [25] 周春发, 周大庆, 孔祥坤, 等. 四种同域分布洞巢鸟的巢址特征比较[J]. 生物多样性, 2012, 20(6):716−724.

    Zhou C F, Zhou D Q, Kong X K, et al. Differentiating nest sites characteristics of four sympatric cavity-nesting birds[J]. Biodiversity Science, 2012, 20(6): 716−724.

    [26] 万涛, 矫振彪, 温俊宝, 等. 冬季大斑啄木鸟对光肩星天牛的选择性捕食[J]. 动物学报, 2008, 54(3):555−560.

    Wan T, Jiao Z B, Wen J B, et al. Selective predation by the great spotted woodpecker Picoides major on the Asian longhorned beetle Anoplophora glabripennis in winter[J]. Current Zoology, 2008, 54(3): 555−560.

    [27] 高玮, 赵虹, 相桂权. 斑啄木鸟巢位选择及繁殖成效[C]//中国鸟类学会. 中国鸟类学研究: 第四届海峡两岸鸟类学术研讨会文集. 北京: 中国林业出版社, 2000.

    Gao W, Zhao H, Xiang G Q. Spot selection and breeding effectiveness of spotted woodpecker [C]//China Ornithological Society. Research on Ornithology in China: proceedings of the fourth cross-strait ornithological symposium. Beijing: China Forestry Publishing House, 2000.

    [28] 马金生, 贾志云, 吴云峰. 危及大斑啄木鸟生存繁衍因子的研究[J]. 河北大学学报(自然科学版), 1996, 16(5):75−76.

    Ma J S, Jia Z Y, Wu Y F. Study on the reproduction factors of endangered great spotted woodpecker[J]. Journal of Hebei University (Natural Science Edition), 1996, 16(5): 75−76.

    [29]

    Virkkala R. Why study woodpeckers? The significance of woodpeckers in forest ecosystems[J]. Annales Zoologici Fennici, 2006, 43: 82−85.

    [30] 邹红菲, 赵钢. 兴凯湖自然保护区湖岗天然带状林中繁殖鸟巢的空间格局[J]. 野生动物学报, 2008, 29(1):21−25.

    Zou H F, Zhao G. Spatial pattern of nests of breeding birds in natural forests on Lake Hillock in Xingkai Lake National Nature Reserve[J]. Chinese Journal of Wildlife, 2008, 29(1): 21−25.

    [31] 中国国家质监总局. 森林抚育规程: GB/T15781—2015[M]. 北京: 中国标准出版社, 2015.

    Inspection and Quarantine of the People’s Republic of China. Standardization administration of China regulations for forest tending (GB/T 15781−2015)[M]. Beijing: China Standard Press, 2015.

  • 期刊类型引用(4)

    1. 张苗苗,罗于洋,王树森,张丽娜,马成功,于胜利,王景圆. 内蒙古旺业甸华北落叶松人工林空间结构分析及其优化. 西北林学院学报. 2024(01): 81-87+107 . 百度学术
    2. 荆媛,魏爽,史文辉,马梓贺,王德宇,戎可. 天然次生林中小斑啄木鸟的取食偏好. 野生动物学报. 2024(01): 84-94 . 百度学术
    3. 孙宇,刘盛,田佳歆,程福山,赵士博,王诗俊. 基于空间结构优化的长白落叶松人工林分间伐模型构建. 中南林业科技大学学报. 2023(01): 72-83 . 百度学术
    4. 刘鑫,黄浪,卿东升,李建军. 基于Voronoi空间单元的林分空间结构智能优化研究. 林业资源管理. 2023(04): 27-35 . 百度学术

    其他类型引用(2)

图(3)  /  表(5)
计量
  • 文章访问数:  1514
  • HTML全文浏览量:  511
  • PDF下载量:  93
  • 被引次数: 6
出版历程
  • 收稿日期:  2020-05-10
  • 修回日期:  2020-06-27
  • 网络出版日期:  2021-03-09
  • 发布日期:  2021-05-26

目录

    /

    返回文章
    返回