Biomass allocation and its allometric growth of Pinus yunnanensis seedlings of different families
-
摘要:
目的 旨在探明不同家系云南松苗木器官生物量分配格局及其异速生长现象,了解苗木的个体发育规律及适应策略。 方法 对10个家系310株云南松苗木的生长及生物量相关指标进行调查,利用单因素方差分析比较不同家系苗木的生物量及其分配差异,并采用标准化主轴分析法对其异速生长关系进行分析。 结果 (1)不同家系苗木生物量的积累与分配存在差异,但各器官生物量的分配均表现为叶 > 茎 > 根。苗木个体越小,叶生物量占比越大,随着个体大小的增加,倾向于将更多的生物量分配到茎。(2)苗木器官生物量间及器官生物量与个体大小间的异速生长关系在不同家系中不尽相同,总体表现为等速生长。(3)地上生物量与根生物量间及茎生物量与根生物量间具有共同的异速生长指数,分别为1.054和1.209。不同家系苗木既存在等速生长又具有异速生长现象,异速生长关系并不一致。 结论 异速生长关系在不同的家系中并不唯一,既有趋同适应又存在差异,反应了苗木的生长与适应策略。 Abstract:Objective This paper aims to reveal the biomass allocation and allometric relationships from different families, and to analyze their ontogenetic law and adaptive strategy of seedlings. Method The growth and biomass indexes of 310 Pinus yunnanensis seedlings from 10 families were investigated. One-way ANOVA was used to compare the differences in biomass and biomass allocation of seedlings from different families, and the allometric relationship was analyzed by standardized major axis analysis. Result (1) The biomass accumulation and allocation were different among varied families, the biomass allocation in each organ was ordered by leaf > stem > root, the biomass allocation of seedlings was constrained by its individual size, and the smaller the individual size was, the larger the leaf biomass ratio was, while the larger the individual size was, the more the stem biomass ratio was. (2) The allometric growth relationships within the plant organ biomass and organ biomass to individual size were quite discrepant, but the growth relationships were isometric overall. (3) The biomass pair aboveground and root biomass, stem and root biomass of seedlings exhibited a common allometric scaling exponent index of 1.054 and 1.209, respectively. The seedlings of different families had both isometric and allometric relationships. Conclusion There is no consistency allometric growth relationship among different families, but it represents the growth and adaptation strategies of seedlings. -
Key words:
- Pinus yunnanensis /
- biomass allocation /
- allometric growth
-
图 1 不同家系云南松苗木生物量积累量
生物量积累量的值为平均值± 标准误。不同小写字母表示家系间差异显著(P < 0.05)。下同。Biomass accumulation value was mean ± standard error. Different lowercase letters indicate significant differences among varied families (P < 0.05). The same below.
Figure 1. Biomass accumulation of P. yunnanensis seedlings of different families
表 1 云南松苗木不同性状间的异速生长分析
Table 1. Allometric growth analysis of P. yunnanensis seedlings with different traits
性状
Trait决定系数
Determination coefficient显著性
Significance (P)斜率
Slope95%置信区间
95% confidence interval截距
Intercept95%置信区间
95% confidence intervalF值
F valueP−1.0 H ~ D 0.253 0.000 0.962 0.873 ~ 1.060 0.198 0.110 ~ 0.624 0.430 0.000 D ~ TB 0.666 0.000 0.524 0.491 ~ 0.559 0.503 0.473 ~ 0.533 442.845 0.000 LB ~ RB 0.755 0.000 0.996 0.942 ~ 1.052 0.563 0.541 ~ 0.585 0.026 0.873 LB ~ SB 0.757 0.000 0.854 0.808 ~ 0.903 0.380 0.356 ~ 0.403 31.786 0.000 SB ~ RB 0.771 0.000 1.165 1.105 ~ 1.230 0.215 0.190 ~ 0.239 31.794 0.000 AGB ~ RB 0.817 0.000 1.002 0.955 ~ 1.051 0.735 0.716 ~ 0.753 0.004 0.948 RB ~ TB 0.870 0.000 1.016 0.976 ~ 1.058 −0.825 −0.862 ~ 0.789 0.603 0.438 SB ~ TB 0.898 0.000 1.184 1.143 ~ 1.227 −0.747 0.803 ~ 1.000 87.296 0.000 LB ~ TB 0.948 0.000 1.011 0.986 ~ 1.038 −0.259 −0.282 ~ 0.236 0.767 0.382 AGB ~ TB 0.994 0.000 1.018 1.009 ~ 1.027 −0.092 −0.100 ~ 0.084 15.722 0.000 注:P−1.0表示斜率与理论值1.0的差异显著性。H、D、RB、SB、LB、AGB、TB分别为苗高、地径、根生物量、茎生物量、叶生物量、地上生物量、总生物量(个体大小)。下同。
Notes: P−1.0 indicates significant difference between the estimated model slope and theoretical value 1.0; H, D, RB, SB, LB, AGB, TB are seedling height, ground diameter, root biomass, stem biomass, leaf biomass, aboveground biomass and total biomass (individual size), respectively. The same below.表 2 不同家系云南松苗木形态指标及形态指标与个体大小间的异速生长分析
Table 2. Allometric growth analysis of morphological index and the relationship between morphological index and individual size of P. yunnanensis seedlings
性状
Trait家系
Family决定系数
Determination coefficientP 斜率
Slope95%置信区间
95% confidence intervalF值
F valueP−1.0 类型
TypeH ~ D 2008 0.002 0.825 0.728b 0.509 ~ 1.042 3.227 0.082 I 2017 0.403 0.000 0.919b 0.695 ~ 1.215 0.372 0.546 I 2020 0.465 0.000 0.770b 0.596 ~ 0.995 4.300 0.046 A 2024 0.193 0.028 1.168ab 0.800 ~ 1.705 0.690 0.415 I 2033 0.138 0.062 1.006ab 0.686 ~ 1.474 0.001 0.975 I 2034 0.266 0.006 0.941ab 0.666 ~ 1.330 0.125 0.726 I 2036 0.474 0.000 0.678b 0.530 ~ 0.867 10.595 0.003 A 2048 0.359 0.000 1.483a 1.093 ~ 2.013 7.142 0.012 A 2050 0.366 0.000 0.990ab 0.753 ~ 1.303 0.005 0.944 I 2206 0.215 0.013 1.043ab 0.735 ~ 1.480 0.058 0.812 I D ~ TB 2008 0.406 0.000 0.832a 0.630 ~ 1.100 1.785 0.191 I 2017 0.577 0.000 0.354b 0.280 ~ 0.448 111.926 0.000 A 2020 0.753 0.000 0.506b 0.425 ~ 0.603 72.119 0.000 A 2024 0.555 0.000 0.442b 0.333 ~ 0.587 42.892 0.000 A 2033 0.754 0.000 0.473b 0.385 ~ 0.582 65.659 0.000 A 2034 0.884 0.000 0.406b 0.353 ~ 0.466 229.341 0.000 A 2036 0.826 0.000 0.485b 0.420 ~ 0.559 125.305 0.000 A 2048 0.712 0.000 0.432b 0.351 ~ 0.531 86.261 0.000 A 2050 0.862 0.000 0.410b 0.360 ~ 0.466 253.696 0.000 A 2206 0.588 0.000 0.514b 0.398 ~ 0.663 32.407 0.000 A 注:不同小写字母表示家系间差异显著 (P < 0.05)。A表示异速生长关系,I表示等速生长关系。下同。Notes: Different lowercase letters indicate significant differences among varied families (P < 0.05). A means allometric growth relationship, I indicates isometric growth relationship. The same below. 表 3 不同家系云南松苗木各器官生物量间的异速生长分析
Table 3. Analysis of allometric growth of each organ of P. yunnanensis seedlings among different families
性状
Trait家系
Family决定系数
Determination coefficientP 斜率
Slope95%置信区间
95% confidence intervalF值
F valueP−1.0 类型
TypeLB ~ RB 2008 0.729 0.000 1.017b 0.842 ~ 1.230 0.034 0.856 I 2017 0.814 0.000 1.033b 0.883 ~ 1.210 0.178 0.676 I 2020 0.801 0.000 1.168b 0.998 ~ 1.366 4.023 0.053 I 2024 0.538 0.000 1.658a 1.242 ~ 2.215 13.856 0.001 A 2033 0.808 0.000 1.298ab 1.080 ~ 1.559 8.690 0.007 A 2034 0.850 0.000 1.090b 0.930 ~ 1.277 1.237 0.277 I 2036 0.666 0.000 1.109b 0.911 ~ 1.351 1.128 0.295 I 2048 0.900 0.000 0.857b 0.759 ~ 0.969 6.670 0.015 A 2050 0.854 0.000 0.894b 0.783 ~ 1.021 2.946 0.095 I 2206 0.639 0.000 1.027b 0.808 ~ 1.305 0.050 0.826 I LB ~ SB 2008 0.756 0.000 0.902b 0.753 ~ 1.079 1.369 0.251 I 2017 0.725 0.000 0.774b 0.639 ~ 0.937 7.557 0.010 A 2020 0.849 0.000 1.010ab 0.880 ~ 1.158 0.020 0.889 I 2024 0.643 0.000 1.238a 0.959 ~ 1.600 2.973 0.098 I 2033 0.688 0.000 1.092ab 0.865 ~ 1.379 0.600 0.446 I 2034 0.872 0.000 0.995ab 0.859 ~ 1.152 0.006 0.941 I 2036 0.583 0.000 0.794b 0.637 ~ 0.989 4.554 0.040 A 2048 0.879 0.000 0.656b 0.574 ~ 0.750 43.564 0.000 A 2050 0.892 0.000 0.733b 0.654 ~ 0.822 31.413 0.000 A 2206 0.649 0.000 1.061ab 0.837 ~ 1.344 0.256 0.617 I SB ~ RB 2008 0.652 0.000 1.128a 0.910 ~ 1.398 1.303 0.262 I 2017 0.714 0.000 1.335a 1.099 ~ 1.622 9.301 0.005 A 2020 0.833 0.000 1.157a 1.001 ~ 1.336 4.207 0.048 A 2024 0.500 0.000 1.340a 0.992 ~ 1.810 4.051 0.056 I 2033 0.699 0.000 1.188a 0.945 ~ 1.494 2.386 0.136 I 2034 0.786 0.000 1.096a 0.907 ~ 1.324 0.977 0.333 I 2036 0.654 0.000 1.397a 1.143 ~ 1.707 11.746 0.002 A 2048 0.862 0.000 1.307a 1.132 ~ 1.508 14.864 0.001 A 2050 0.807 0.000 1.220a 1.048 ~ 1.421 7.064 0.012 A 2206 0.728 0.000 0.968a 0.786 ~ 1.193 0.101 0.753 I AGB ~ RB 2008 0.746 0.000 1.013a 0.843 ~ 1.217 0.020 0.889 I 2017 0.851 0.000 1.049a 0.911 ~ 1.207 0.474 0.496 I 2020 0.833 0.000 1.142a 0.989 ~ 1.320 3.528 0.069 I 2024 0.589 0.000 1.416a 1.077 ~ 1.860 7.041 0.014 A 2033 0.837 0.000 1.199a 1.012 ~ 1.421 4.902 0.037 A 2034 0.862 0.000 1.070a 0.919 ~ 1.241 0.829 0.371 I 2036 0.769 0.000 1.102a 0.935 ~ 1.299 1.423 0.241 I 2048 0.907 0.000 0.974a 0.866 ~ 1.096 0.203 0.656 I 2050 0.862 0.000 0.977a 0.858 ~ 1.111 0.139 0.712 I 2206 0.748 0.000 0.947a 0.774 ~ 1.157 0.311 0.582 I 表 4 不同家系云南松苗木茎 ~ 根、地上 ~ 根生物量沿共同主轴的位移
Table 4. Shift of biomass pair SB − RB and AGB − RB of seedlings along common axis of P. yunnanensis seedlings among different families
家系
FamilySB ~ RB AGB ~ RB 截距
Intercpt95%置信区间
95% confidence interval漂移
Shift截距
Intercept95%置信区间
95% confidence interval漂移
Shift2008 0.172b 0.095 ~ 0.238 −0.007b 0.675b 0.619 ~ 0.726 0.520b 2017 0.191b 0.059 ~ 0.283 0.574ab 0.718b 0.657 ~ 0.781 1.052ab 2020 0.313ab 0.193 ~ 0.383 −0.845b 0.902a 0.851 ~ 1.039 −0.107b 2024 0.275ab 0.161 ~ 0.390 0.268b 0.761b 0.655 ~ 0.870 0.755b 2033 0.180b 0.103 ~ 0.256 0.161b 0.722b 0.667 ~ 0.779 0.706b 2034 0.337a 0.254 ~ 0.433 0.472ab 0.771b 0.701 ~ 0.840 0.889ab 2036 0.266b 0.182 ~ 0.327 0.408b 0.765b 0.716 ~ 0.808 0.888b 2048 0.190b 0.125 ~ 0.248 0.277b 0.735b 0.701 ~ 0.775 0.811b 2050 0.065b −0.021 ~ 0.144 0.759a 0.616b 0.582 ~ 0.694 1.221a 2206 0.187b 0.083 ~ 0.226 −0.146b 0.685b 0.603 ~ 0.737 0.394b 表 5 不同家系云南松苗木器官生物量与个体大小间的异速生长分析
Table 5. Analysis of allometric growth between each organ and individual size of P. yunnanensis seedlings among different families
性状
Trait家系
Family决定系数
Determination coefficientP 斜率
Slope95%置信区间
95% confidence intervalF值
F valueP−1.0 类型
TypeRB 2008 0.823 0.000 1.015a 0.870 ~ 1.183 0.038 0.848 I 2017 0.892 0.000 0.974a 0.863 ~ 1.098 0.201 0.657 I 2020 0.868 0.000 0.901a 0.793 ~ 1.025 2.713 0.109 I 2024 0.703 0.000 0.785a 0.622 ~ 0.991 4.626 0.042 A 2033 0.877 0.000 0.876a 0.756 ~ 1.015 3.428 0.076 I 2034 0.895 0.000 0.953a 0.834 ~ 1.088 0.557 0.463 I 2036 0.818 0.000 0.933a 0.806 ~ 1.079 0.936 0.340 I 2048 0.935 0.000 1.029a 0.932 ~ 1.136 0.355 0.556 I 2050 0.910 0.000 1.034a 0.928 ~ 1.144 0.345 0.561 I 2206 0.819 0.000 1.069a 0.901 ~ 1.267 0.632 0.434 I SB 2008 0.874 0.000 1.145b 1.006 ~ 1.303 4.539 0.041 A 2017 0.851 0.000 1.300ab 1.129 ~ 1.497 14.690 0.001 A 2020 0.918 0.000 1.042b 0.942 ~ 1.153 0.692 0.412 I 2024 0.812 0.000 1.052b 0.873 ~ 1.267 0.316 0.580 I 2033 0.831 0.000 1.041b 0.876 ~ 1.237 0.229 0.636 I 2034 0.929 0.000 1.044b 0.936 ~ 1.165 0.652 0.427 I 2036 0.898 0.000 1.303ab 1.168 ~ 1.453 24.707 0.000 A 2048 0.947 0.000 1.345a 1.230 ~ 1.470 47.752 0.000 A 2050 0.941 0.000 1.258ab 1.155 ~ 1.369 30.720 0.000 A 2206 0.856 0.000 1.034b 0.888 ~ 1.205 0.206 0.654 I LB 2008 0.963 0.000 1.032b 0.962 ~ 1.107 0.851 0.363 I 2017 0.961 0.000 1.006b 0.936 ~ 1.081 0.031 0.861 I 2020 0.985 0.000 1.052b 1.007 ~ 1.099 5.614 0.024 A 2024 0.932 0.000 1.302a 1.164 ~ 1.457 24.195 0.000 A 2033 0.965 0.000 1.137b 1.051 ~ 1.230 11.446 0.002 A 2034 0.984 0.000 1.039b 0.987 ~ 1.093 2.294 0.142 I 2036 0.837 0.000 1.034b 0.901 ~ 1.188 0.246 0.623 I 2048 0.981 0.000 0.882b 0.837 ~ 0.930 23.824 0.000 A 2050 0.983 0.000 0.921b 0.880 ~ 0.965 13.080 0.001 A 2206 0.924 0.000 1.097b 0.982 ~ 1.226 2.942 0.098 I AGB 2008 0.991 0.000 1.028b 0.992 ~ 1.064 2.538 0.121 I 2017 0.996 0.000 1.021b 0.998 ~ 1.045 3.515 0.070 I 2020 0.997 0.000 1.030b 1.011 ~ 1.048 10.826 0.002 A 2024 0.984 0.000 1.111a 1.052 ~ 1.174 16.122 0.001 A 2033 0.996 0.000 1.051ab 1.025 ~ 1.078 16.631 0.000 A 2034 0.997 0.000 1.019b 0.998 ~ 1.041 3.466 0.074 I 2036 0.996 0.000 1.028b 1.006 ~ 1.050 6.757 0.014 A 2048 0.997 0.000 1.003b 0.983 ~ 1.023 0.084 0.774 I 2050 0.994 0.000 1.007b 0.980 ~ 1.034 0.249 0.621 I 2206 0.992 0.000 1.011b 0.976 ~ 1.048 0.424 0.521 I -
[1] Dovrat G, Meron E, Shachak M, et al. Plant size is related to biomass partitioning and stress resistance in water-limited annual plant communities[J]. Journal of Arid Environments, 2019, 165: 1−9. doi: 10.1016/j.jaridenv.2019.04.006 [2] Mccarthy M C, Enquist B J. Consistency between an allometric approach and optimal partitioning theory in global patterns of plant biomass allocation[J]. Functional Ecology, 2007, 21(4): 713−720. doi: 10.1111/j.1365-2435.2007.01276.x [3] Mokany K, Raison R J, Prokushkin A S. Critical analysis of root: shoot ratios in terrestrial biomes[J]. Global Change Biology, 2010, 12(1): 84−96. [4] Lacointe A. Carbon allocation among tree organs: a review of basic processes and representation infunctional-structural tree models[J]. Annals of Forest Science, 2000, 57(5): 521−533. doi: 10.1051/forest:2000139 [5] Jackson R B, Schenk H J, Jobbágy E G, et al. Belowground consequences of vegetation change and their treatment in models[J]. Ecological Applications, 2000, 10(2): 470−483. doi: 10.1890/1051-0761(2000)010[0470:BCOVCA]2.0.CO;2 [6] Baker T R, Malhi Y, Phillips O L, et al. The above-ground coarse wood productivity of 104 Neotropical forest plots[J]. Global Change Biology, 2004, 10(5): 563−591. doi: 10.1111/j.1529-8817.2003.00778.x [7] Weiner J. Allocation, plasticity and allometry in plants[J]. Perspectives in Plant Ecology Evolution & Systematics, 2004, 6(4): 207−215. [8] 韩文轩, 方精云. 幂指数异速生长机制模型综述[J]. 植物生态学报, 2008, 32(4):951−960. doi: 10.3773/j.issn.1005-264x.2008.04.025Han W X, Fang J Y. Review on the mechanism models of allometric scaling laws: 3/4 vs. 2/3 power[J]. Chinese Journal of Plant Ecology, 2008, 32(4): 951−960. doi: 10.3773/j.issn.1005-264x.2008.04.025 [9] Enquist B J, Allen A P, Brown J H, et al. Biological scaling: does the exception prove the rule?[J]. Nature, 2007, 445: E9−E10. doi: 10.1038/nature05548 [10] Cheng D L, Li T, Zhong Q L, et al. Scaling relationship between tree respiration rates and biomass[J]. Biology Letters, 2010, 6(5): 715−717. doi: 10.1098/rsbl.2010.0070 [11] Chen X W, Li B L. Testing the allometric scaling relationships with seedlings of two tree species[J]. Acta Oecologica, 2003, 24(3): 125−129. doi: 10.1016/S1146-609X(03)00062-6 [12] 金振洲, 彭鉴. 云南松[M]. 昆明: 云南科技出版社. 2004.Jin Z Z, Peng J. Pinus yunnanensis[M]. Kunming: Yunnan Science and Technology Press, 2004. [13] 刘玉芳, 陈双林, 郭子武, 等. 淹水对河竹鞭根系统生物量分配及异速生长模式的影响[J]. 林业科学研究, 2015, 28(4):502−507. doi: 10.3969/j.issn.1001-1498.2015.04.008Liu Y F, Chen S L, Gou Z W, et al. Effect of waterlogging on biomass allocation and allometric pattern of rhizome and root system of phyllostachys rivalis[J]. Forest Research, 2015, 28(4): 502−507. doi: 10.3969/j.issn.1001-1498.2015.04.008 [14] 黄迎新, 宋彦涛, 范高华, 等. 灰绿藜形态性状与繁殖性状的异速关系[J]. 草地学报, 2015, 23(5):905−913. doi: 10.11733/j.issn.1007-0435.2015.05.002Huang Y X, Song Y T, Fan G H, et al. Allometric relationships between morphological and reproductive traits of Chenopodium glaucum[J]. Acta Agrestia Sinica, 2015, 23(5): 905−913. doi: 10.11733/j.issn.1007-0435.2015.05.002 [15] 范高华, 崔桢, 张金伟, 等. 密度对尖头叶藜生物量分配格局及异速生长的影响[J]. 生态学报, 2017, 37(15):5080−5090.Fan G H, Cui Z, Zhang J W, et al. Effects of population density on the biomass allocationand allometric growth of Chenopodium acuminatum[J]. Acta Ecologica Sinica, 2017, 37(15): 5080−5090. [16] 林华, 陈双林, 郭子武, 等. 苦竹叶片性状及其异速生长关系的密度效应[J]. 林业科学研究, 2017, 30(4):617−623.Lin H, Chen S L, Gou Z W, et al. Allometric relationship among leaf traits in different stand density of Pleioblastus amarus[J]. Forest Research, 2017, 30(4): 617−623. [17] 江洪, 林鸿荣. 云南松异速生长现象的初步研究[J]. 林业科学, 1984, 20(1):80−83.Jiang H, Lin H R. A preliminary study on allometric growth of Pinus yunnanensis[J]. Scientia Silvae Sinicae, 1984, 20(1): 80−83. [18] 李鑫, 李昆, 段安安, 等. 不同地理种源云南松幼苗生物量分配及其异速生长[J]. 北京林业大学学报, 2019, 41(4):41−50.Li X, Li K, Duan A A, et al. Biomass allocation and allometry of Pinus yunnanensis seedlings from different provenances[J]. Journal of Beijing Forestry University, 2019, 41(4): 41−50. [19] 侯勤正, 叶广继, 马小兵, 等. 青藏高原不同生境下湿生扁蕾(Gentianopsis paludosa)个体大小依赖的繁殖分配[J]. 生态学报, 2016, 36(9):2686−2694.Hou Q Z, Ye G J, Ma X B, et al. Size-dependent reproductive allocation of Gentianopsis paludosa in different habitats of the Qinghai-Tibetan Plateau[J]. Acta Ecologica Sinica, 2016, 36(9): 2686−2694. [20] 李利平, 安尼瓦尔·买买提, 努尔巴依·阿布都沙力克, 等. 新疆山地森林乔木和草地草本植物个体大小分布特征[J]. 生物多样性, 2017, 25(11):1202−1212. doi: 10.17520/biods.2016336Li L P, Anwar M, Nurbay A, et al. Plant body size patterns of mountainous trees and grassland herbs in Xinjiang region, China[J]. Biodiversity Science, 2017, 25(11): 1202−1212. doi: 10.17520/biods.2016336 [21] 徐国瑞, 马克明. 土壤动物粒径谱研究进展[J]. 生态学报, 2017, 37(8):2506−2519.Xu G R, Ma K M. Advances in the body size spectra study of soil fauna[J]. Acta Ecologica Sinica, 2017, 37(8): 2506−2519. [22] 邱东, 周桂玲, 刘同业. 3种棒果芥属植物生物量分配及异速生长分析[J]. 干旱地区农业研究, 2014, 32(6):215−220. doi: 10.7606/j.issn.1000-7601.2014.06.036Qiu D, Zhou G L, Liu T Y. Analysis of biomass allocation and allometric growth of three Sterigmostemum species in Junggar Basin[J]. Agricultural Research in the Arid Areas, 2014, 32(6): 215−220. doi: 10.7606/j.issn.1000-7601.2014.06.036 [23] Niklas K J. Size-dependent variations in plant growth ratesand the“3/4-power rule”[J]. American Journal of Botany, 1994, 81(2): 134−144. doi: 10.1002/j.1537-2197.1994.tb15422.x [24] 吕学辉, 魏巍, 陈诗, 等. 云南松优良家系超级苗选择研究[J]. 云南大学学报(自然科学版), 2012, 34(1):113−119.Lü X H, Wei W, Chen S, et al. Study on super seedling selection of superior families of Pinus yunnanensis Franch[J]. Journal of Yunnan University (Natural Sciences), 2012, 34(1): 113−119. [25] Niklas K J, Enquist B J. Canonical rules for plant organ bio-mass partitioning and annual allocation[J]. American Journal Botany, 2002, 89(5): 812−819. doi: 10.3732/ajb.89.5.812 [26] Poorter H, Niklas K J, Reich P B, et al. Biomass allocation to leaves, stems and roots: meta-analyses of interspecific variationand environment control[J]. New Phytologist, 2012, 193(1): 30−50. doi: 10.1111/j.1469-8137.2011.03952.x [27] Bloom A J, Chapin F S, Mooney I A. Resource limitation inplants-an economic analogy[J]. Annual Review of Ecology and Systematics, 1985, 16: 363−392. doi: 10.1146/annurev.es.16.110185.002051 [28] 何怀江, 叶尔江·拜克吐尔汉, 张春雨, 等. 吉林蛟河针阔混交林 12 个树种生物量分配规律[J]. 北京林业大学学报, 2016, 38(4):53−62.He H J, Yeerjiang B, Zhang C Y, et al. Biomass allocation of twelve tree species in coniferous and broad-leaved mixed forest in Jiaohe, Jilin Province, northeast China[J]. Journal of Beijing Forestry University, 2016, 38(4): 53−62. [29] 王晨, 江泽慧, 郭起荣, 等. 毛竹地上器官的生物量分配及其随个体大小变化的规律[J]. 生态学杂志, 2014, 33(8):2019−2024.Wang C, Jiang Z H, Gou Q R, et al. Biomass allocation of aboveground components of Phyllostachys edulis and its variation with body size[J]. Chinese Journal of Ecology, 2014, 33(8): 2019−2024. [30] Weiner J. Allocation, plasticity and allometry in plants[J]. Perspectives in Plant Ecology, Evolution and Systematics, 2004, 6(4): 207−215. doi: 10.1078/1433-8319-00083 [31] 朱仕明, 肖玲玲, 薛立, 等. 密度对乐昌含笑幼苗的生长和生物量的影响[J]. 中南林业科技大学学报, 2015, 35(8):77−80.Zhu S M, Xiao L L, Xue L, et al. Effects of planting density on growth and biomass of Michelia chapensis seedlings[J]. Journal of Central South University of Forestry & Technology, 2015, 35(8): 77−80. [32] 高平珍, 陈双林, 郭子武, 等. 毛竹林下苦参和决明幼苗生长和生物量分配的立竹密度效应[J]. 生态学杂志, 2018, 37(3):861−868.Gao P Z, Chen S L, Guo Z W, et al. Growth and biomass allocation of Sophotora flavescens and Catsia tora seedlings beneath Moso bamboo forest in response to Moso bamboo density[J]. Chinese Journal of Ecology, 2018, 37(3): 861−868. [33] 冯银平, 沈海花, 罗永开, 等. 种植密度对苜蓿生长及生物量的影响[J]. 植物生态学报, 2020, 44(3):248−256. doi: 10.17521/cjpe.2019.0157Feng Y P, Shen H H, Luo Y K, et al. Effects of planting density on growth and biomass of Medicago sativa[J]. Chinese Journal of Plant Ecology, 2020, 44(3): 248−256. doi: 10.17521/cjpe.2019.0157 [34] West G B, Brown J H, Enquist B J. A general model for the origin of allometric scaling laws in biology[J]. Science, 1997, 276: 122−126. doi: 10.1126/science.276.5309.122 [35] Niklas K J. Plant allometry: is there a grand unifying theory?[J]. Biological Reviews, 2004, 79(4): 871−889. doi: 10.1017/S1464793104006499 [36] Wang X P, Fang J Y, Tang Z Y, et al. Climatic control of primary forest structure and DBH-height allometry in Northeast China[J]. Forest Ecology and Management, 2006, 234(1/3): 264−274. [37] 胡波, 钟全林, 程栋梁, 等. 刨花楠树高与胸径异速生长的关系[J]. 沈阳大学学报(自然科学版), 2012, 24(3):9−14.Hu B, Zhong Q L, Cheng D L, et al. Relationship between machilus’ height and allometric growth of diameter at breast[J]. Journal of Shenyang University(Natural Science), 2012, 24(3): 9−14. [38] 赵广, 韩学琴, 王雪梅, 等. 修枝对辣木株高-地径异速生长关系的影响[J]. 生态学杂志, 2018, 37(2):391−398.Zhao G, Han X Q, Wang X M, et al. Effects of pruning on allometric relationship between height and basal diameter of Moringa oleifera[J]. Chinese Journal of Ecology, 2018, 37(2): 391−398. [39] Sun S, Jin D, Shi P. The leaf size-twig size spectrum of temperate woody species along an altitudinal gradient: an invariant allometric scaling relationship[J]. Annals of Botany, 2006, 97(1): 97−107. doi: 10.1093/aob/mcj004 [40] Enquist B J. Global allocation rules for patterns of biomass partitioning in seed plants[J]. Science, 2002, 295: 1517−1520. doi: 10.1126/science.1066360 [41] Huang Y X, Lechowicz M J, Zhou D W, et al. Evaluating general allometric models: interspecific and intraspecific data tell different stories due to interspecific variation in stem tissue density and leaf size[J]. Oecologia, 2016, 180: 671−684. doi: 10.1007/s00442-015-3497-x [42] 刘左军, 杜国祯, 陈家宽. 不同生境下黄胄橐(Ligularia virgaureain)个体大小依赖的繁殖分配[J]. 植物生态学学报, 2002, 26(1):44−50.Liu Z J, Du G Z, Chen J K. Individual size-dependent reproductive distribution of Ligularia virgaureain in different habitats[J]. Chinese Journal of Plant Ecology, 2002, 26(1): 44−50. -