高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

黄土高原高寒区不同人工林土壤养分及生态化学计量特征

刘若莎 王冬梅

刘若莎, 王冬梅. 黄土高原高寒区不同人工林土壤养分及生态化学计量特征[J]. 北京林业大学学报, 2021, 43(1): 88-95. doi: 10.12171/j.1000-1522.20200149
引用本文: 刘若莎, 王冬梅. 黄土高原高寒区不同人工林土壤养分及生态化学计量特征[J]. 北京林业大学学报, 2021, 43(1): 88-95. doi: 10.12171/j.1000-1522.20200149
Liu Ruosha, Wang Dongmei. Soil nutrients and ecostoichiometric characteristics of different plantations in the alpine region of the Loess Plateau[J]. Journal of Beijing Forestry University, 2021, 43(1): 88-95. doi: 10.12171/j.1000-1522.20200149
Citation: Liu Ruosha, Wang Dongmei. Soil nutrients and ecostoichiometric characteristics of different plantations in the alpine region of the Loess Plateau[J]. Journal of Beijing Forestry University, 2021, 43(1): 88-95. doi: 10.12171/j.1000-1522.20200149

黄土高原高寒区不同人工林土壤养分及生态化学计量特征

doi: 10.12171/j.1000-1522.20200149
基金项目: 国家重点研发计划重点专项课题(2017YFC0504604)
详细信息
    作者简介:

    刘若莎。主要研究方向:林业生态工程。Email:2267664943@qq.com 地址:100083 北京市海淀区清华东路35号北京林业大学水土保持学院

    责任作者:

    王冬梅,教授,博士生导师。主要研究方向:水土保持、林业生态工程。Email:dmwang@126.com 地址:同上

  • 中图分类号: S718.55+1.2

Soil nutrients and ecostoichiometric characteristics of different plantations in the alpine region of the Loess Plateau

  • 摘要:   目的  通过分析黄土高寒区不同人工林和不同土层的土壤养分和生态化学计量变化,旨在阐明不同人工林土壤养分和化学计量特征,揭示土壤养分和化学计量随土层深度的变化规律。  方法  以青海黄土高寒区退耕的人工林地(包括青海云杉、华北落叶松、青杨、白桦)为研究对象,以自然退耕的草地和农田为对照,测定了6种植被类型在0 ~ 20 cm、20 ~ 40 cm和40 ~ 60 cm土壤层的C、N、P含量及生态化学计量比。  结果  (1)黄土高寒区不同人工林的土壤C、N含量差异显著(P < 0.05),P含量部分差异显著;人工林地各土层的C、N含量显著高于草地和农田,且青杨林在0 ~ 20 cm表土层的有机碳、全氮含量最高,分别为25.82、2.17 g/kg。(2)黄土高寒区不同人工林的土壤生态化学计量有显著差异(P < 0.05);0 ~ 60 cm土层中人工林地的C∶N显著低于农田,C∶P和N∶P高于草地和农田(P < 0.05);青杨在0 ~ 20 cm表土层的生态化学计量比其他人工林类型高,C∶N、C∶P和N∶P分别为11.99、43.27和3.64。(3)相关性分析表明,研究区土壤的有机碳与全氮相关性最紧密(P < 0.01),全氮与土壤C∶N和N∶P相关性最紧密(P < 0.01),有机碳与土壤C∶P相关性最紧密(P < 0.01)。说明研究区土壤C、N对不同人工林的响应具有一致性,土壤的C∶N和N∶P主要受全氮的影响,C∶P主要受有机碳的影响。(4)在0 ~ 60 cm土层中,黄土高寒区不同植被类型的土壤C、N、P含量均随土壤深度的增加而降低。研究区土壤的生态化学计量除青杨随土壤深度的增加而下降外,其他退耕植被无显著变化趋势。说明人工林对表层土壤养分的改良效果最好。  结论  不同人工林的土壤养分及生态化学计量有显著差异,且青杨林表层土壤的养分含量和化学计量最高;土壤养分随土壤深度的增加而降低,土壤生态化学计量随土壤深度变化不显著。

     

  • 图  1  研究区各植被类型的标准地点位

    1、2、3代表小麦田;4、5、6代表草地;7、8、9代表青杨;10、11、12代表白桦;13、14、15代表青海云杉;16、17、18代表华北落叶松。1, 2 and 3 represent wheat field; 4, 5 and 6 represent grassland; 7, 8 and 9 represent Populus cathayana; 10, 11 and 12 represent Betula platyphylla; 13, 14 and 15 represent Picea crassifolia; 16, 17 and 18 represent Larix principis-rupprechtii.

    Figure  1.  Location of sample plots for each vegetation type in the study area

    图  2  不同植被类型的各层土壤C、N、P含量

    数据为平均值 ± 标准差。不同大写字母表示不同土壤深度间差异显著(P < 0.05),不同小写字母表示不同植被类型间差异显著(P < 0.05)。下同。Data mean mean ± SD. Different capital letters indicate significant differences in varied soil depths (P < 0.05). Different lowercase letters indicate significant differences among varied vegetation types (P < 0.05). Same as below.

    Figure  2.  Contents of C, N and P in each soil layer under different vegetation types

    图  3  不同植被类型的土壤生态化学计量

    Figure  3.  Soil ecostoichiometry of different vegetation types

    表  1  黄土高寒区各采样点基本信息

    Table  1.   Basic information of sampling points in the alpine region of the Loess Plateau

    植被类型
    Vegetation type
    坡向
    Slope aspect
    采样点编号
    Sampling
    point No.
    经度
    Longitude
    纬度
    Latitude
    坡度
    Gradient/(°)
    海拔
    Altitude/m
    平均胸径
    Mean
    DBH/cm
    平均树高
    Mean plant height/m
    枯落物层厚度
    Litter thickness/cm
    小麦田
    Wheat field
    半阴坡
    Semi-shady slope
    1 101°41′10″E 36°55′04″N 8 2 485
    2 101°41′16″E 36°55′04″N 10 2 478
    3 101°40′59″E 36°54′52″N 12 2 500
    草地
    Grassland
    阴坡
    Shady slope
    4 101°40′24″E 36°55′40″N 9 2 511 0.4
    5 101°40′20″E 36°54′57″N 13 2 580 1.6
    6 101°40′26″E 36°54′56″N 15 2 588 0.5
    青杨
    Populus cathayana
    阴坡
    Shady slope
    7 101°40′19″E 36°55′16″N 18 2 589 9.9 7.2 2.5
    8 101°40′35″E 36°55′14″N 17 2 500 7.6 5.8 5.5
    9 101°40′36″E 36°55′34″N 19 2 462 8.1 6.8 4.5
    白桦
    Betula platyphylla
    阴坡
    Shady slope
    10 101°40′30″E 36°54′55″N 8 2 596 4.2 2.4 0.5
    11 101°40′31″E 36°55′01″N 10 2 517 3.9 1.7 0.7
    12 101°40′33″E 36°55′02″N 9 2 528 3.9 1.9 0.5
    青海云杉
    Picea crassifolia
    阴坡
    Shady slope
    13 101°40′26″E 36°55′9″N 10 2 509 5.4 3.4 0.8
    14 101°40′25″E 36°55′5″N 15 2 519 5.2 2.7 0.8
    15 101°40′30″E 36°55′03″N 18 2 550 4.5 2.1 0.8
    华北落叶松
    Larix principis-rupprechtii
    阴坡
    Shady slope
    16 101°40′30″E 36°55′11″N 16 2 525 7.9 6.9 3.8
    17 101°40′33″E 36°55′15″N 18 2 501 7.1 6.5 2.5
    18 101°40′39″E 36°55′12″N 17 2 530 7.5 6.8 3.0
    下载: 导出CSV

    表  2  土壤(0 ~ 60 cm)C、N、P含量及其生态化学计量比的相关性分析

    Table  2.   Correlation analysis of soil (0−60 cm) C, N, P content and its ecostoichiometry

    项目 Item有机碳 Organic carbon全氮 Total nitrogen全磷 Total phosphorusC∶NC∶PN∶P
    有机碳 Organic carbon 1
    全氮 Total nitrogen 0.828** 1
    全磷 Total phosphorus 0.369** 0.428** 1
    C∶N −0.062 −0.568** −0.196 1
    C∶P 0.737** 0.512** −0.319* 0.083 1
    N∶P 0.647** 0.779** −0.214 −0.482** 0.802** 1
    注:*表示显著相关(P < 0.05);**表示极显著相关(P < 0.01)。Note: * means significant correlation (P < 0.05); ** means extremely significant correlation (P < 0.01).
    下载: 导出CSV
  • [1] 冼伟光, 周丽, 唐洪辉, 等. 不同林龄针阔混交林土壤生态化学计量特征[J]. 广东林业科技, 2015, 31(1):1−6.

    Xian W G, Zhou L, Tang H H, et al. Soil ecological stoichiometry of conifer-broadleaved plantations of different age in southern subtropical region[J]. Guangdong Forestry Science and Technology, 2015, 31(1): 1−6.
    [2] 张光德, 赵传燕, 戎战磊, 等. 祁连山中部不同植被类型土壤生态化学计量特征研究[J]. 兰州大学学报(自然科学版), 2019, 55(4):533−540.

    Zhang G D, Zhao C Y, Rong Z L, et al. Ecological stoichiometry of soils with different vegetation types in the middle part of the Qilian Mountains[J]. Journal of Lanzhou University (Natural Sciences), 2019, 55(4): 533−540.
    [3] 王璐, 喻阳华, 邢容容, 等. 喀斯特高原山地区主要人工林土壤生态化学计量特征[J]. 南方农业学报, 2017, 48(8):1388−1394. doi: 10.3969/j.issn.2095-1191.2017.08.09.

    Wang L, Yu Y H, Xing R R, et al. Ecological stoichiometry characteristics of soils from main plantations in karst plateau mountainous area[J]. Journal of Southern Agriculture, 2017, 48(8): 1388−1394. doi: 10.3969/j.issn.2095-1191.2017.08.09.
    [4] Zhao F, Kang D, Han X, et al. Soil stoichiometry and carbon storage in long-term afforestation soil affected by understory vegetation diversity[J]. Ecological Engineering, 2015, 74: 415−422. doi: 10.1016/j.ecoleng.2014.11.010.
    [5] 庞圣江, 张培, 贾宏炎, 等. 桂西北不同森林类型土壤生态化学计量特征[J]. 中国农学通报, 2015, 31(1):17−23. doi: 10.11924/j.issn.1000-6850.2014-2200.

    Pang S J, Zhang P, Jia H Y, et al. Research on soil ecological stoichiometry under different forest types in Northwest Guangxi[J]. Chinese Agricultural Science Bulletin, 2015, 31(1): 17−23. doi: 10.11924/j.issn.1000-6850.2014-2200.
    [6] Tian H, Chen G, Zhang C, et al. Pattern and variation of C:N:P ratios in China’s soils: a synthesis of observational data[J]. Biogeochemistry, 2009, 98(1−3): 139−151.
    [7] 吴建平. 黄土丘陵区典型退耕植被土壤化学计量特征[D]. 杨凌: 西北农林科技大学, 2016.

    Wu J P. Soil stoichiometry under conversion of grain to green program in loess hilly region[D]. Yangling: Northwest A&F University, 2016.
    [8] 赵佰礼, 穆兴民, 高鹏, 等. 黄土丘陵沟壑区不同退耕草地土壤水分研究[J]. 水土保持研究, 2019, 26(4):111−115.

    Zhao B L, Mu X M, Gao P, et al. Study on soil moisture in two returning farm-land patterns in gully and hilly region of the Loess Plateau[J]. Research of Soil and Water Conservation, 2019, 26(4): 111−115.
    [9] 刘晶, 徐少君, 刘丽芬. 不同退耕方式对豫西黄土丘陵区土壤颗粒有机碳含量的影响[J]. 河南农业科学, 2015, 44(5):72−76.

    Liu J, Xu S J, Liu L F. Effect of different reafforestation patterns on soil particulate organic carbon content in loess hilly region of western Henan[J]. Journal of Henan Agricultural Sciences, 2015, 44(5): 72−76.
    [10] 陈青松, 李婷, 张世熔, 等. 城乡交错带土壤氮素空间分布及其影响因素[J]. 生态学报, 2016, 36(8):2133−2141.

    Chen Q S, Li T, Zhang S R, et al. Spatial distribution of soil nitrogen in an urban-rural fringe and its influencing factors[J]. Acta Ecologica Sinica, 2016, 36(8): 2133−2141.
    [11] 邢丹, 肖玖军, 王晓红, 等. 石漠化区退耕植桑地土壤养分与生态化学计量特征[J]. 西南农业学报, 2018, 31(7):1436−1443.

    Xing D, Xiao J J, Wang X H, et al. Nutrients and ecological stoichiometry characteristics of soil from returning farmland to mulberry field in stony desertification area[J]. Southwest China Journal of Agricultural Sciences, 2018, 31(7): 1436−1443.
    [12] 陈鹏, 郭建英, 董智, 等. 达拉特旗砒砂岩裸露区退耕还林土壤生态化学计量分布[J]. 中国水土保持科学, 2020, 18(1):25−34.

    Chen P, Guo J Y, Dong Z, et al. Eco-stoichiometric distribution of soil under grain for Green Project in Pisha sandstone exposed area of Dalad banner[J]. Science of Soil and Water Conservation, 2020, 18(1): 25−34.
    [13] 梁爱华, 韩新辉, 张扬, 等. 纸坊沟流域退化土壤碳氮关系对植被恢复的时空响应[J]. 草地学报, 2013, 21(5):842−849. doi: 10.11733/j.issn.1007-0435.2013.05.002.

    Liang A H, Han X H, Zhang Y, et al. Spatio-temporal response of soil carbon and nitrogen relation to the process of vegetation restoration in the gully region of Loess Plateau[J]. Acta Agrestia Sinica, 2013, 21(5): 842−849. doi: 10.11733/j.issn.1007-0435.2013.05.002.
    [14] Li C, Zhao L, Sun P, et al. Deep soil C, N, and P stocks and stoichiometry in response to land use patterns in the loess hilly region of China[J]. PLoS ONE, 2016, 11(7): e0159075. doi: 10.1371/journal.pone.0159075.
    [15] Fu B, Chen L, Ma K, et al. The relationships between land use and soil conditions in the hilly area of the Loess Plateau in northern Shaanxi, China[J]. Catena, 2000, 39(1): 69−78. doi: 10.1016/S0341-8162(99)00084-3.
    [16] 王莉, 林莎, 李远航, 等. 青海大通不同林地类型林下植被与土壤水分的关系[J]. 中国水土保持科学, 2019, 17(5):25−35.

    Wang L, Lin S, Li Y H, et al. Relationship between understory vegetation and soil moisture in different forest types in Datong, Qinghai Province[J]. Science of Soil and Water Conservation, 2019, 17(5): 25−35.
    [17] Fu B J, Wang S, Liu Y, et al. Hydrogeomorphic ecosystem responses to natural and anthropogenic changes in the Loess Plateau of China[J]. Annual Review of Earth and Planetary Sciences, 2017, 45: 223−243. doi: 10.1146/annurev-earth-063016-020552.
    [18] 林莎, 贺康宁, 王莉, 等. 基于地统计学的黄土高寒区典型林地土壤水分盈亏状况研究[J]. 生态学报, 2020, 40(2):728−737.

    Lin S, He K N, Wang L, et al. Soil moisture surplus and loss of typical forestland in loess alpine area by the geostatistical analyst method[J]. Acta Ecologica Sinica, 2020, 40(2): 728−737.
    [19] 刘若莎, 王冬梅, 李平, 等. 青海高寒区典型人工林植物多样性、地上生物量特征及其相关性[J]. 生态学报, 2020, 40(2):692−700.

    Liu R S, Wang D M, Li P, et al. Plant diversity, ground biomass characteristics and their relationships of typical plantations in the alpine region of Qinghai[J]. Acta Ecologica Sinica, 2020, 40(2): 692−700.
    [20] 刘凯, 贺康宁, 王先棒. 青海高寒区不同密度白桦林枯落物水文效应[J]. 北京林业大学学报, 2018, 40(1):89−97.

    Liu K, He K N, Wang X B. Hydrological effects of litter of Betula platyphylla forest with different densities in alpine region, Qinghai of northwestern China[J]. Journal of Beijing Forestry University, 2018, 40(1): 89−97.
    [21] 王志齐, 杜兰兰, 赵慢, 等. 黄土区不同退耕方式下土壤碳氮的差异及其影响因素[J]. 应用生态学报, 2016, 27(3):716−722.

    Wang Z Q, Du L L, Zhao M, et al. Differences in soil organic carbon and total nitrogen and their impact factors under different restoration patterns in the Loess Plateau[J]. Chinese Journal of Applied Ecology, 2016, 27(3): 716−722.
    [22] 李平, 王冬梅, 丁聪, 等. 黄土高寒区典型植被类型土壤入渗特征及其影响因素[J]. 生态学报, 2020, 40(5):1610−1620.

    Li P, Wang D M, Ding C, et al. Soil infiltration characteristics and its influencing factors of typical vegetation type in loess alpine region[J]. Acta Ecologica Sinica, 2020, 40(5): 1610−1620.
    [23] 刘运新, 陈之凤, 廖徯苏, 等. 大通县志[M]. 西宁: 青海人民出版社, 2020.

    Liu Y X, Chen Z F, Liao X S, et al. Datong County annals[M]. Xining: Qinghai People’s Publishing House, 2020.
    [24] 鲍士旦. 土壤农化分析[M]. 3 版. 北京: 中国农业出版社, 2000.

    Bao S T. Soil agrochemical analysis [M]. 3rd ed. Beijing: China Agriculture Press, 2000.
    [25] 孙骞, 王兵, 周怀平, 等. 黄土丘陵区小流域土壤碳氮磷生态化学计量特征的空间变异性[J]. 生态学杂志, 2020, 39(3):766−774.

    Sun Q, Wang B, Zhou H P, et al. Spatial variation of ecological stoichiometry of soil C, N and P in a small catchment of loess hilly area[J]. Chinese Journal of Ecology, 2020, 39(3): 766−774.
    [26] 李柏桥, 付玉, 李光录, 等. 退耕年限与方式对土壤团聚体稳定性及有机碳分布的影响[J]. 干旱地区农业研究, 2017, 35(3):238−244. doi: 10.7606/j.issn.1000-7601.2017.03.37.

    Li B Q, Fu Y, Li G L, et al. Effects of age and type of conversion from cropland to forest land and grassland on stability and organic carbon in soil aggregates[J]. Agricultural Research in the Arid Areas, 2017, 35(3): 238−244. doi: 10.7606/j.issn.1000-7601.2017.03.37.
    [27] Shi J, Cui L. Soil carbon change and its affecting factors following afforestation in China[J]. Landscape and Urban Planning, 2010, 98: 75−85. doi: 10.1016/j.landurbplan.2010.07.011.
    [28] Wang Q, Wang S, Huang Y. Comparisons of litterfall, litter decomposition and nutrient return in a monoculture Cunninghamia lanceolata and a mixed stand in southern China[J]. Forest Ecology and Management, 2008, 255: 1210−1218. doi: 10.1016/j.foreco.2007.10.026.
    [29] 朱秋莲, 邢肖毅, 张宏, 等. 黄土丘陵沟壑区不同植被区土壤生态化学计量特征[J]. 生态学报, 2013, 33(15):4674−4682. doi: 10.5846/stxb201212101772

    Zhu Q L, Xing X Y, Zhang H, et al. Soil ecological stoichiometry under different vegetation area on loess hilly-gully region[J]. Acta Ecologica Sinica, 2013, 33(15): 4674−4682. doi: 10.5846/stxb201212101772
    [30] 张萍, 章广琦, 赵一娉, 等. 黄土丘陵区不同森林类型叶片−凋落物−土壤生态化学计量特征[J]. 生态学报, 2018, 38(14):5087−5098.

    Zhang P, Zhang G Q, Zhao Y P, et al. Ecological stoichiometry characteristics of leaf-litter-soil interactions in different forest types in the loess hilly-gully region of China[J]. Acta Ecologica Sinica, 2018, 38(14): 5087−5098.
    [31] 李俊超, 郭胜利, 党廷辉, 等. 黄土丘陵区不同退耕方式土壤有机碳密度的差异及其空间变化[J]. 农业环境科学学报, 2014, 33(6):1167−1173. doi: 10.11654/jaes.2014.06.017.

    Li J C, Guo S L, Dang T H, et al. Spatial variations in soil organic carbon density under different restoration practices in loess hilly-gully region[J]. Journal of Agro-Environment Science, 2014, 33(6): 1167−1173. doi: 10.11654/jaes.2014.06.017.
    [32] Liu X, Ma J, Ma Z W, et al. Soil nutrient contents and stoichiometry as affected by land-use in an agro-pastoral region of northwest China[J]. Catena, 2017, 150: 146−153. doi: 10.1016/j.catena.2016.11.020.
    [33] 王建林, 钟志明, 王忠红, 等. 青藏高原高寒草原生态系统土壤碳氮比的分布特征[J]. 生态学报, 2014, 34(22):6678−6691.

    Wang J L, Zhong Z M, Wang Z H, et al. Soil C/N distribution characteristics of alpine steppe ecosystem in Qinghai Tibetan Plateau[J]. Acta Ecologica Sinica, 2014, 34(22): 6678−6691.
  • 加载中
图(3) / 表(2)
计量
  • 文章访问数:  442
  • HTML全文浏览量:  120
  • PDF下载量:  44
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-18
  • 修回日期:  2020-12-04
  • 网络出版日期:  2021-01-20
  • 刊出日期:  2021-02-05

目录

    /

    返回文章
    返回