高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

干旱胁迫及复水后84K杨栓塞修复及其他水力学特性的研究

刘丽 张立 蔡靖 赵涵 程永琴 姜在民

刘丽, 张立, 蔡靖, 赵涵, 程永琴, 姜在民. 干旱胁迫及复水后84K杨栓塞修复及其他水力学特性的研究[J]. 北京林业大学学报, 2021, 43(7): 22-30. doi: 10.12171/j.1000-1522.20200165
引用本文: 刘丽, 张立, 蔡靖, 赵涵, 程永琴, 姜在民. 干旱胁迫及复水后84K杨栓塞修复及其他水力学特性的研究[J]. 北京林业大学学报, 2021, 43(7): 22-30. doi: 10.12171/j.1000-1522.20200165
Liu Li, Zhang Li, Cai Jing, Zhao Han, Cheng Yongqin, Jiang Zaimin. Hydraulic characteristics and embolism repair of Populus alba × P. glandulosa after drought stress and rehydration[J]. Journal of Beijing Forestry University, 2021, 43(7): 22-30. doi: 10.12171/j.1000-1522.20200165
Citation: Liu Li, Zhang Li, Cai Jing, Zhao Han, Cheng Yongqin, Jiang Zaimin. Hydraulic characteristics and embolism repair of Populus alba × P. glandulosa after drought stress and rehydration[J]. Journal of Beijing Forestry University, 2021, 43(7): 22-30. doi: 10.12171/j.1000-1522.20200165

干旱胁迫及复水后84K杨栓塞修复及其他水力学特性的研究

doi: 10.12171/j.1000-1522.20200165
基金项目: 国家自然科学基金项目(31570588)
详细信息
    作者简介:

    刘丽。主要研究方向:树木水分生理。Email:lily54854@126.com  地址:712100陕西省咸阳市杨凌区西北农林科技大学林学院

    责任作者:

    蔡靖,博士,教授。主要研究方向:树木水分生理生态。Email:cjcaijing@163.com  地址:同上

  • 中图分类号: S718.43;S792.119

Hydraulic characteristics and embolism repair of Populus alba × P. glandulosa after drought stress and rehydration

  • 摘要:   目的  研究植物遭受不同程度干旱胁迫时,其水力学特性的变化及响应,以及复水后植物栓塞修复能力,为植物应对干旱环境的能力提供水力学依据。  方法  以84K杨扦插苗为研究对象,进行渐进的控水处理,根据植株形态特征的变化,分别控水至植株叶面积停止生长、整株萎蔫、50%的叶片死亡及全部叶片死亡4个阶段,而后各阶段植株均进行复水至新生叶片长出。分别在控水和复水处理完成后,测定各阶段植株的木质部水势、叶水势、栓塞脆弱性、枝条导水率及栓塞程度(PLC)等水力学特征,同时测定导管直径、导管连接度及导管抗垮塌能力等木质部解剖结构特征。  结果  随着干旱胁迫程度加剧,84K杨叶水势及木质部水势均降低,栓塞加剧,栓塞脆弱性减小,木质部导管直径较对照组显著减小,导管连接度及导管抗垮塌能力显著增大。当植株有50%的叶片死亡时,茎的PLC为44%,当叶片全部死亡时,茎的PLC达65%。复水10 ~ 24 d后,各干旱阶段植株木质部水势及叶水势均恢复至对照组水平,茎的导水率均有所增加,栓塞程度均降低,当茎的PLC恢复至28% ~ 37%时,植株顶端重新展开了3片新叶。叶片全部死亡的植株复水至长出新叶时,茎的PLC显著减少,但植株直径并未增大,即复水阶段没有新生导管参与导水过程,表明茎导水率的恢复是由于发生了栓塞修复。  结论  干旱胁迫会对植物水力特性造成不利影响,但植物也会通过改变木质部结构特征来适应环境。植物在维持叶片存活与茎导水能力之间存在一定的权衡,干旱胁迫下会牺牲叶片来维持茎的导水率。但当干旱胁迫解除后,植物的水力学特性也能得到恢复,即使整株叶片死亡的植物,复水后仍能恢复生长,叶片死亡并不能作为判断植物死亡的指标。植物恢复生长与茎导水率恢复之间存在很强的相关性,栓塞能否修复是植物经历干旱后能否存活的主要因素。

     

  • 图  1  控水处理下植株叶面积增长

    Figure  1.  Increase of leaf area of plant under water stress

    图  2  控水及复水处理下植株直径增长

    箭头表示复水时间。误差线代表 ± 标准误。Arrow represents rehydration time point, error bars represent ± SE.

    Figure  2.  Diameter growth of plants under drought stressand rehydration treatment

    图  3  84K杨不同控水阶段及复水后木质部水势和叶水势

    不同小写字母表示控水或复水处理下不同阶段间差异性显著,不同大写字母表示同一阶段复水前后的差异性显著(P < 0.05)。下同。Different lowercase letters indicate significant differences in varied stages under drought stress or rehydration, and different capital letters indicate significant difference before and after rehydration at the same stage (P < 0.05). The same below.

    Figure  3.  Xylem water potential and leaf water potential of 84K poplar at different stages under drought stress and rehydration

    图  4  84K杨不同控水阶段及复水后茎的PLC

    Figure  4.  PLC of 84K poplar stem at different stages under drought stress and rehydration

    图  5  84K杨不同控水阶段的枝条栓塞脆弱性曲线

    Figure  5.  Vulnerability curves of 84K poplar at different drought stages

    图  6  84K杨不同控水阶段及复水后的栓塞脆弱性曲线

    Figure  6.  Vulnerability curves of 84K poplar under drought stress and rehydration

    表  1  84K杨不同控水阶段及复水后栓塞脆弱性(P50)及最大导水率

    Table  1.   P50 and maximum hydraulic conductivity of 84K poplar under drought stress and rehydration

    阶段 Stage栓塞脆弱性 Embolism vulnerability (P50)/MPa最大导水率 Maximum hydraulic conductivity (Kmax)/(kg·m·MPa−1·s−1)
    控水 Drought stress复水 Rehydration控水 Drought stress复水 Rehydration
    0 −1.65 ± 0.048c 9.63 × 10−5 ± 6.60 × 10−6a
    1 −1.83 ± 0.022Ab −1.84 ± 0.040Ac 7.70 × 10−5 ± 1.89 × 10−6Aab 5.88 × 10−5 ± 8.02 × 10−6Ab
    2 −2.21 ± 0.029Aa −2.09 ± 0.026Ab 4.34 × 10−5 ± 1.66 × 10−6Abc 4.65 × 10−5 ± 8.04 × 10−6Abc
    3 −2.23 ± 0.034Aa −2.08 ± 0.087Ab 4.14 × 10−5 ± 9.82 × 10−6Abc 3.60 × 10−5 ± 5.58 × 10−6Ac
    4 −2.32 ± 0.034Aa −2.24 ± 0.017Aa 2.76 × 10−5 ± 5.32 × 10−6Ac 3.02 × 10−5 ± 5.28 × 10−6Ac
    注:表中数据为平均值 ± 标准误。不同小写字母表示控水或复水下不同阶段间差异性显著,不同大写字母表示同一阶段复水前后的差异性显著(P < 0.05)。下同。Notes: data are mean ± SE. Different lowercase letters indicate significant differences in baried stages under drought stress or rehydration,and different capital letters indicate significant differences before and after rehydration at the same stage (P < 0.05). The same below.
    下载: 导出CSV

    表  2  84K杨复水前后木质部结构特征

    Table  2.   Xylem structural characteristics of 84K poplar under drought stress and rehydration

    阶段 Stage导管直径 Vessel diameter/µm导管连接度 Vessel contact fraction导管抗垮塌能力 Vessel implosion resistance
    控水 Drought stress复水 Rehydration控水 Drought stress复水 Rehydration控水 Drought stress复水 Rehydration
    0 37.34 ± 0.15a 0.03 ± 0.001a 0.04 ± 0.003c
    1 35.49 ± 0.06Ab 35.63 ± 0.18Ab 0.05 ± 0.003Ab 0.05 ± 0.004Ab 0.06 ± 0.005Aa 0.06 ± 0.003Aa
    2 34.97 ± 0.07Ac 34.47 ± 0.16Ac 0.05 ± 0.004Ab 0.05 ± 0.002Ab 0.05 ± 0.001Ab 0.05 ± 0.002Ab
    3 34.77 ± 0.20Ac 34.51 ± 0.03Ac 0.05 ± 0.003Ab 0.04 ± 0.005Ab 0.05 ± 0.001Ab 0.05 ± 0.002Ab
    4 34.80 ± 0.31Ac 34.85 ± 0.30Ac 0.04 ± 0.005Ab 0.05 ± 0.002Ab 0.05 ± 0.001Ab 0.05 ± 0.003Ab
    下载: 导出CSV
  • [1] McDowell N, Pockman W T, Allen C D, et al. Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought?[J]. New Phytologist, 2008, 178(4): 719−739. doi: 10.1111/j.1469-8137.2008.02436.x
    [2] Tyree M T, Sperry J S. Vulnerability of xylem to cavitation and embolism[J]. Annual Review of Plant Biology, 1989, 40(1): 19−36. doi: 10.1146/annurev.pp.40.060189.000315
    [3] Creek D, Blackman C J, Brodribb T J, et al. Coordination between leaf, stem, and root hydraulics and gas exchange in three arid-zone angiosperms during severe drought and recovery[J]. Plant, Cell & Environment, 2018, 41(12): 2869−2881.
    [4] Domec J C, Gartner B L. Cavitation and water storage in bole segments of mature and young Douglas-fir trees[J]. Trees, 2001, 15(4): 204−214. doi: 10.1007/s004680100095
    [5] 李美琦, 姜在民, 赵涵, 等. 加杨水力学与生理特性对不同土壤水分条件响应研究[J]. 植物生理学报, 2017, 53(4):632−640.

    Li M Q, Jiang Z M, Zhao H, et al. Study on the adaptability of hydraulic and physiological characteristics to different soil moisture conditions in Populus × canadensis Moench[J]. Plant Physiology Journal, 2017, 53(4): 632−640.
    [6] Salleo S, Gullo M A L, Paoli D D, et al. Xylem recovery from cavitation-induced embolism in young plants of Laurus nobilis: a possible mechanism[J]. New Phytologist, 1996, 132(1): 47−56. doi: 10.1111/j.1469-8137.1996.tb04507.x
    [7] Brodersen C R, McElrone A J, Choat B, et al. The dynamics of embolism repair in xylem: in vivo visualizations using high-resolution computed tomography[J]. Plant Physiology, 2010, 154(3): 1088−1095. doi: 10.1104/pp.110.162396
    [8] Améglio T, Bodet C, Lacointe A, et al. Winter embolism, mechanisms of xylem hydraulic conductivity recovery and springtime growth patterns in walnut and peach trees[J]. Tree Physiology, 2002, 22(17): 1211−1220. doi: 10.1093/treephys/22.17.1211
    [9] Brodribb T J, Bowman D J M S, Nichols S, et al. Xylem function and growth rate interact to determine recovery rates after exposure to extreme water deficit[J]. New Phytologist, 2010, 188(2): 533−542. doi: 10.1111/j.1469-8137.2010.03393.x
    [10] Zwieniecki M A, Holbrook N M. Confronting Maxwell’s demon: biophysics of xylem embolism repair[J]. Trends in Plant Science, 2009, 14(10): 530−534. doi: 10.1016/j.tplants.2009.07.002
    [11] Mayr S, Schmid P, Beikircher B, et al. Die hard: timberline conifers survive annual winter embolism[J]. New Phytologist, 2020, 226(1): 13−20. doi: 10.1111/nph.16304
    [12] Holmlund H I, Pratt R B, Jacobsen A L, et al. High-resolution computed tomography reveals dynamics of desiccation and rehydration in fern petioles of a desiccation-tolerant fern[J]. New Phytologist, 2019, 224(1): 97−105. doi: 10.1111/nph.16067
    [13] Brendan C, Markus N, Rosana L, et al. Non-invasive imaging shows no evidence of embolism repair after drought in tree species of two genera[J]. Tree Physiology, 2018, 39(1): 113−121.
    [14] Li X M, Blackman C J, Rymer P D, et al. Xylem embolism measured retrospectively is linked to canopy dieback in natural populations of Eucalyptus piperita following drought[J]. Tree Physiology, 2018, 38(8): 1193−1199. doi: 10.1093/treephys/tpy052
    [15] 周永学, 符毓秦, 樊军锋, 等. 84K杨的生长特性及杂交可配性[J]. 东北林业大学学报, 2007, 35(10):13−14. doi: 10.3969/j.issn.1000-5382.2007.10.005

    Zhou Y X, Fu Y Q, Fan J F, et al. Growth characteristics and crossability of poplar 84K[J]. Journal of Northeast Forestry University, 2007, 35(10): 13−14. doi: 10.3969/j.issn.1000-5382.2007.10.005
    [16] Wang R Q, Zhang L L, Zhang S X, et al. Water relations of Robinia pseudoacacia L. : do vessels cavitate and refill diurnally or are R-shaped curves invalid in Robinia?[J]. Plant, Cell & Environment, 2014, 37(12): 2667−2678.
    [17] Cochard H, Damour G, Bodet C, et al. Evaluation of a new centrifuge technique for rapid generation of xylem vulnerability curves[J]. Physiologia Plantarum, 2010, 124(4): 410−418.
    [18] Cai J, Tyree M T. The impact of vessel size on vulnerability curves: data and models for within-species variability in saplings of aspen, Populus tremuloides Michx[J]. Plant, Cell & Environment, 2010, 33(7): 1059−1069.
    [19] Wang Y, Burlett R, Feng F, et al. Improved precision of hydraulic conductance measurements using a Cochard rotor in two different centrifuges[J/OL]. The Journal of Plant Hydraulics, 2014, 1: e0007 (2014−10−24) [2019−05−05]. https://hal.archives-ouvertes.fr/hal-01077482.
    [20] Cochard H. A technique for measuring xylem hydraulic conductance under high negative pressures[J]. Plant, Cell & Environment, 2002, 25(6): 815−819.
    [21] 李荣, 姜在民, 张硕新, 等. 木本植物木质部栓塞脆弱性研究新进展[J]. 植物生态学报, 2016, 39(8):838−848.

    Li R, Jiang Z M, Zhang S X, et al. A review of new research progress on the vulnerability of xylem embolism of woody plants[J]. Chinese Journal of Plant Ecology, 2016, 39(8): 838−848.
    [22] 党维, 姜在民, 李荣, 等. 6个树种1年生枝木质部的水力特征及与栓塞修复能力的关系[J]. 林业科学, 2017, 53(3):49−59. doi: 10.11707/j.1001-7488.20170306

    Dang W, Jiang Z M, Li R, et al. Relationship between hydraulic traits and refilling of embolism in the xylem of one-year-old twigs of six tree species[J]. Scientia Silvae Sinicae, 2017, 53(3): 49−59. doi: 10.11707/j.1001-7488.20170306
    [23] Sperry J S, Hacke U G, Pittermann J. Size and function in conifer tracheids and angiosperm vessels[J]. American Journal of Botany, 2006, 93(10): 1490−1500. doi: 10.3732/ajb.93.10.1490
    [24] Engelbrecht B M J, Tyree M T, Kursar T A. Visual assessment of wilting as a measure of leaf water potential and seedling drought survival[J]. Journal of Tropical Ecology, 2007, 23(4): 497−500. doi: 10.1017/S026646740700421X
    [25] Tyree M T, Vargas G, Engelbrecht B M J, et al. Drought until death do us part: a case study of the desiccation-tolerance of a tropical moist forest seedling-tree, Licania platypus (Hemsl.) Fritsch[J]. Journal of Experimental Botany, 2002, 53: 2239−2247. doi: 10.1093/jxb/erf078
    [26] Tyree M T, Engelbrecht B M J, Vargas G, et al. Desiccation tolerance of five tropical seedlings in Panama relationship to a field assessment of drought performance[J]. Plant Physiology, 2003, 132(3): 1439−1447. doi: 10.1104/pp.102.018937
    [27] Braatne J H, Hinckley T M, Stettler R F. Influence of soil water on the physiological and morphological components of plant water balance in Populus trichocarpa, Populus deltoides and their F1 hybrids[J]. Tree Physiology, 1992, 11(4): 325−339. doi: 10.1093/treephys/11.4.325
    [28] Sperry J S, Tyree M T. Water-stress-induced xylem embolism in three species of conifers[J]. Plant, Cell & Environment, 1990, 13(5): 427−436.
    [29] Cochard H, Breda N, Granier A, et al. Vulnerability to air embolism of three European oak species (Quercus petraea (Matt) Liebl, Q. pubescens Willd, Q. robur L.)[J]. Annals of Forest Science, 1992, 49(3): 225−233. doi: 10.1051/forest:19920302
    [30] Cochard H, Barigah S T, Kleinhentz M, et al. Is xylem cavitation resistance a relevant criterion for screening drought resistance among Prunus species?[J]. Journal of Plant Physiology, 2008, 165(9): 976−982. doi: 10.1016/j.jplph.2007.07.020
    [31] Maherali H, Pockman W T, Jackson R B. Adaptive variation in the vulnerability of woody plants to xylem cavitation[J]. Ecology, 2004, 85(8): 2184−2199. doi: 10.1890/02-0538
    [32] 谢东锋, 马履一, 王华田. 7种造林树种木质部栓塞脆弱性研究[J]. 浙江林学院学报, 2004, 21(2):138−143.

    Xie D F, Ma L Y, Wang H T. Study on vulnerability of xylem embolism in twigs of seven tree species[J]. Journal of Zhejiang Forestry College, 2004, 21(2): 138−143.
    [33] Wheeler J K, Sperry J S, Hacke U G, et al. Inter-vessel pitting and cavitation in woody Rosaceae and other vesselled plants: a basis for a safety versus efficiency trade-off in xylem transport[J]. Plant, Cell & Environment, 2005, 28(6): 800−812.
    [34] Hacke U G, Jansen S. Embolism resistance of three boreal conifer species varies with pit structure[J]. New Phytologist, 2009, 182(3): 675−686. doi: 10.1111/j.1469-8137.2009.02783.x
    [35] Feng F, Ding F, Tyree M T. Investigations concerning cavitation and frost fatigue in clonal 84K poplar using high-resolution cavitron measurements[J]. Plant Physiology, 2015, 168(1): 144−155. doi: 10.1104/pp.114.256271
    [36] Love D M, Sperry J S. In situ embolism induction reveals vessel refilling in a natural aspen stand[J]. Tree Physiology, 2018, 38(7): 1006−1015. doi: 10.1093/treephys/tpy007
    [37] Sakr S, Alves G, Morillon R, et al. Plasma membrane aquaporins are involved in winter embolism recovery in walnut tree[J]. Plant Physiology, 2003, 133(2): 630−641. doi: 10.1104/pp.103.027797
    [38] Secchi F, Zwieniecki M A. Patterns of PIP gene expression in Populus trichocarpa during recovery from xylem embolism suggest a major role for the PIP1 aquaporin subfamily as moderators of refilling process[J]. Plant, Cell & Environment, 2010, 33(8): 1285−1297.
    [39] Secchi F, Gilbert M E, Zwieniecki M A. Transcriptome response to embolism formation in stems of Populus trichocarpa provides insight into signaling and biology of refilling[J]. Plant Physiology, 2011, 157(3): 1419−1429. doi: 10.1104/pp.111.185124
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  237
  • HTML全文浏览量:  67
  • PDF下载量:  30
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-10
  • 修回日期:  2020-07-15
  • 网络出版日期:  2021-05-29
  • 刊出日期:  2021-07-25

目录

    /

    返回文章
    返回