• Scopus收录期刊
  • CSCD(核心库)来源期刊
  • 中文核心期刊
  • 中国科技核心期刊
  • F5000顶尖学术来源期刊
  • RCCSE中国核心学术期刊
高级检索

干旱胁迫及复水后84K杨栓塞修复及其他水力学特性的研究

刘丽, 张立, 蔡靖, 赵涵, 程永琴, 姜在民

刘丽, 张立, 蔡靖, 赵涵, 程永琴, 姜在民. 干旱胁迫及复水后84K杨栓塞修复及其他水力学特性的研究[J]. 北京林业大学学报, 2021, 43(7): 22-30. DOI: 10.12171/j.1000-1522.20200165
引用本文: 刘丽, 张立, 蔡靖, 赵涵, 程永琴, 姜在民. 干旱胁迫及复水后84K杨栓塞修复及其他水力学特性的研究[J]. 北京林业大学学报, 2021, 43(7): 22-30. DOI: 10.12171/j.1000-1522.20200165
Liu Li, Zhang Li, Cai Jing, Zhao Han, Cheng Yongqin, Jiang Zaimin. Hydraulic characteristics and embolism repair of Populus alba × P. glandulosa after drought stress and rehydration[J]. Journal of Beijing Forestry University, 2021, 43(7): 22-30. DOI: 10.12171/j.1000-1522.20200165
Citation: Liu Li, Zhang Li, Cai Jing, Zhao Han, Cheng Yongqin, Jiang Zaimin. Hydraulic characteristics and embolism repair of Populus alba × P. glandulosa after drought stress and rehydration[J]. Journal of Beijing Forestry University, 2021, 43(7): 22-30. DOI: 10.12171/j.1000-1522.20200165

干旱胁迫及复水后84K杨栓塞修复及其他水力学特性的研究

基金项目: 国家自然科学基金项目(31570588)
详细信息
    作者简介:

    刘丽。主要研究方向:树木水分生理。Email:lily54854@126.com  地址:712100陕西省咸阳市杨凌区西北农林科技大学林学院

    责任作者:

    蔡靖,博士,教授。主要研究方向:树木水分生理生态。Email:cjcaijing@163.com  地址:同上

  • 中图分类号: S718.43;S792.119

Hydraulic characteristics and embolism repair of Populus alba × P. glandulosa after drought stress and rehydration

  • 摘要:
      目的  研究植物遭受不同程度干旱胁迫时,其水力学特性的变化及响应,以及复水后植物栓塞修复能力,为植物应对干旱环境的能力提供水力学依据。
      方法  以84K杨扦插苗为研究对象,进行渐进的控水处理,根据植株形态特征的变化,分别控水至植株叶面积停止生长、整株萎蔫、50%的叶片死亡及全部叶片死亡4个阶段,而后各阶段植株均进行复水至新生叶片长出。分别在控水和复水处理完成后,测定各阶段植株的木质部水势、叶水势、栓塞脆弱性、枝条导水率及栓塞程度(PLC)等水力学特征,同时测定导管直径、导管连接度及导管抗垮塌能力等木质部解剖结构特征。
      结果  随着干旱胁迫程度加剧,84K杨叶水势及木质部水势均降低,栓塞加剧,栓塞脆弱性减小,木质部导管直径较对照组显著减小,导管连接度及导管抗垮塌能力显著增大。当植株有50%的叶片死亡时,茎的PLC为44%,当叶片全部死亡时,茎的PLC达65%。复水10 ~ 24 d后,各干旱阶段植株木质部水势及叶水势均恢复至对照组水平,茎的导水率均有所增加,栓塞程度均降低,当茎的PLC恢复至28% ~ 37%时,植株顶端重新展开了3片新叶。叶片全部死亡的植株复水至长出新叶时,茎的PLC显著减少,但植株直径并未增大,即复水阶段没有新生导管参与导水过程,表明茎导水率的恢复是由于发生了栓塞修复。
      结论  干旱胁迫会对植物水力特性造成不利影响,但植物也会通过改变木质部结构特征来适应环境。植物在维持叶片存活与茎导水能力之间存在一定的权衡,干旱胁迫下会牺牲叶片来维持茎的导水率。但当干旱胁迫解除后,植物的水力学特性也能得到恢复,即使整株叶片死亡的植物,复水后仍能恢复生长,叶片死亡并不能作为判断植物死亡的指标。植物恢复生长与茎导水率恢复之间存在很强的相关性,栓塞能否修复是植物经历干旱后能否存活的主要因素。
    Abstract:
      Objective  The aim of this study was to explore the changes and responses of hydraulic characteristics of plants under different levels of drought stress, and their ability to repair embolism after rehydration, thereby providing theoretical hydraulic evidences for plants to adapt to drought conditions and their ability to recover after drought.
      Method   84K poplar (Populus alba × P. glandulosa) cuttings were potted and subjected to a progressive drought. According to the changes of plant morphological characteristics, water was controlled to four stages, i.e. the cessation of leaf expansion, whole plant wilting, 50% leaf mortality and 100% leaf mortality. Then, all plants of each stage were rewatered until new leaves appeared. After water control and rehydration treatment, hydraulic characteristics, such as xylem water potential, leaf water potential, vulnerability to xylem cavitation, stem hydraulic conductivity, the percentage loss of xylem conductance, and xylem anatomy such as the vessel diameter, contact fraction and vessel implosion resistance were measured at each stage.
      Result  With the intensification of drought stress, leaf water potential and xylem water potential decreased, and the embolism increased, but xylem vulnerability to cavitation increased. Also, compared with the control group, the vessel diameter decreased significantly, and the contact fraction and vessel implosion resistance increased significantly. At the stage of 50% leaf mortality, the percentage loss of hydraulic conductivity (PLC) of stem was 44%, and reached 65% at the stage of 100% leaf mortality. After rehydration for 10−24 days, the xylem water potential and leaf water potential in each stage returned to the level of control group, and the stem hydraulic conductivity increased with the PLC decreased. When the PLC of stem restored to 28%−37%, three new leaves spread out. After the plants with 100% leaf mortality were rehydrated until the emergence of new leaves, the PLC of stem was significantly reduced, but the plant diameter did not increase, which showed no new conduits participated in the water transportation during the rehydration, indicating that the restoration of stem hydraulic conductivity may result from embolism repair.
      Conclusion  Drought stress can adversely affect the hydraulic characteristics of plants, but plants can also adapt to the environment by changing the structure of their xylem. There is a certain trade-off between the plant’s ability to maintain leaf survival and transport water, and the leaves may be sacrificed to maintain the water conductivity of stem under drought stress. However, when drought stress is released, the hydraulic characteristics of the plants can also be restored. Even if plants without survival leaves can resume growth after rehydration, leaf death cannot be used as an indicator of plant death. There is a strong correlation between the recovery of plant growth and the restoration of stem hydraulic conductivity. Embolism repair may be the main reason for the restoration of stem hydraulic conductivity.
  • 图  1   控水处理下植株叶面积增长

    Figure  1.   Increase of leaf area of plant under water stress

    图  2   控水及复水处理下植株直径增长

    箭头表示复水时间。误差线代表 ± 标准误。Arrow represents rehydration time point, error bars represent ± SE.

    Figure  2.   Diameter growth of plants under drought stressand rehydration treatment

    图  3   84K杨不同控水阶段及复水后木质部水势和叶水势

    不同小写字母表示控水或复水处理下不同阶段间差异性显著,不同大写字母表示同一阶段复水前后的差异性显著(P < 0.05)。下同。Different lowercase letters indicate significant differences in varied stages under drought stress or rehydration, and different capital letters indicate significant difference before and after rehydration at the same stage (P < 0.05). The same below.

    Figure  3.   Xylem water potential and leaf water potential of 84K poplar at different stages under drought stress and rehydration

    图  4   84K杨不同控水阶段及复水后茎的PLC

    Figure  4.   PLC of 84K poplar stem at different stages under drought stress and rehydration

    图  5   84K杨不同控水阶段的枝条栓塞脆弱性曲线

    Figure  5.   Vulnerability curves of 84K poplar at different drought stages

    图  6   84K杨不同控水阶段及复水后的栓塞脆弱性曲线

    Figure  6.   Vulnerability curves of 84K poplar under drought stress and rehydration

    表  1   84K杨不同控水阶段及复水后栓塞脆弱性(P50)及最大导水率

    Table  1   P50 and maximum hydraulic conductivity of 84K poplar under drought stress and rehydration

    阶段 Stage栓塞脆弱性 Embolism vulnerability (P50)/MPa最大导水率 Maximum hydraulic conductivity (Kmax)/(kg·m·MPa−1·s−1)
    控水 Drought stress复水 Rehydration控水 Drought stress复水 Rehydration
    0 −1.65 ± 0.048c 9.63 × 10−5 ± 6.60 × 10−6a
    1 −1.83 ± 0.022Ab −1.84 ± 0.040Ac 7.70 × 10−5 ± 1.89 × 10−6Aab 5.88 × 10−5 ± 8.02 × 10−6Ab
    2 −2.21 ± 0.029Aa −2.09 ± 0.026Ab 4.34 × 10−5 ± 1.66 × 10−6Abc 4.65 × 10−5 ± 8.04 × 10−6Abc
    3 −2.23 ± 0.034Aa −2.08 ± 0.087Ab 4.14 × 10−5 ± 9.82 × 10−6Abc 3.60 × 10−5 ± 5.58 × 10−6Ac
    4 −2.32 ± 0.034Aa −2.24 ± 0.017Aa 2.76 × 10−5 ± 5.32 × 10−6Ac 3.02 × 10−5 ± 5.28 × 10−6Ac
    注:表中数据为平均值 ± 标准误。不同小写字母表示控水或复水下不同阶段间差异性显著,不同大写字母表示同一阶段复水前后的差异性显著(P < 0.05)。下同。Notes: data are mean ± SE. Different lowercase letters indicate significant differences in baried stages under drought stress or rehydration,and different capital letters indicate significant differences before and after rehydration at the same stage (P < 0.05). The same below.
    下载: 导出CSV

    表  2   84K杨复水前后木质部结构特征

    Table  2   Xylem structural characteristics of 84K poplar under drought stress and rehydration

    阶段 Stage导管直径 Vessel diameter/µm导管连接度 Vessel contact fraction导管抗垮塌能力 Vessel implosion resistance
    控水 Drought stress复水 Rehydration控水 Drought stress复水 Rehydration控水 Drought stress复水 Rehydration
    0 37.34 ± 0.15a 0.03 ± 0.001a 0.04 ± 0.003c
    1 35.49 ± 0.06Ab 35.63 ± 0.18Ab 0.05 ± 0.003Ab 0.05 ± 0.004Ab 0.06 ± 0.005Aa 0.06 ± 0.003Aa
    2 34.97 ± 0.07Ac 34.47 ± 0.16Ac 0.05 ± 0.004Ab 0.05 ± 0.002Ab 0.05 ± 0.001Ab 0.05 ± 0.002Ab
    3 34.77 ± 0.20Ac 34.51 ± 0.03Ac 0.05 ± 0.003Ab 0.04 ± 0.005Ab 0.05 ± 0.001Ab 0.05 ± 0.002Ab
    4 34.80 ± 0.31Ac 34.85 ± 0.30Ac 0.04 ± 0.005Ab 0.05 ± 0.002Ab 0.05 ± 0.001Ab 0.05 ± 0.003Ab
    下载: 导出CSV
  • [1]

    McDowell N, Pockman W T, Allen C D, et al. Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought?[J]. New Phytologist, 2008, 178(4): 719−739. doi: 10.1111/j.1469-8137.2008.02436.x

    [2]

    Tyree M T, Sperry J S. Vulnerability of xylem to cavitation and embolism[J]. Annual Review of Plant Biology, 1989, 40(1): 19−36. doi: 10.1146/annurev.pp.40.060189.000315

    [3]

    Creek D, Blackman C J, Brodribb T J, et al. Coordination between leaf, stem, and root hydraulics and gas exchange in three arid-zone angiosperms during severe drought and recovery[J]. Plant, Cell & Environment, 2018, 41(12): 2869−2881.

    [4]

    Domec J C, Gartner B L. Cavitation and water storage in bole segments of mature and young Douglas-fir trees[J]. Trees, 2001, 15(4): 204−214. doi: 10.1007/s004680100095

    [5] 李美琦, 姜在民, 赵涵, 等. 加杨水力学与生理特性对不同土壤水分条件响应研究[J]. 植物生理学报, 2017, 53(4):632−640.

    Li M Q, Jiang Z M, Zhao H, et al. Study on the adaptability of hydraulic and physiological characteristics to different soil moisture conditions in Populus × canadensis Moench[J]. Plant Physiology Journal, 2017, 53(4): 632−640.

    [6]

    Salleo S, Gullo M A L, Paoli D D, et al. Xylem recovery from cavitation-induced embolism in young plants of Laurus nobilis: a possible mechanism[J]. New Phytologist, 1996, 132(1): 47−56. doi: 10.1111/j.1469-8137.1996.tb04507.x

    [7]

    Brodersen C R, McElrone A J, Choat B, et al. The dynamics of embolism repair in xylem: in vivo visualizations using high-resolution computed tomography[J]. Plant Physiology, 2010, 154(3): 1088−1095. doi: 10.1104/pp.110.162396

    [8]

    Améglio T, Bodet C, Lacointe A, et al. Winter embolism, mechanisms of xylem hydraulic conductivity recovery and springtime growth patterns in walnut and peach trees[J]. Tree Physiology, 2002, 22(17): 1211−1220. doi: 10.1093/treephys/22.17.1211

    [9]

    Brodribb T J, Bowman D J M S, Nichols S, et al. Xylem function and growth rate interact to determine recovery rates after exposure to extreme water deficit[J]. New Phytologist, 2010, 188(2): 533−542. doi: 10.1111/j.1469-8137.2010.03393.x

    [10]

    Zwieniecki M A, Holbrook N M. Confronting Maxwell’s demon: biophysics of xylem embolism repair[J]. Trends in Plant Science, 2009, 14(10): 530−534. doi: 10.1016/j.tplants.2009.07.002

    [11]

    Mayr S, Schmid P, Beikircher B, et al. Die hard: timberline conifers survive annual winter embolism[J]. New Phytologist, 2020, 226(1): 13−20. doi: 10.1111/nph.16304

    [12]

    Holmlund H I, Pratt R B, Jacobsen A L, et al. High-resolution computed tomography reveals dynamics of desiccation and rehydration in fern petioles of a desiccation-tolerant fern[J]. New Phytologist, 2019, 224(1): 97−105. doi: 10.1111/nph.16067

    [13]

    Brendan C, Markus N, Rosana L, et al. Non-invasive imaging shows no evidence of embolism repair after drought in tree species of two genera[J]. Tree Physiology, 2018, 39(1): 113−121.

    [14]

    Li X M, Blackman C J, Rymer P D, et al. Xylem embolism measured retrospectively is linked to canopy dieback in natural populations of Eucalyptus piperita following drought[J]. Tree Physiology, 2018, 38(8): 1193−1199. doi: 10.1093/treephys/tpy052

    [15] 周永学, 符毓秦, 樊军锋, 等. 84K杨的生长特性及杂交可配性[J]. 东北林业大学学报, 2007, 35(10):13−14. doi: 10.3969/j.issn.1000-5382.2007.10.005

    Zhou Y X, Fu Y Q, Fan J F, et al. Growth characteristics and crossability of poplar 84K[J]. Journal of Northeast Forestry University, 2007, 35(10): 13−14. doi: 10.3969/j.issn.1000-5382.2007.10.005

    [16]

    Wang R Q, Zhang L L, Zhang S X, et al. Water relations of Robinia pseudoacacia L. : do vessels cavitate and refill diurnally or are R-shaped curves invalid in Robinia?[J]. Plant, Cell & Environment, 2014, 37(12): 2667−2678.

    [17]

    Cochard H, Damour G, Bodet C, et al. Evaluation of a new centrifuge technique for rapid generation of xylem vulnerability curves[J]. Physiologia Plantarum, 2010, 124(4): 410−418.

    [18]

    Cai J, Tyree M T. The impact of vessel size on vulnerability curves: data and models for within-species variability in saplings of aspen, Populus tremuloides Michx[J]. Plant, Cell & Environment, 2010, 33(7): 1059−1069.

    [19]

    Wang Y, Burlett R, Feng F, et al. Improved precision of hydraulic conductance measurements using a Cochard rotor in two different centrifuges[J/OL]. The Journal of Plant Hydraulics, 2014, 1: e0007 (2014−10−24) [2019−05−05]. https://hal.archives-ouvertes.fr/hal-01077482.

    [20]

    Cochard H. A technique for measuring xylem hydraulic conductance under high negative pressures[J]. Plant, Cell & Environment, 2002, 25(6): 815−819.

    [21] 李荣, 姜在民, 张硕新, 等. 木本植物木质部栓塞脆弱性研究新进展[J]. 植物生态学报, 2016, 39(8):838−848.

    Li R, Jiang Z M, Zhang S X, et al. A review of new research progress on the vulnerability of xylem embolism of woody plants[J]. Chinese Journal of Plant Ecology, 2016, 39(8): 838−848.

    [22] 党维, 姜在民, 李荣, 等. 6个树种1年生枝木质部的水力特征及与栓塞修复能力的关系[J]. 林业科学, 2017, 53(3):49−59. doi: 10.11707/j.1001-7488.20170306

    Dang W, Jiang Z M, Li R, et al. Relationship between hydraulic traits and refilling of embolism in the xylem of one-year-old twigs of six tree species[J]. Scientia Silvae Sinicae, 2017, 53(3): 49−59. doi: 10.11707/j.1001-7488.20170306

    [23]

    Sperry J S, Hacke U G, Pittermann J. Size and function in conifer tracheids and angiosperm vessels[J]. American Journal of Botany, 2006, 93(10): 1490−1500. doi: 10.3732/ajb.93.10.1490

    [24]

    Engelbrecht B M J, Tyree M T, Kursar T A. Visual assessment of wilting as a measure of leaf water potential and seedling drought survival[J]. Journal of Tropical Ecology, 2007, 23(4): 497−500. doi: 10.1017/S026646740700421X

    [25]

    Tyree M T, Vargas G, Engelbrecht B M J, et al. Drought until death do us part: a case study of the desiccation-tolerance of a tropical moist forest seedling-tree, Licania platypus (Hemsl.) Fritsch[J]. Journal of Experimental Botany, 2002, 53: 2239−2247. doi: 10.1093/jxb/erf078

    [26]

    Tyree M T, Engelbrecht B M J, Vargas G, et al. Desiccation tolerance of five tropical seedlings in Panama relationship to a field assessment of drought performance[J]. Plant Physiology, 2003, 132(3): 1439−1447. doi: 10.1104/pp.102.018937

    [27]

    Braatne J H, Hinckley T M, Stettler R F. Influence of soil water on the physiological and morphological components of plant water balance in Populus trichocarpa, Populus deltoides and their F1 hybrids[J]. Tree Physiology, 1992, 11(4): 325−339. doi: 10.1093/treephys/11.4.325

    [28]

    Sperry J S, Tyree M T. Water-stress-induced xylem embolism in three species of conifers[J]. Plant, Cell & Environment, 1990, 13(5): 427−436.

    [29]

    Cochard H, Breda N, Granier A, et al. Vulnerability to air embolism of three European oak species (Quercus petraea (Matt) Liebl, Q. pubescens Willd, Q. robur L.)[J]. Annals of Forest Science, 1992, 49(3): 225−233. doi: 10.1051/forest:19920302

    [30]

    Cochard H, Barigah S T, Kleinhentz M, et al. Is xylem cavitation resistance a relevant criterion for screening drought resistance among Prunus species?[J]. Journal of Plant Physiology, 2008, 165(9): 976−982. doi: 10.1016/j.jplph.2007.07.020

    [31]

    Maherali H, Pockman W T, Jackson R B. Adaptive variation in the vulnerability of woody plants to xylem cavitation[J]. Ecology, 2004, 85(8): 2184−2199. doi: 10.1890/02-0538

    [32] 谢东锋, 马履一, 王华田. 7种造林树种木质部栓塞脆弱性研究[J]. 浙江林学院学报, 2004, 21(2):138−143.

    Xie D F, Ma L Y, Wang H T. Study on vulnerability of xylem embolism in twigs of seven tree species[J]. Journal of Zhejiang Forestry College, 2004, 21(2): 138−143.

    [33]

    Wheeler J K, Sperry J S, Hacke U G, et al. Inter-vessel pitting and cavitation in woody Rosaceae and other vesselled plants: a basis for a safety versus efficiency trade-off in xylem transport[J]. Plant, Cell & Environment, 2005, 28(6): 800−812.

    [34]

    Hacke U G, Jansen S. Embolism resistance of three boreal conifer species varies with pit structure[J]. New Phytologist, 2009, 182(3): 675−686. doi: 10.1111/j.1469-8137.2009.02783.x

    [35]

    Feng F, Ding F, Tyree M T. Investigations concerning cavitation and frost fatigue in clonal 84K poplar using high-resolution cavitron measurements[J]. Plant Physiology, 2015, 168(1): 144−155. doi: 10.1104/pp.114.256271

    [36]

    Love D M, Sperry J S. In situ embolism induction reveals vessel refilling in a natural aspen stand[J]. Tree Physiology, 2018, 38(7): 1006−1015. doi: 10.1093/treephys/tpy007

    [37]

    Sakr S, Alves G, Morillon R, et al. Plasma membrane aquaporins are involved in winter embolism recovery in walnut tree[J]. Plant Physiology, 2003, 133(2): 630−641. doi: 10.1104/pp.103.027797

    [38]

    Secchi F, Zwieniecki M A. Patterns of PIP gene expression in Populus trichocarpa during recovery from xylem embolism suggest a major role for the PIP1 aquaporin subfamily as moderators of refilling process[J]. Plant, Cell & Environment, 2010, 33(8): 1285−1297.

    [39]

    Secchi F, Gilbert M E, Zwieniecki M A. Transcriptome response to embolism formation in stems of Populus trichocarpa provides insight into signaling and biology of refilling[J]. Plant Physiology, 2011, 157(3): 1419−1429. doi: 10.1104/pp.111.185124

  • 期刊类型引用(16)

    1. 钟思琪,宁金魁,黄锦程,陈鼎泸,欧阳勋志,臧颢. 基于混合效应的杉木人工林冠幅模型. 森林与环境学报. 2024(02): 127-135 . 百度学术
    2. 段平,王云川,晋秋梅,李佳. 基于无人机可见光影像的单木胸径估算方法. 测绘与空间地理信息. 2023(01): 14-17 . 百度学术
    3. 魏智海,魏姿芃. 基于单木分割及点云特征提取的单木胸径估测. 陕西林业科技. 2023(02): 18-23 . 百度学术
    4. 王杰芬,夏磊,林露花,胡璐璐,徐怀兴,王聚中,徐小军. 结合放射线法和无人机影像提取冠幅估算杉木碳储量研究. 浙江林业科技. 2023(05): 42-50 . 百度学术
    5. 夏洪涛,郭晓斌,张珍,田相林,郭福涛,孙帅超. 基于不同立地质量评价指标的杉木大径材林分树高-胸径模型. 中南林业科技大学学报. 2023(10): 80-88 . 百度学术
    6. 肖德卿,罗芊芊,范辉华,邱群,周志春. 栽植模式对木荷幼林生长和形质性状家系变异影响. 林业科学. 2022(05): 85-92 . 百度学术
    7. 王志波,季蒙,李永乐,李银祥,马世明,张海东. 华北落叶松人工林差分地位指数模型构建. 林业资源管理. 2021(01): 156-163 . 百度学术
    8. 杨洋,尤龙辉,叶功富,聂森,程分生,余锦林. 沙质海岸基干林木麻黄幼林模拟抚育预测. 福建农林大学学报(自然科学版). 2021(02): 206-215 . 百度学术
    9. 田红灯,申文辉,谭一波,郑威,何琴飞,朱慧,甘国娟. 不同林龄杉木人工林冠幅与生长因子的关系. 中南林业科技大学学报. 2021(05): 93-101 . 百度学术
    10. 朱晋梅,朱光玉,易烜,杨琬珑,牟村,王琢玙. 湖南省栎类次生林冠幅—胸径模型模拟研究. 湖南林业科技. 2021(03): 46-51 . 百度学术
    11. 赵保国,朱江,艾训儒,姚兰,郭秋菊,洪建峰. 水杉原生种群胸径树高与树冠的通径分析. 东北林业大学学报. 2021(10): 16-20 . 百度学术
    12. 于晓池,李凤,欧阳,张鹏,郭小龙,肖遥,赵秋玲,杨桂娟,王军辉,麻文俊. 基于表型的灰楸核心种质构建. 林业科学研究. 2021(06): 38-45 . 百度学术
    13. 贾鹏刚,夏凯,董晨,冯海林,杨垠晖. 基于无人机影像的银杏单木胸径预估方法. 浙江农林大学学报. 2019(04): 757-763 . 百度学术
    14. 张冬燕,王冬至,范冬冬,张健东,李大勇. 不同立地类型华北落叶松人工林冠幅与胸径关系研究. 林业资源管理. 2019(04): 69-73 . 百度学术
    15. 伍小敏,徐春,杨汉波,陈炙,郭洪英,黄振,王泽亮. 四川桤木天然林和人工林的单木生长模型研究. 四川林业科技. 2018(04): 8-11+44 . 百度学术
    16. 周凤艳. 沙地樟子松不同林龄树高、胸径等生长指标的关系研究. 吉林林业科技. 2017(01): 12-15 . 百度学术

    其他类型引用(13)

图(6)  /  表(2)
计量
  • 文章访问数:  1061
  • HTML全文浏览量:  375
  • PDF下载量:  87
  • 被引次数: 29
出版历程
  • 收稿日期:  2020-06-09
  • 修回日期:  2020-07-14
  • 网络出版日期:  2021-05-18
  • 发布日期:  2021-07-24

目录

    /

    返回文章
    返回