Selection of herb species for ecological restoration of coal gangue piles in North China
-
摘要:
目的 优选出能够适应华北地区煤矸石山斜角大、贫瘠和干旱等生境特点的先锋植物,构建稳定的植被群落,以解决酸性煤矸石山因缺乏植被覆盖而导致的水土流失、复燃和扬尘等环境问题。 方法 采用野外实验的方式,以生命周期、盖度、重要值和生态位宽度为指标,对土地复垦常用草本植物和华北地区本土植物共14个优势种进行了分析比较和评价。 结果 人工引种的紫花苜蓿和兴安黄耆能够较好的适应煤矸石山生境,在复垦坡面的植被群落中始终保持优势地位,生命周期为7个月以上,最大分盖度为33.93%和17.59%,但在6—9月盖度明显下降;本土物种中茵陈蒿生态位较宽,在7月和9月盖度最高,最大分盖度为12.67,能够弥补紫花苜蓿和兴安黄耆在夏季盖度较低的不足。 结论 紫花苜蓿、兴安黄耆和茵陈蒿3种草本植物对酸性煤矸石山的适应能力较强,具备作为煤矸石山植被恢复先锋物种的潜力。 Abstract:Objective This paper aims to screen out the pioneer plants that can adapt to the habitat characteristics such as large slope angle, barrenness and aridity of coal gangue piles in North China, and build a stable vegetation community to solve the environmental problems such as soil erosion, re-ignition and dust emission caused by the lack of vegetation cover in acidic coal gangue piles. Method 14 dominant species of herbaceous plants commonly used in land reclamation and those native to North China were analyzed and compared by field experiments using life cycle, cover, significance value and ecological position width as indicators. Result The artificially introduced Medicago sativa and Astragalus dahuricus can adapt well to the habitat of the coal gangue pile, and maintain an advantageous position in the vegetation community on the reclaimed slope, with a life cycle of more than 7 months, the maximum sub-coverage of 33.93% and 17.59%, but from June to September, the cover decreased significantly. Among the native species, Artemisia capillaris had a wider ecological position, with the highest cover in July and September, and the maximum sub-coverage of 12.67, can make up for the lack of Medicago sativa and Astragalus dahuricus in the summer cover is lower. Conclusion The above three herbaceous plants can be used as the pioneer species for the future vegetation restoration in the coal gangue piles. -
Key words:
- coal gangue pile /
- ecological restoration /
- herbaceous plant /
- pioneer species
-
表 1 不同坡面4—10月份的草本植物生态位宽度
Table 1. Herb niche width from April to October on different slopes
组别 Treatment 物种 Species 4月 Apr. 5月 May 6月 Jun. 7月 Jul. 8月 Aug. 9月 Sep. 10月 Oct. CK 紫花苜蓿 Medicago sativa 1.380 1.499 1.398 1.481 1.420 1.552 1.577 兴安黄耆 Astragalus dahuricus 1.267 1.476 1.330 1.179 1.383 1.249 1.251 狗尾草 Setaria viridis 0.000 0.000 0.305 披碱草 Elymus dahuricu 0.943 1.044 LR 小蓬草 Conyza canadensis 0.997 1.268 0.811 0.604 0.713 0.379 茵陈蒿 Artemisia capillaris 0.665 0.788 0.768 0.657 0.653 1.061 1.080 圆叶牵牛 Pharbitis purpurea 0.943 0.509 0.852 1.280 0.978 野青茅 Deyeuxia arundinacea 0.000 0.000 0.000 0.562 0.440 0.540 0.594 -
[1] 胡振琪. 煤矸石山复垦[M]. 北京: 煤炭工业出版社, 2006: 20−25.Hu Z Q. Coal gangue piles reclamation[M]. Beijing: China Coal Industry Press, 2006: 20−25. [2] 杨国清, 刘康怀. 固体废物处理工程[M]. 北京: 科技出版社, 2000: 112−138.Yang G Q, Liu K H. Solid waste treatment engineering[M]. Beijing: Science and Technology Press, 2000: 112−138. [3] 薛亚洲, 王海军. 全国矿产资源节约与综合利用报告(2014)[J]. 中国国土资源经济, 2014, 27(8):2.Xue Y Z, Wang H J. National report on the conservation and integrated use of mineral resources (2014)[J]. Natural Resource Economics of China, 2014, 27(8): 2. [4] 胡振琪, 巩玉玲, 吴媛婧, 等. 自燃煤矸石山隔离层空气阻隔性对时间的响应[J]. 中国矿业, 2019, 28(5):77−81, 124.Hu Z Q, Gong Y L, Wu Y J, et al. The response of air barrier property to time of the isolation layers of coal gangue piles with spontaneow combustion[J]. China Mining Magazine, 2019, 28(5): 77−81, 124. [5] 陈文敏, 杨金和, 詹隆. 煤矿废弃物综合利用技术[M]. 北京: 化学工业出版社, 2011: 54−56.Chen W M, Yang J H, Zhan L. Comprehensive utilization technology of coal mine waste[M]. Beijing: Chemical Industry Press, 2011: 54−56. [6] 杨主泉, 胡振琪, 王金叶, 等. 煤矸石山复垦的恢复生态学研究[J]. 中国水土保持, 2007(6):35−36, 41. doi: 10.3969/j.issn.1000-0941.2007.06.014Yang Z Q, Hu Z Q, Wang J Y, et al. Restoration ecology study of coal gangue reclamation[J]. Soil and Water Conservation in China, 2007(6): 35−36, 41. doi: 10.3969/j.issn.1000-0941.2007.06.014 [7] 陈胜华, 胡振琪, 陈星彤, 等. 煤矸石山酸化的内外因分析及防治措施[J]. 煤炭科学技术, 2007(2):90−92, 96. doi: 10.3969/j.issn.0253-2336.2007.02.027Chen S H, Hu Z Q, Chen X T, et al. Internal and outer cause analysis and prevention measures of acidification for coal refuse hill[J]. Coal Science and Technology, 2007(2): 90−92, 96. doi: 10.3969/j.issn.0253-2336.2007.02.027 [8] Wilson M V, Schmidt A. Measuring beta diversity with presence-absence data[J]. Journal of Ecology, 1984, 72: 1055−1064. doi: 10.2307/2259551 [9] 张策, 何绪文. 煤炭固体废物治理和利用[M]. 北京: 煤炭工业出版社, 1998.Zhang C, He X W. Treatment and utilization of coal solid waste[M]. Beijing: China Coal Industry Press, 1998. [10] 张成梁. 山西阳泉自燃矸石山生境及植被构建技术研究[D]. 北京: 北京林业大学, 2008.Zhang C L. The habitat and vegetation constructing for spontaneous combustion gangue pile in Yangquan City, Shanxi Province[D]. Beijing: Beijing Forestry University, 2008. [11] 樊文华, 李慧峰, 白中科, 等. 黄土区大型露天煤矿煤矸石自燃对复垦土壤质量的影响[J]. 农业工程学报, 2010, 26(2):319−324. doi: 10.3969/j.issn.1002-6819.2010.02.055Fan W H, Li H F, Bai Z K, et al. Effect of gangue spontaneous combustion on reclaimed soil quality of large-scaled opencast mine in loess area[J]. Transactions of the Chinese Society of Agricultural Engineering, 2010, 26(2): 319−324. doi: 10.3969/j.issn.1002-6819.2010.02.055 [12] 王艳, 王敏超, 代保清. 东北煤矸石矿山生态恢复的植物选择探析[J]. 沈阳师范大学学报(自然科学版), 2017, 35(2):170−174.Wang Y, Wang M C, Dai B Q. Analysis of the plant selection for ecological restoration of coal gangue pile in Northeast of China[J]. Journal of Shenyang Normal University (Natural Science Edition), 2017, 35(2): 170−174. [13] Sharma K D, Praveen K, Gough L P. Rehabilitation of a lignite mine-disturbed area in the Indian desert land[J]. Land Degradation & Development, 2004, 15(2): 163−176. [14] 李道亮, 王莹. 煤矿废弃地植物恢复品种选择模型研究[J]. 系统工程理论与实践, 2005(8):140−144. doi: 10.3321/j.issn:1000-6788.2005.08.022Li D L, Wang Y. A plant species selection model for revegetation of abandoned land contaminated from coal mining activities[J]. Systems Engineering-Theory & Practice, 2005(8): 140−144. doi: 10.3321/j.issn:1000-6788.2005.08.022 [15] 谷金锋, 蔡体久, 肖洋, 等. 工矿区废弃地的植被恢复[J]. 东北林业大学学报, 2004, 32(3):19−22. doi: 10.3969/j.issn.1000-5382.2004.03.006Gu J F, Cai T J, Xiao Y, et al. Revegetation of waste land in mining areas[J]. Journal of Northeast Forestry University, 2004, 32(3): 19−22. doi: 10.3969/j.issn.1000-5382.2004.03.006 [16] 卞正富, 张国良. 生物多样性指数在矿山土地复垦中的应用[J]. 煤炭学报, 2000, 25(1):76−80. doi: 10.3321/j.issn:0253-9993.2000.01.017Bian Z F, Zhang G L. Application of bio-diversity indices to mined land reclamation[J]. Journal of China Coal Society, 2000, 25(1): 76−80. doi: 10.3321/j.issn:0253-9993.2000.01.017 [17] 李霖, 李素清. 阳泉矿区煤矸石山复垦地不同植被下草本植物群落优势种种间关系及生态位[J]. 中国农学通报, 2019, 35(1):80−87. doi: 10.11924/j.issn.1000-6850.casb18060080Li L, Li S Q. Dominant species of herb community on the reclaimed coal gob pile in Yangquan mining area of Shanxi under different vegetations: interspecific relationship and niche[J]. Chinese Agricultural Science Bulletin, 2019, 35(1): 80−87. doi: 10.11924/j.issn.1000-6850.casb18060080 [18] 马子清. 山西植被[M]. 北京: 中国科学技术出版社, 2001.Ma Z Q. Shanxi vegetation[M]. Beijing: China Science and Technology Press, 2001. [19] 庞圣江, 张培, 杨保国, 等. 广西大青山西南桦人工林草本优势种群生态位研究[J]. 中南林业科技大学学报, 2018, 38(6):94−101.Pang S J, Zhang P, Yang B G, et al. Niche characteristics of dominant herbage populations within Betula alnoides plantations in Daqingshan Mountain areas of Guangxi[J]. Journal of Central South University of Forestry & Technology, 2018, 38(6): 94−101. [20] 刘艳, 郑越月, 敖艳艳. 不同生长基质的苔藓植物优势种生态位与种间联结[J]. 生态学报, 2019, 39(1):286−293.Liu Y, Zheng Y Y, Ao Y Y. Niche and interspecific association of dominant bryophytes on different substrates[J]. Acta Ecologica Sinica, 2019, 39(1): 286−293. [21] Anthwal S, Bhatt A B, Nautiyal B P. Vegetation structure, niche width, niche overlap and types of competition in temperate grazingland of Garhwal Himalaya, India[J]. Environmentalist, 2008, 28: 261−273. doi: 10.1007/s10669-007-9137-1 -