高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

丛枝菌根真菌对银中杨叶片物质代谢及化学防御的影响

武帅 姜礅 马庆辉 谭明涛 赵佳齐 刘晓霞 孟昭军 严善春

武帅, 姜礅, 马庆辉, 谭明涛, 赵佳齐, 刘晓霞, 孟昭军, 严善春. 丛枝菌根真菌对银中杨叶片物质代谢及化学防御的影响[J]. 北京林业大学学报, 2021, 43(5): 86-92. doi: 10.12171/j.1000-1522.20200172
引用本文: 武帅, 姜礅, 马庆辉, 谭明涛, 赵佳齐, 刘晓霞, 孟昭军, 严善春. 丛枝菌根真菌对银中杨叶片物质代谢及化学防御的影响[J]. 北京林业大学学报, 2021, 43(5): 86-92. doi: 10.12171/j.1000-1522.20200172
Wu Shuai, Jiang Dun, Ma Qinghui, Tan Mingtao, Zhao Jiaqi, Liu Xiaoxia, Meng Zhaojun, Yan Shanchun. Effects of arbuscular mycorrhizal fungi on metabolism and chemical defense of Populus alba × P. berolinensis leaves[J]. Journal of Beijing Forestry University, 2021, 43(5): 86-92. doi: 10.12171/j.1000-1522.20200172
Citation: Wu Shuai, Jiang Dun, Ma Qinghui, Tan Mingtao, Zhao Jiaqi, Liu Xiaoxia, Meng Zhaojun, Yan Shanchun. Effects of arbuscular mycorrhizal fungi on metabolism and chemical defense of Populus alba × P. berolinensis leaves[J]. Journal of Beijing Forestry University, 2021, 43(5): 86-92. doi: 10.12171/j.1000-1522.20200172

丛枝菌根真菌对银中杨叶片物质代谢及化学防御的影响

doi: 10.12171/j.1000-1522.20200172
基金项目: 国家重点研发计划项目(2018YFC1200400)
详细信息
    作者简介:

    武帅。主要研究方向:昆虫化学生态。Email:1072443533@qq.com 地址:150040 黑龙江省哈尔滨市香坊区和兴路26号东北林业大学林学院

    责任作者:

    严善春,教授,博士生导师。主要研究方向:昆虫化学生态。Email:yanshanchun@126.com 地址:同上

  • 中图分类号: S718.43;S792.119

Effects of arbuscular mycorrhizal fungi on metabolism and chemical defense of Populus alba × P. berolinensis leaves

  • 摘要:   目的   探究两种丛枝菌根真菌摩西球囊霉(GM)和根内球囊霉(GI)对银中杨物质代谢及化学防御的影响。   方法   本研究采用孢子含量均为15 个/g的GM、GI基质,分别称取20 g孢子基质与1.3 kg灭菌土混合均匀制成混合基质,将银中杨扦插苗移栽至混合基质中。在丛枝菌根真菌侵染率达到最高时(第90天),分析银中杨叶片内N、P元素、营养物质和次生代谢产物含量,以及防御蛋白活性。   结果   GM和GI处理组银中杨,叶片内N和P、可溶性蛋白质含量均显著高于对照组(P < 0.05),可溶性糖含量显著低于对照组(P < 0.05),淀粉含量与对照组差异不显著(P > 0.05)。次生代谢产物木质素、黄酮、总酚和单宁含量均显著高于对照组(P < 0.05)。防御蛋白苯丙氨酸解氨酶(PAL)、多酚氧化酶(PPO)、胰蛋白酶抑制剂(TI)和胰凝乳蛋白酶抑制剂(CI)活性均显著高于对照组(P < 0.05)。   结论   GM和GI能促进银中杨物质代谢,叶片内营养元素N、P和可溶性蛋白含量升高,可溶性糖含量降低,改变叶片品质,改善其耐受性;增强叶部化学防御能力,次生代谢产物含量和防御蛋白活性增加,改变银中杨对叶部害虫的抗性。因此,丛枝菌根真菌最终能否增强银中杨的抗虫性还有待进一步生物测定试验继续研究。

     

  • 图  1  GM、GI处理组侵染率随时间变化的趋势

    CK.对照;GM.摩西球囊霉;GI.根内球囊霉。数据均为平均值 ± 标准差(n = 3);不同小写字母表示处理组与对照组之间差异显著(P < 0.05)。下同。CK, control; GM, Glomus mosseae; GI, Glomus intraradices. The data annotation in the picture is average value ± SD (n = 3); different lowercase letters mean significant differences between treatment group and control group (P < 0.05). The same below.

    Figure  1.  Trend of infection rate of GM and GI with time

    图  2  GM、GI处理组叶片中营养元素(N、P)和营养物质的含量

    Figure  2.  Contents of nutrient elements (N, P) and nutrients in leaves with GM or GI treatment

    图  3  GM和GI处理组叶片中总酚、黄酮、木质素和单宁的含量

    Figure  3.  Contents of total phenols, flavonoids, lignin and tannins in leaves of GM or GI treatments

    图  4  GM和GI处理组叶片中PAL、PPO、CI和TI的活性

    Figure  4.  Activities of PAL, PPO, CI and TI in leaves of GM or GI treatments

  • [1] Rosendahl S. Communities, populations and individuals of arbuscular mycorrhizal fungi[J]. New Phytologist, 2008, 178(2): 253−266.
    [2] Wu F, Zhang H, Fang F, et al. Arbuscular mycorrhizal fungi alter nitrogen allocation in the leaves of Populus × canadensis ‘Neva’[J]. Plant and Soil, 2017, 421: 477−491. doi: 10.1007/s11104-017-3461-0
    [3] Hoffman M J, Stafford G I, Makunga N P. The role of alkaloids in chemical defence in chemical defence in Clivia miniata (Amaryllidaceae) against herbivory by Brithys crini[J]. South African Journal of Botany, 2018, 115: 319−320.
    [4] Dučaiová Z, Sajko M, Mihaličová S, et al. Dynamics of accumulation of coumarin-related compounds in leaves of Matricaria chamomilla after methyl jasmonate elicitation[J]. Plant Growth Regulation, 2015, 79(1): 81−94.
    [5] Shahabinejad M, Shojaaddini M, Maserti B, et al. Exogenous application of methyl jasmonate and salicylic acid increases antioxidant activity in the leaves of pistachio (Pistacia vera L. cv. Fandoughi) trees and reduces the performance of the phloem-feeding psyllid Agonoscena pistaciae[J]. Arthropod-Plant Interactions, 2014, 8(6): 525−530.
    [6] Heredia J B, Cisneros-Zevallos L. The effect of exogenous ethylene and methyl jasmonate on pal activity, phenolic profiles and antioxidant capacity of carrots (Daucus carota) under different wounding intensities[J]. Postharvest Biology & Technology, 2009, 51(2): 242−249.
    [7] Medel V, Palma R, Mercado D, et al. The effect of protease inhibitors on digestive proteolytic activity in the raspberry weevil, Aegorhinus superciliosus (Guérin) (Coleoptera: Curculionidae)[J]. Neotropical Entomology, 2015, 44(1): 77−83. doi: 10.1007/s13744-014-0250-9
    [8] 姜礅. 重金属胁迫下银中杨抗虫性及食叶害虫舞毒蛾解毒机制研究[D]. 哈尔滨: 东北林业大学, 2019.

    Jiang D. Study on the insect resistance of Populus alba × P. berolinensis and the detoxification mechanism of defoliator, Lymantria dispar under heavy metal stress[D]. Harbin: Northeast Forestry University, 2019.
    [9] Mehrkhou F, Mahmoodi L, Mouavi M. Nutritional indices parameters of large white butterfly Pieris brassicae (Lepidoptera: Pieridae) on different cabbage crops[J]. Archives of Phytopathology and Plant Protection, 2013, 8(25): 3294−3298.
    [10] 王小菲, 高文强, 刘建锋, 等. 植物防御策略及其环境驱动机制[J]. 生态学杂志, 2015, 34(12):3542−3552.

    Wang X F, Gao W Q, Liu J F, et al. Plant defense strategy and its environmental driving mechanism[J]. Journal of Ecology, 2015, 34(12): 3542−3552.
    [11] Oliveira J S F D, Xavier L P, Lins A, et al. Effects of inoculation by arbuscular mycorrhizal fungi on the composition of the essential oil, plant growth, and lipoxygenase activity of Piper aduncum L[J/OL]. AMB Express, 2019, 9(1): 29 [2020−02−11]. https://link.springer.com/article/10.1186/s13568-019-0756-y.
    [12] Hill E M, Robinson L A, Abdul-Sada A, et al. Arbuscular mycorrhizal fungi and plant chemical defence: effects of colonisation on aboveground and belowground metabolomes[J]. Journal of Chemical Ecology, 2018, 44(2): 198−208. doi: 10.1007/s10886-017-0921-1
    [13] Wang M G, Bezemer T M, Putten W H, et al. Effects of the timing of herbivory on plant defense induction and insect performance in ribwort plantain (Plantago lanceolata L.) depend on plant mycorrhizal status[J]. Journal of Chemical Ecology, 2015, 41(11): 1006−1017. doi: 10.1007/s10886-015-0644-0
    [14] Nishida T, Katayama N, Izumi N, et al. Arbuscular mycorrhizal fungi species-specifically affect induced plant responses to a spider mite[J]. Population Ecology, 2010, 52(4): 507−515. doi: 10.1007/s10144-010-0208-7
    [15] Barber N A. Arbuscular mycorrhizal fungi are necessary for the induced response to herbivores by Cucumis sativus[J]. Journal of Plant Ecology, 2013, 6(2): 171−176. doi: 10.1093/jpe/rts026
    [16] Phillips J M, Hayman D S. Improved procedures for clearing roots and staining parasitic and vesicular arbuscular fungi for rapid assessment of infection[J]. Transactions of the British Mycological Society, 1970, 55: 158−161. doi: 10.1016/S0007-1536(70)80110-3
    [17] Mcgonigle T P, Miller M H, Evans D G, et al. A new method which gives an objective measure of colonization of roots by vesicular: arbuscular mycorrhizal fungi[J]. New Phytologist, 1990, 115(3): 495−501.
    [18] 赵静. 土壤酸化对土壤有效养分、酶活性及黄金梨品质的影响[D]. 泰安: 山东农业大学, 2011.

    Zhao J. Effects of soil acidification on available soil nutrients, soil enzyme activities and characters of Whangkeumbae in pear orchards[D]. Taian: Shandong Agricultural University, 2011.
    [19] Bradford M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding[J]. Analytical Biochemistry, 1976, 72(1−2): 248−254. doi: 10.1016/0003-2697(76)90527-3
    [20] 孟昭军. 外源茉莉酸类化合物对两种落叶松的诱导抗虫性研究[D]. 哈尔滨: 东北林业大学, 2008.

    Meng Z J. Study on the induced resistance of two larch species treated with exogenous jasmonates to insects[D]. Harbin: Northeast Forestry University, 2008.
    [21] 王燕芳. 茉莉酸甲酯和水杨酸诱导棉花抗虫性的初步研究[D]. 阿拉尔: 塔里木大学, 2015.

    Wang Y F. A preliminary study on induced resistance against cotton insect by methyl jasmonate and salicylate[D]. Alaer: Tarim University, 2015.
    [22] 段文昌, 段立清, 李海平, 等. 外源茉莉酸及枸杞瘿螨危害诱导的枸杞防御反应[J]. 昆虫学报, 2012, 55(7):804−809.

    Duan W C, Duan L Q, Li H P, et al. Defense responses in wolfberry (Lycium barbarum) induced by exogenous jasmonic acid and gall mite Aceria pallida (Acari: Eriophyidae)[J]. Acta Entomologica Sinica, 2012, 55(7): 804−809.
    [23] 黄文烨. 山竹壳中果胶和酚类物质的提取纯化及理化性质研究[D]. 广州: 暨南大学, 2016.

    Huang W Y. Extraction and characterization of pectin and phenolics from Mangosteen rind[D]. Guangzhou: Jinan University, 2016.
    [24] 范旭东. 浙江千岛湖地区苦槠叶片昆虫取食状类型和取食强度研究[D]. 上海: 华东师范大学, 2008.

    Fan X D. Intensity and patterns of Castanopsis sclerophylla leaf eaten by insects at Qiandao Lake, Zhejiang[D]. Shanghai: East China Normal University, 2008.
    [25] Jia Z S, Tang M C, Wu J M. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals[J]. Food Chemistry, 1999, 64(4): 555−559. doi: 10.1016/S0308-8146(98)00102-2
    [26] 任琴, 胡永建, 李镇宇, 等. 受害马尾松木质素含量及其过氧化物酶活性[J]. 生态学报, 2007, 26(11):4895−4899. doi: 10.3321/j.issn:1000-0933.2007.11.060

    Ren Q, Hu Y J, Li Z Y, et al. Content variation of lignin and peroxidase activities from damaged Pinus massioniana[J]. Journal of Ecology, 2007, 26(11): 4895−4899. doi: 10.3321/j.issn:1000-0933.2007.11.060
    [27] Tao L, Ahmad A, de Roode J C, et al. Arbuscular mycorrhizal fungi affect plant tolerance and chemical defences to herbivory through different mechanisms[J]. Journal of Ecology, 2016, 104(2): 561−571. doi: 10.1111/1365-2745.12535
    [28] 王倡宪, 秦岭, 冯固, 等. 三种丛枝菌根真菌对黄瓜幼苗生长的影响[J]. 农业环境科学学报, 2003, 22(3):301−303. doi: 10.3321/j.issn:1672-2043.2003.03.012

    Wang C X, Qin L, Feng G, et al. Effects of three arbuscular mycorrhizal fungi on growth of cucumber seedlings[J]. Journal of Agricultural Environmental Science, 2003, 22(3): 301−303. doi: 10.3321/j.issn:1672-2043.2003.03.012
    [29] Wang L, Pokharel S S, Chen F J. Arbuscular mycorrhizal fungi alter the food utilization, growth, development and reproduction of armyworm (Mythimna separata) fed on Bacillus thuringiensis maize[J/OL]. PeerJ, 2019: 7 [2020−01−23]. https://doi.org/10.7287/peerj.preprints.27643v1.
    [30] 邹碧莹, 张云翼. 丛枝菌根(AM)真菌对植物营养代谢的影响研究进展[J]. 现代农业科技, 2008(15):10−13. doi: 10.3969/j.issn.1007-5739.2008.15.003

    Zou B Y, Zhang Y Y. Research progress on the effect of arbuscular mycorrhizal (AM) fungi on plant nutrient metabolism[J]. Modern Agricultural Science and Technology, 2008(15): 10−13. doi: 10.3969/j.issn.1007-5739.2008.15.003
    [31] Bonfante P, Gnre A. Mechanisms underlying beneficial plant-fungus interactions in mycorrhizal symbiosis[J]. Nat Commun, 2010, 1: 1−11.
    [32] 张妮娜. 接种丛枝菌根真菌(AMF)对盆栽柑橘幼苗抗旱性的影响[D]. 重庆: 西南大学, 2018.

    Zhang N N. Influences of arbuscular mycorrhizal fungi(AMF)inoculation on drought resistance mechanism of the potted citrus plantlets[D]. Chongqing: Southwest University, 2018.
    [33] Moeser J, Vidal S. Response of larvae of invasive maize pest Diabrotica virgifera virgifera (Coleoptera: Chrysomelidae) to carbon/nitrogen ratio and phytosterol content of European maize varieties[J]. Journal of Economic Entomology, 2004, 4: 1335.
    [34] Zhang X, Lu C H, Chen Y, et al. Relationship between leaf C/N ratio and insecticidal protein expression in Bt cotton as affected by high temperature and N rate[J]. Journal of Integrative Agriculture, 2014, 13(1): 82−88. doi: 10.1016/S2095-3119(13)60348-2
    [35] Gherlenda A N, Haigh A M, Moore B D, et al. Climate change, nutrition and immunity: effects of elevated CO2 and temperature on the immune function of an insect herbivore[J]. Journal of Insect Physiology, 2016, 85: 57−64.
    [36] 马艳, 夏敬源. 取食不同施氮量棉花对棉铃虫发育与繁殖的影响[J]. 中国棉花, 1997(1):14−15.

    Ma Y, Xia J Y. Effects of feeding on Gossypium spp. with different nitrogen application rates on the development and reproduction of Helicoverpa armigera[J]. Chinese Cotton, 1997(1): 14−15.
    [37] 钱为. 分月扇舟蛾诱导杨树防御反应的研究[D]. 南京: 南京林业大学, 2010.

    Qian W. Defense responses of poplar induced by Clostera anastomosis [D]. Nanjing: Nanjing Forestry University, 2010.
    [38] Jiang D, Yan S C. MeJA is more effective than JA in inducing defense responses in Larix olgensis[J]. Arthropod Plant Interactions, 2018, 12(1): 49−56. doi: 10.1007/s11829-017-9551-3
    [39] Selvaraj A, Thangavel K, Uthandi S, et al. Arbuscular mycorrhizal fungi (Glomus intraradices) and diazotrophic bacterium (Rhizobium BMBS) primed defense in blackgram against herbivorous insect (Spodoptera litura) infestation[J]. Microbiological Research, 2020, 231: 126355. doi: 10.1016/j.micres.2019.126355
    [40] 周志强, 胡燕妮, 彭英丽, 等. 3种丛枝菌根真菌对不同种源黄檗幼苗的影响[J]. 植物研究, 2015, 35(1):92−100. doi: 10.7525/j.issn.1673-5102.2015.01.015

    Zhou Z Q, Hu Y N, Peng Y L, et al. Effects of three arbuscular mycorrhizas on different provenances of amur cork seedlings[J]. Bulletin of Botanical Research, 2015, 35(1): 92−100. doi: 10.7525/j.issn.1673-5102.2015.01.015
  • 加载中
图(4)
计量
  • 文章访问数:  302
  • HTML全文浏览量:  114
  • PDF下载量:  29
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-05
  • 修回日期:  2020-09-22
  • 网络出版日期:  2021-05-12
  • 刊出日期:  2021-05-27

目录

    /

    返回文章
    返回