高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

小陇山锐齿栎林木本植物物种丰富度与生产力关系研究

彭潔莹 谢缘铭 刘文帧 闫琰

彭潔莹, 谢缘铭, 刘文帧, 闫琰. 小陇山锐齿栎林木本植物物种丰富度与生产力关系研究[J]. 北京林业大学学报. doi: 10.12171/j.1000-1522.20200192
引用本文: 彭潔莹, 谢缘铭, 刘文帧, 闫琰. 小陇山锐齿栎林木本植物物种丰富度与生产力关系研究[J]. 北京林业大学学报. doi: 10.12171/j.1000-1522.20200192
Peng Jieying, Xie Yuanming, Liu Wenzhen, Yan Yan. Relationship between tree species richness and productivity of Quercus aliena var. acutiserrata forest in Xiaolongshan, Gansu of northwestern China[J]. Journal of Beijing Forestry University. doi: 10.12171/j.1000-1522.20200192
Citation: Peng Jieying, Xie Yuanming, Liu Wenzhen, Yan Yan. Relationship between tree species richness and productivity of Quercus aliena var. acutiserrata forest in Xiaolongshan, Gansu of northwestern China[J]. Journal of Beijing Forestry University. doi: 10.12171/j.1000-1522.20200192

小陇山锐齿栎林木本植物物种丰富度与生产力关系研究

doi: 10.12171/j.1000-1522.20200192
基金项目: 生态环境部生物多样性调查评估项目(2019HJ2096001006),国家自然科学基金项目(31700380),中央高校基本科研业务费专项(2452016139)
详细信息
    作者简介:

    彭潔莹。主要研究方向:林学。Email:pengjy@nwafu.edu.cn 地址:712100陕西省杨凌示范区西北农林科技大学林学院

    责任作者:

    闫琰,博士,讲师。主要研究方向:森林生态学。Email:yanyanemail@nwafu.edu.cn 地址:同上

  • 中图分类号: S718.5

Relationship between tree species richness and productivity of Quercus aliena var. acutiserrata forest in Xiaolongshan, Gansu of northwestern China

  • 摘要:   目的  物种丰富度−生产力关系研究是天然林生物多样性保护和生态系统功能维持的理论依据。由于物种丰富度间接包含了功能多样性、系统发育多样性和基因组多样性,因此从物种丰富度的角度探讨多样性−生产力关系,可以分析发现影响植被生产力的其他多样性因素。以往关于森林物种丰富度与生产力关系的研究大多集中在群落水平,而对于单个物种生产力对邻域物种丰富度的响应是如何影响群落水平的物种丰富度与生产力关系的研究却鲜见报道。  方法  本研究以小陇山地区的锐齿栎天然林为研究对象,通过回归分析、关联指数模型和异质性泊松模型,分析群落和物种水平的木本植物物种丰富度与生产力关系。  结果  丰富度−生产力关系在群落水平上表现出明显的尺度依赖性:在10 m × 10 m的研究尺度上,物种丰富度与群落生产力呈单峰曲线关系;而在20 m × 20 m的研究尺度上,物种丰富度对群落生产力无显著影响。物种水平上,0 ~ 20 m范围内物种丰富度−生产力关系中性种占比最大,占所有目标种总和的68.8% ~ 81.3%;其次为促进种;抑制种所占比例最小。研究区部分的树种表现出明显的偏离中性关系的情况,种间促进或抑制作用对丰富度−生产力关系有重要影响。  结论  物种丰富度和物种属性均会影响小陇山锐齿栎林生产力。

     

  • 图  1  群落水平不同尺度下的物种丰富度与生产力关系

    Figure  1.  Community-level analysis of relationship between species diversity and productivity at different scales

    图  2  样地所有目标种丰富度−生产力关系曲线

    Figure  2.  Richness-productivity relationship curves of all focal species in the sample plot

    图  3  示例树种AI模型分析

    实线表示AI值, 虚线代表异质性泊松模型计算的95%置信区间。Solid lines are AI values, broken lines are 95% confidence intervals simulated by the heterogeneous Poisson distribution model.

    Figure  3.  AI model analysis of three typical tree species

    图  4  不同尺度上表现出显著正、显著负和中性丰富度−生产力关系的物种比例

    Figure  4.  Species percentage of significant positive, negative and neutral richness-productivity relationship under different scales

    表  1  各优势树种异速生长方程

    Table  1.   Allometric equations of the dominant tree species

    树种(组)
    Tree species (group)
    生物量模型和参数
    Biomass model and parameter
    锐齿栎 Quercus aliena var. acutiserrataW = e−2.507 5 × DBH2.544 4
    华山松 Pinus armandiiW = e−2.296 2 × DBH2.411 9
    其他阔叶类 Other broadleaved treesW = e−1.232 5 × DBH2.146 8
    注:W为单木总生物量。Notes: W, total biomass of single tree.
    下载: 导出CSV

    表  2  物种丰富度与群落生产力关系的最优模型分析

    Table  2.   Analysis of the optimal model between species richness and community productivity

    尺度 Scale模型 ModelFR2PAICc
    10 m × 10 mp ~ s12.580 00.114 80.000 61 927.451
    p ~ s + s27.607 00.136 80.000 91 926.958
    20 m × 20 mp ~ s0.34670.014 90.561 7460.522
    p ~ s + s20.34850.030 70.709 6462.117
    注:p. 群落生产力;s. 物种丰富度。粗体表示具有更低AIC值,为最优模型。Notes: p, community productivity; s, species richness. The bold italic fonts mean the optimal models with lowest AICc value.
    下载: 导出CSV

    表  3  异质性泊松模型下不同树种的多样性-生产力关系分析结果

    Table  3.   Analysis results of diversity-productivity relationship of different tree species under heterogeneous Poisson model

    物种
    Species
    最大胸径
    Largest
    DBH/cm
    多度
    Abundance
    垂直结构
    Vertical
    structure
    距离 Distance/m
    1234567891011121314151617181920
    锐齿栎 Quercus aliena var. acutesrrata 53.6 79 林冠层 Canopy layer a a a a a a a a a a a a a a a a a a a a
    鹅耳枥 Carpinus turczaninowii 29.9 52 林冠层 Canopy layer a a n n a a n n n n n n n n n n n n n n
    华椴 Tilia chinensis 44.1 29 林冠层 Canopy layer a n n n n n n n n n n n n n n n n n n n
    色木槭 Acer mono 43.3 28 亚林层 Subcanopy layer n n n n n n n n n n n n n n n n n n n n
    光叶泡花树
    Meliosma cuneifolia var. glabriuscula
    11.6 26 林下层 Understory layer n n r r r r r r r r r r r r r r r r r r
    川鄂鹅耳枥
    Carpinus hupeana var. henryana
    31.2 23 林冠层 Canopy layer a a a a n n n n n n n n n n n n n n n n
    小叶鹅耳栎
    Carpinus turczaninowii var. stipulata
    28.5 20 林冠层 Canopy layer a a a a a a a a a a a a a a a a a a a a
    水榆花楸 Sorbus alnifolia 27.0 20 林冠层 Canopy layer a a a a a a a a a a a a a a a a a a a a
    鄂椴 Tilia oliveri 31.4 18 林冠层 Canopy layer n n n n n n n n n n n n n n n n n n n n
    膀胱果 Staphylea holocarpa 22.7 15 亚林层 Subcanopy layer n n n n n n n n n n n n n n n n n n n n
    三桠乌药 Lindera obtusiloba 20.2 13 亚林层 Subcanopy layer n n n n n n n n n n n n n n n n n n n n
    少脉椴 Tilia paucicostata 21.5 8 林冠层 Canopy layer n n n n n n n n n n n n n n n n n n n n
    领春木 Euptelea pleiospermum 20.0 8 亚林层 Subcanopy layer a n n n n n n n n n n n n n n n n n n n
    陕甘花楸 Sorbus koehneana 17.2 8 亚林层 Subcanopy layer n a n n n n n n n n n n n n n n n n n n
    毛糯米椴 Tilia henryana 19.0 7 林冠层 Canopy layer n n n n n n n n n n n n n n n n n n n n
    青榨槭 Acer davidii 12.0 7 亚林层 Subcanopy layer n n n n n n n n n n n n n n n n n n n n
    唐棣 Amelanchier sinica 14.0 6 亚林层 Subcanopy layer n n n n n n n n n n n n n n n n n r r r
    小叶梣 Fraxinus bungeana 13.1 5 林下层 Understory layer n n n n n n n n n n n n n n n n n n n n
    桦叶四蕊槭 Acer tetramerum 8.5 5 亚林层 Subcanopy layer n n n n n n n n n n n n n n n n n n n n
    蒙古栎 Quercus mongolica 34.0 4 林冠层 Canopy layer n n n n n n n n n n n n n n n n n n n n
    铁木 Ostrya japonica 12.5 4 亚林层 Subcanopy layer n n n n n n n n n n n n n n n n n n n n
    湖北花楸 Sorbus hupehensis 26.0 3 亚林层 Subcanopy layer n n n n n n n n n n n n n n n n n n n n
    红椋子 Swida hemsleyi 30.6 2 亚林层 Subcanopy layer a n n n n n n n n n n n n n n n n n n n
    网脉椴 Tilia dictyoneura 16.9 2 亚林层 Subcanopy layer n n n n n n r r r r r r r r r r r r r r
    甘肃山楂 Crataegus kansuensis 10.5 2 林下层 Understory layer n n n n n n n n n n n n n n n n n n n n
    兴山榆 Ulmus bergmanniana 27.2 1 林冠层 Canopy layer n n n n n n n n n n n n n n n n n n n n
    茶条槭 Acer ginnala 22.5 1 亚林层 Subcanopy layer n r n r r r r r r r r r r r r r r r r r
    华山松 Pinus armandii 20.3 1 林冠层 Canopy layer a a a a a a a a a a a a a a a a a a a a
    椴树 Tilia tuan 15.3 1 林冠层 Canopy layer n a n a a a n n n n n n n n n n a n n a
    毛花槭 Acer erianthum 11.0 1 亚林层 Subcanopy layer n n n n n n n n n n n n n n n n n n n n
    春榆 Ulmus davidiana 10.3 1 亚林层 Subcanopy layer n n n n n n n n n n n n n n n n n n n n
    Toxicodendron verniciflum 9.2 1 亚林层 Subcanopy layer n n n n n r n n n n n n n n r n r r r r
    注:a. 促进种;r. 抑制种;n. 中性种。Notes: a, acumulator; r, repeller; n, neutral species.
    下载: 导出CSV
  • [1] 马克平. 生物多样性与生态系统功能的实验研究[J]. 生物多样性, 2010, 21(3):247−248.

    Ma K P. Studies on biodiversity and ecosystem function via manipulation experiments[J]. Biodiversity Science, 2010, 21(3): 247−248.
    [2] Cardinale B J, Duffy J E, Gonzalez A, et al. Biodiversity loss and its impact on humanity[J]. Nature, 2012, 489: 9−67.
    [3] Loreau M, Naeem S, Inchausti P, et al. Biodiversity and ecosystem functioning: current knowledge and future challenges[J]. Science, 2001, 294: 804−808. doi: 10.1126/science.1064088
    [4] Mensah S, Veldtman R, Assogbadjo A E, et al. Tree species diversity promotes aboveground carbon storage through functional diversity and functional dominance[J]. Ecology and Evolution, 2016, 6(20): 7546−7557. doi: 10.1002/ece3.2525
    [5] Ruiz-Benito P, Gómez-Aparicio L, Paquette A, et al. Diversity increases carbon storage and tree productivity in Spanish forests[J]. Global Ecology and Biogeography, 2014, 23(3): 311−322. doi: 10.1111/geb.12126
    [6] 车盈, 金光泽. 物种多样性和系统发育多样性对阔叶红松林生产力的影响[J]. 应用生态学报, 2019, 30(7):2241−2248.

    Che Y, Jin G Z. Effects of species diversity and phylogenetic diversity on productivity of a mixed broadleaved-Korean pine forest[J]. Chinese Journal of Applied Ecology, 2019, 30(7): 2241−2248.
    [7] Lasky J R, Uriarte M, Boukili V K, et al. The relationship between tree biodiversity and biomass dynamics changes with tropical forest succession[J]. Ecology Letters, 2014, 17(9): 1158−1167. doi: 10.1111/ele.12322
    [8] Fridley J D. Diversity effects on production in different light and fertility environments: an experiment with communities of annual plants[J]. Journal of Ecology, 2003, 91(3): 396−406. doi: 10.1046/j.1365-2745.2003.00775.x
    [9] Tilman D, Wedin D A, Knops J M H. Productivity and sustainability influenced by biodiversity in grassland ecosystems[J]. Nature, 1996, 379: 718−720. doi: 10.1038/379718a0
    [10] Wang J, Cheng Y, Zhang C, et al. Relationships between tree biomass productivity and local species diversity[J]. Ecosphere, 2016, 7(11): e01562. doi: 10.1002/ecs2.1562
    [11] Liang J, Crowther T W, Picard N, et al. Positive biodiversity-productivity relationship predominant in global forests[J/OL]. Science, 2016, 354: aaf8957 [2020−08−19]. https://www.science.org/doi/10.1126/science.aaf8957.
    [12] Morin X, Fahse L, Scherer-Lorenzen M, et al. Tree species richness promotes productivity in temperate forests through strong complementarity between species[J]. Ecology Letters, 2014, 14(12): 1211−1219.
    [13] Zhang Y, Chen H Y H, Taylor A R. Positive species diversity and above-ground biomass relationships are ubiquitous across forest strata despite interference from overstorey trees[J]. Functional Ecology, 2017, 31(2): 419−426. doi: 10.1111/1365-2435.12699
    [14] 谭凌照, 范春雨, 范秀华. 吉林蛟河阔叶红松林木本植物物种多样性及群落结构与生产力的关系[J]. 植物生态学报, 2017, 41(11):1149−1156. doi: 10.17521/cjpe.2016.0321

    Tan L Z, Fan C Y, Fan X H. Relationships between species diversity or community structure and productivity of woody-plants in a broad-leaved Korean pine forest in Jiaohe, Jilin, China[J]. Chinese Journal of Plant Ecology, 2017, 41(11): 1149−1156. doi: 10.17521/cjpe.2016.0321
    [15] 吴初平, 韩文娟, 江波, 等. 浙江定海次生林内物种丰富度与生物量和生产力关系的环境依赖性[J]. 生物多样性, 2018, 26(6):545−553. doi: 10.17520/biods.2017320

    Wu C P, Han W J, Jiang B, et al. Relationships between species richness and biomass/productivity depend on environmental factors in secondary forests of Dinghai, Zhejiang Province[J]. Biodiversity Science, 2018, 26(6): 545−553. doi: 10.17520/biods.2017320
    [16] Adler P B, Seabloom E W, Borer E T, et al. Productivity is a poor predictor of plant species richness[J]. Science, 2011, 333: 1750−1753. doi: 10.1126/science.1204498
    [17] 张全国, 张大勇. 生物多样性与生态系统功能: 进展与争论[J]. 生物多样性, 2002, 10(1):49−60. doi: 10.3321/j.issn:1005-0094.2002.01.008

    Zhang Q G, Zhang D Y. Biodiversity and ecosystem functioning: recent advances and controversies[J]. Biodiversity Science, 2002, 10(1): 49−60. doi: 10.3321/j.issn:1005-0094.2002.01.008
    [18] Kirwan L, Connolly J, Finn J A, et al. Diversity-interaction modeling: estimating contributions of species identities and interactions to ecosystem function[J]. Ecology, 2009, 90(8): 2032−2038. doi: 10.1890/08-1684.1
    [19] Huston M A. Hidden treatments in ecological experiments: re-evaluating the ecosystem function of biodiversity[J]. Oecologia, 1997, 110(4): 449−460. doi: 10.1007/s004420050180
    [20] Fox J W. The long-term relationship between plant diversity and total plant biomass depends on the mechanism maintaining diversity[J]. Oikos, 2003, 102(3): 630−640. doi: 10.1034/j.1600-0706.2003.12618.x
    [21] Tilman D, Lehman C L, Thomson K T. Plant diversity and ecosystem productivity: theoretical considerations[J]. Proc Proceedings of the National Academy of Sciences of the United States of America, 1997, 94(5): 1857−1861.
    [22] Tilman D, Reich P B, Knops J M H, et al. Diversity and productivity in a long-term grassland experiment[J]. Science, 2001, 294: 843−845. doi: 10.1126/science.1060391
    [23] Thompson K, Askew A P, Grime J P, et al. Biodiversity, ecosystem function and plant traits in mature and immature plant communities[J]. Functional Ecology, 2005, 19(2): 355−358. doi: 10.1111/j.0269-8463.2005.00936.x
    [24] Roscher C, Tempertonb V M, Buchmannd N, et al. Community assembly and biomass production in regularly and never weeded experimental grasslands[J]. Acta Oecologica-international Journal of Ecology, 2009, 35(2): 206−217. doi: 10.1016/j.actao.2008.10.003
    [25] Zhang Y, Chen H Y H, Reich P B. Forest productivity increases with evenness, species richness and trait variation: a global meta-analysis[J]. Journal of Ecology, 2012, 100(3): 742−749. doi: 10.1111/j.1365-2745.2011.01944.x
    [26] Jacob M, Leuschner C, Thomas F M. Productivity of temperate broad-leaved forest stands differing in tree species diversity[J]. Annals of Forest Science, 2010, 67(5): 503−503. doi: 10.1051/forest/2010005
    [27] Seidel D, Leuschner C, Scherber C, et al. The relationship between tree species richness, canopy space exploration and productivity in a temperate broad-leaf mixed forest[J]. Forest Ecology and Management, 2013, 310: 366−374. doi: 10.1016/j.foreco.2013.08.058
    [28] Finegan B, Penaclaros M, de Oliveira A A, et al. Does functional trait diversity predict above-ground biomass and productivity of tropical forests? Testing three alternative hypotheses[J]. Journal of Ecology, 2015, 103(1): 191−201. doi: 10.1111/1365-2745.12346
    [29] 雷羚洁, 孔德良, 李晓明, 等. 植物功能性状、功能多样性与生态系统功能: 进展与展望[J]. 生物多样性, 2016, 24(8):922−931. doi: 10.17520/biods.2015295

    Lei L J, Kong D L, Li X M, et al. Plant functional traits, functional diversity, and ecosystem functioning: current knowledge and perspectives[J]. Biodiversity Science, 2016, 24(8): 922−931. doi: 10.17520/biods.2015295
    [30] Liira J, Schmidt T, Aavik T, et al. Plant functional group composition and large-scale species richness in European agricultural landscapes[J]. Journal of Vegetation Science, 2008, 19(1): 3−14. doi: 10.3170/2007-8-18308
    [31] 侯浩, 张宋智, 关晋宏, 等. 小陇山不同林龄锐齿栎林土壤有机碳和全氮积累特征[J]. 生态学报, 2016, 36(24):8025−8033.

    Hou H, Zhang S Z, Guan J H, et al. Accumulation of soil organic carbon and total nitrogen in Quercus aliena var. acuteserrata forests at different age stages in the Xiaolongshan Mountains, Gansu Province[J]. Acta Ecologica Sinica, 2016, 36(24): 8025−8033.
    [32] 张岗岗, 刘瑞红, 惠刚盈, 等. 林分空间结构参数N元分布及其诠释: 以小陇山锐齿栎天然混交林为例[J]. 北京林业大学学报, 2019, 41(4):21−31.

    Zhang G G, Liu R H, Hui G Y, et al. N-variate distribution and its annotation on forest spatial structural parameters: a case study of Quercus aliena var. acuteserrata natural mixed forest in Xiaolong Mountains, Gansu Province of northwestern China[J]. Journal of Beijing Forestry University, 2019, 41(4): 21−31.
    [33] 巨天珍, 郝青, 葛建团, 等. 甘肃小陇山锐齿栎林空间分布格局分析[J]. 林业资源管理, 2010, 8(4):27−30, 44. doi: 10.3969/j.issn.1002-6622.2010.04.007

    Ju T Z, Hao Q, Ge J T, et al. Study on the spatial distribution pattern of Quercus aliena var. acuteserata population in Xiaolongshan, Gansu[J]. Forest Resources Management, 2010, 8(4): 27−30, 44. doi: 10.3969/j.issn.1002-6622.2010.04.007
    [34] 赵中华, 惠刚盈, 袁士云, 等. 小陇山锐齿栎天然林空间结构特征[J]. 林业科学, 2009, 45(3):1−6. doi: 10.3321/j.issn:1001-7488.2009.03.001

    Zhao Z H, Hui G Y, Yuan S Y, et al. Spatial structure characteristic of Quercus aliena var. acuteserrata natural forest in Xiaolongshan[J]. Scientia Silvae Sinicae, 2009, 45(3): 1−6. doi: 10.3321/j.issn:1001-7488.2009.03.001
    [35] 程堂仁, 马钦彦, 冯仲科, 等. 甘肃小陇山森林生物量研究[J]. 北京林业大学学报, 2007, 29(1):31−36. doi: 10.3321/j.issn:1000-1522.2007.01.006

    Cheng T R, Ma Q Y, Feng Z K, et al. Research on forest biomass in Xiaolong Mountains, Gansu Province[J]. Journal of Beijing Forestry University, 2007, 29(1): 31−36. doi: 10.3321/j.issn:1000-1522.2007.01.006
    [36] 刘文桢, 郭小龙, 张宋智, 等. 小陇山林区锐齿栎原始林的径级结构与物种多样性[J]. 西北农林科技大学学报(自然科学版), 2014, 42(10):106−120.

    Liu W Z, Guo X L, Zhang S Z, et al. Diameter class and species diversity of Quercus aliena var. acuteserata virgin forest in Xiaolongshan Forest Area[J]. Journal of Northwest A&F University (Natural Science Edition), 2014, 42(10): 106−120.
    [37] 郭小龙, 刘文桢, 张宋智, 等. 小陇山林区锐齿栎原始林群落的空间结构特征[J]. 西北农林科技大学学报(自然科学版), 2014, 42(11):106−120.

    Guo X L, Liu W Z, Zhang S Z, et al. Spatial structure characteristics of Quercus aliena var. acuteserata primeval forest in Xiaolongshan Forest Area[J]. Journal of Northwest A&F University (Natural Science Edition), 2014, 42(11): 106−120.
    [38] Huang Y, Chen Y, Castrozaguirre N, et al. Impacts of species richness on productivity in a large-scale subtropical forest experiment[J]. Science, 2018, 362: 80−83. doi: 10.1126/science.aat6405
    [39] Willig M R. Biodiversity and productivity[J]. Science, 2011, 333: 1709−1710. doi: 10.1126/science.1212453
    [40] 谭珊珊, 王忍忍, 龚筱羚, 等. 群落物种及结构多样性对森林地上生物量的影响及其尺度效应: 以巴拿马BCI样地为例[J]. 生物多样性, 2017, 25(10):1054−1064. doi: 10.17520/biods.2017155

    Tan S S, Wang R R, Gong X L, et al. Scale dependent effects of species diversity and structural diversity on aboveground biomass in a tropical forest on Barro Colorado Island, Panama[J]. Biodiversity Science, 2017, 25(10): 1054−1064. doi: 10.17520/biods.2017155
    [41] Zhang Q, Niu J, Buyantuyev A, et al. Productivity-species richness relationship changes from unimodal to positive linear with increasing spatial scale in the Inner Mongolia steppe[J]. Ecological Research, 2011, 26(3): 649−658. doi: 10.1007/s11284-011-0825-4
    [42] Shirima D D, Totland O, Munishi P K T, et al. Relationships between tree species richness, evenness and aboveground carbon storage in montane forests and miombo woodlands of Tanzania[J]. Basic and Applied Ecology, 2015, 16(3): 239−249. doi: 10.1016/j.baae.2014.11.008
    [43] Hao M H, Zhang C Y, Zhao X H, et al. Functional and phylogenetic diversity determine woody productivity in a temperate forest[J]. Ecology and Evolution, 2018, 8(5): 2395−2406. doi: 10.1002/ece3.3857
    [44] 鲁君悦, 吴兆飞, 张春雨, 等. 吉林蛟河针阔混交林林层结构对生产力影响研究[J]. 生态学报, 2021, 41(5):1−9.

    Lu J Y, Wu Z F, Zhang C Y, et al. Influence of forest strate structure on productivity of coniferous and broad-leaved mixed forest in Jiaohe, Jilin[J]. Acta Ecologica Sinica, 2021, 41(5): 1−9.
    [45] Hooper D U, Chapin F S, Ewel J J, et al. Effects of biodiversity on ecosystem functioning: a consensus of current knowledge[J]. Ecological Monographs, 2005, 75: 3−35. doi: 10.1890/04-0922
    [46] 吴兆飞, 张雨秋, 张忠辉, 等. 东北温带森林林分结构与生产力关系研究[J]. 北京林业大学学报, 2019, 41(5):48−55.

    Wu Z F, Zhang Y Q, Zhang Z H, et al. Study on the relationship between forest structure and productivity of temperate forests in Northeast China[J]. Journal of Beijing Forestry University, 2019, 41(5): 48−55.
  • 加载中
图(4) / 表(3)
计量
  • 文章访问数:  116
  • HTML全文浏览量:  34
  • PDF下载量:  35
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-23
  • 修回日期:  2021-03-03
  • 网络出版日期:  2021-10-08

目录

    /

    返回文章
    返回