高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

植物病原丝状真菌RGS的研究进展

韩长志 祝友朋

韩长志, 祝友朋. 植物病原丝状真菌RGS的研究进展[J]. 北京林业大学学报, 2021, 43(4): 150-157. doi: 10.12171/j.1000-1522.20200196
引用本文: 韩长志, 祝友朋. 植物病原丝状真菌RGS的研究进展[J]. 北京林业大学学报, 2021, 43(4): 150-157. doi: 10.12171/j.1000-1522.20200196
Han Changzhi, Zhu Youpeng. Advances in research on RGS of phytopathogenic filamentous fungi[J]. Journal of Beijing Forestry University, 2021, 43(4): 150-157. doi: 10.12171/j.1000-1522.20200196
Citation: Han Changzhi, Zhu Youpeng. Advances in research on RGS of phytopathogenic filamentous fungi[J]. Journal of Beijing Forestry University, 2021, 43(4): 150-157. doi: 10.12171/j.1000-1522.20200196

植物病原丝状真菌RGS的研究进展

doi: 10.12171/j.1000-1522.20200196
基金项目: 国家自然科学基金项目(31960314),云南省应用基础研究计划项目(2018FG001-028)
详细信息
    作者简介:

    韩长志,副教授。主要研究方向:经济林木病害生物防治与真菌分子生物学。Email:hanchangzhi2010@163.com 地址:650224 云南省昆明市盘龙区白龙寺300号西南林业大学生物多样性保护学院

  • 中图分类号: S432.4

Advances in research on RGS of phytopathogenic filamentous fungi

  • 摘要: G蛋白信号调控因子(RGS)作为G蛋白信号途径中发挥重要的负调控作用的蛋白,其功能主要表现影响真菌菌丝生长、产孢等发育阶段,以及次生代谢产物、色素合成等致病性方面。近些年,随着学术界对于植物病原丝状真菌RGS蛋白研究的不断深入,产生了大量的学术报道,然而,尚缺乏对模式真菌与植物病原丝状真菌中RGS蛋白系统性对比分析的研究报道。该文对模式真菌与植物病原丝状真菌RGS蛋白的结构、分类进行综述,并通过SMART保守结构域、二级结构组成情况以及遗传关系分析,明确了植物病原丝状真菌与模式真菌中的RGS蛋白均具有保守的RGS结构域以及相似的二级结构组成情况,以及根据RGS蛋白的序列同源性,明确真菌中RGS蛋白可分为6大类,具有不同结构域的RGS蛋白分别聚类。同时,对不同真菌中RGS蛋白功能进行综述,明确植物病原丝状真菌中RGS的数量和类型均多于模式真菌,RGS蛋白功能具有保守性和独特性特征。为今后学术界进一步开展植物病原丝状真菌中RGS蛋白的作用机制解析,以及植物病原丝状真菌与其他模式真菌中RGS蛋白之间的关系解析提供理论基础。

     

  • 图  1  不同类型RGS蛋白的结构域

    TM. 跨膜区域;PAS. PAS结构域;PAC. PAC结构域;DEP. DEP结构域;PXA. PXA结构域;PX. PX结构域。TM, transmembrane region; PAS, PAS domain; PAC, PAC domain; DEP, DEP domain; PXA, PXA domain; PX, PX domain.

    Figure  1.  Structural domain among different types of RGS proteins

    图  2  模式真菌和病原菌中RGS蛋白二级结构组成对比分析

    Figure  2.  Comparative analysis of secondary structure composition of RGS proteins in model and pathogens fungi

    图  3  不同类型RGS蛋白间的遗传关系

    酿酒酵母 S. cerevisiae S288c:Sst2|YLR452C, Rgs2|YOR107W, Rax1|YOR301W, Mdm1|YML104C;构巢曲霉 A. nidulans:FIbA|ANIA_05893, RgsA|ANIA_05755, RgsB|ANIA_03622, RgsC|ANIA_01377, GprK|ANIA_05799;新型隐球菌 C. neoformans:Crg1|AAR06255.1, Crg2|AAR06255.1, Crg3|AAR06255.1;稻瘟菌M. oryzae:MoRGS1-MoRGS8|MGG_14517, MGG_03146, MGG_03726, MGG_00990, MGG_08735, MGG_09618, MGG_11693, MGG_13926;轮枝镰孢菌 F. verticillioides:RgsA|FVEG_11363, RgsB|FVEG_09572, RgsC1|FVEG_03826, RgsC2|FVEG_05340, FlbA1|FVEG_08855, FlbA2|FVEG_06192;玉米赤霉菌G. zeae:FgFlbA|FG05_03597, FgFlbB|FG05_06228, FgRgsA|FG05_04301, FgRgsB|FG05_01503, FgRgsB2|FG05_08679, FgRgsC|FG05_13543, FgGprK|FG05_04628;禾谷炭疽菌 C. graminicola:CgRGS1|GLRG_08725, CgRGS2|GLRG_02968, CgRGS3|GLRG_06020, CgRGS4|GLRG_02926, CgRGS5|GLRG_05339, CgRGS6|GLRG_08761;希金斯炭疽菌 C. higginsianum:ChRGS1|CH063_02487, ChRGS2|CH063_15195, ChRGS3|CH063_07890, ChRGS4|CH063_03696, ChRGS5|CH063_10930

    Figure  3.  Genetic relationship among different types of RGS proteins

  • [1] Wilkinson S W, Magerøy M H, Sánchez A L, et al. Surviving in a hostile world: plant strategies to resist pests and diseases[J]. Annual Review of Phytopathology, 2019, 57: 505−529. doi: 10.1146/annurev-phyto-082718-095959
    [2] 韩长志. 植物病原丝状真菌G蛋白偶联受体的研究进展[J]. 微生物学通报, 2015, 42(2):374−383.

    Han C Z. Advance in functional research of G protein-coupled receptors in phytopathogenic filamentous fungi[J]. Microbiology China, 2015, 42(2): 374−383.
    [3] McPherson K B, Leff E R, Li M H, et al. Regulators of G-protein signaling (RGS) proteins promote receptor coupling to G-protein-coupled inwardly rectifying potassium (GIRK) channels[J]. The Journal of Neuroscience: the Official Journal of the Society for Neuroscience, 2018, 38(41): 8737−8744. doi: 10.1523/JNEUROSCI.0516-18.2018
    [4] Chan R K, Otte C A. Isolation and genetic analysis of Saccharomyces cerevisiae mutants supersensitive to G1 arrest by a factor and alpha factor pheromones[J]. Molecular and Cellular Biology, 1982, 2(1): 11−20. doi: 10.1128/MCB.2.1.11
    [5] Dixit G, Kelley J B, Houser J R, et al. Cellular noise suppression by the regulator of G protein signaling Sst2[J]. Molecular Cell, 2014, 55(1): 85−96. doi: 10.1016/j.molcel.2014.05.019
    [6] Venkatapurapu S P, Kelley J B, Dixit G, et al. Modulation of receptor dynamics by the regulator of G protein signaling Sst2[J]. Molecular Biology of the Cell, 2015, 26(22): 4124−4134. doi: 10.1091/mbc.E14-12-1635
    [7] Kwon N J, Park H S, Jung S, et al. The putative guanine nucleotide exchange factor RicA mediates upstream signaling for growth and development in aspergillus[J]. Eukaryotic Cell, 2012, 11(11): 1399−1412. doi: 10.1128/EC.00255-12
    [8] Whittington A, Wang P. The RGS protein Crg2 is required for establishment and progression of murine pulmonary cryptococcosis[J]. Medical Mycology, 2011, 49(3): 263−275. doi: 10.3109/13693786.2010.512618
    [9] 张海峰. 稻瘟病菌G蛋白及MAPK信号途径相关基因的功能分析[D]. 南京: 南京农业大学, 2011.

    Zhang H F. Functional analysis of G protein and MAPK signaling pathway associated genes in Magnaporthe oryzae[D]. Nanjing: Nanjing Agricultural University, 2011.
    [10] Mukherjee M, Kim J E, Park Y S, et al. Regulators of G-protein signalling in Fusarium verticillioides mediate differential host-pathogen responses on nonviable versus viable maize kernels[J]. Molecular Plant Pathology, 2011, 12(5): 479−491. doi: 10.1111/j.1364-3703.2010.00686.x
    [11] Park A R, Cho A R, Seo J A, et al. Functional analyses of regulators of G protein signaling in Gibberella zeae[J]. Fungal Genetics and Biology, 2012, 49(7): 511−520. doi: 10.1016/j.fgb.2012.05.006
    [12] Wang Y C, Geng Z Y, Jiang D W, et al. Characterizations and functions of regulator of G protein signaling (RGS) in fungi[J]. Applied Microbiology and Biotechnology, 2013, 97(18): 7977−7987. doi: 10.1007/s00253-013-5133-1
    [13] 乐鑫怡. 稻瘟病菌RGS家族蛋白RGS结构域的功能解析及Dynamin家族蛋白MoDnm2、MoDnm3的生物学功能研究[D]. 南京: 南京农业大学, 2017.

    Le X Y. Functional analysis of RGS domain in RGS protein family and dynamin protein MoDnm2, MoDnm3 in Magnaporthe oryzae during development and pathogenicity[D]. Nanjing: Nanjing Agricultural University, 2017.
    [14] 徐爽, 柯智健, 张凯, 等. 胶孢炭疽菌G蛋白信号调控因子CgRGS3的生物学功能[J]. 植物保护学报, 2018, 45(4):827−835.

    Xu S, Ke Z J, Zhang K, et al. Biological function of a regulator of G-protein signaling CgRGS3 in Colletotrichum gloeosporioides[J]. Journal of Plant Protection, 2018, 45(4): 827−835.
    [15] 吴曼莉, 李晓宇, 张楠, 等. 胶孢炭疽菌CgRGS2基因的克隆及生物学功能[J]. 微生物学报, 2017, 57(1):66−76.

    Wu M L, Li X Y, Zhang N, et al. Gene cloning and biological function of CgRGS2 in Colletotrichum gloeosporioides[J]. Acta Microbiologica Sinica, 2017, 57(1): 66−76.
    [16] 赵勇, 王云川, 蒋德伟, 等. 真菌G蛋白信号调控蛋白的功能研究进展[J]. 微生物学通报, 2014, 41(4):712−718.

    Zhao Y, Wang Y C, Jiang D W, et al. Advances in functional research of RGS proteins in fungi[J]. Microbiology China, 2014, 41(4): 712−718.
    [17] 邢新婧. 坚粘孢单顶孢MAPK和RGS4蛋白的功能初步研究[D]. 昆明: 云南大学, 2017.

    Xing X J. Preliminary study on functions of MAPK and RGS4 proteins in Dactylellina haptotyla[D]. Kunming: Yunnan University, 2017.
    [18] 朱小彬, 朱霞, 于一帆, 等. G蛋白信号转导调节蛋白(RGS)研究进展[J]. 中国农学通报, 2014, 30(6):248−253.

    Zhu X B, Zhu X, Yu Y F, et al. Advances of research on regulators of G protein signaling(RGS proteins)[J]. Chinese Agricultural Science Bulletin, 2014, 30(6): 248−253.
    [19] O’Brien J B, Wilkinson J C, Roman D L. Regulator of G-protein signaling (RGS) proteins as drug targets: progress and future potentials[J]. Journal of Biological Chemistry, 2019, 294(49): 18571−18585. doi: 10.1074/jbc.REV119.007060
    [20] 王心睿, 杨红, 廖之君. DEP结构域的结构与功能[J]. 生命的化学, 2015, 35(2):264−271.

    Wang X R, Yang H, Liao Z J. Structure and function of the DEP domain[J]. Chemistry of Life, 2015, 35(2): 264−271.
    [21] 潘华珍, 许彩民. 蛋白质PX结构域的结构和功能[J]. 生命的化学, 2002(5):395−397.

    Pan H Z, Xu C M. Structure and function of the PX domain[J]. Chemistry of Life, 2002(5): 395−397.
    [22] Willars G B. Mammalian RGS proteins: multifunctional regulators of cellular signalling[J]. Seminars in Cell & Developmental Biology, 2006, 17(3): 363−376.
    [23] 祝友朋, 韩长志. 植物病原丝状真菌寄生性与RGS蛋白的关系研究[J]. 华中农业大学学报, 2020, 39(6):23−29.

    Zhu Y P, Han C Z. Relationship between parasitism and RGS protein in plant pathogenic filamentous fungi[J]. Journal of Huazhong Agricultural University, 2020, 39(6): 23−29.
    [24] Dohlman H G, Song J, Ma D, et al. Sst2, a negative regulator of pheromone signaling in the yeast Saccharomyces cerevisiae: expression, localization, and genetic interaction and physical association with Gpa1 (the G-protein alpha subunit)[J]. Molecular and Cellular Biology, 1996, 16(9): 5194−5209. doi: 10.1128/MCB.16.9.5194
    [25] Chasse S A, Flanary P, Parnell S C, et al. Genome-scale analysis reveals Sst2 as the principal regulator of mating pheromone signaling in the yeast Saccharomyces cerevisiae[J]. Eukaryotic Cell, 2006, 5(2): 330−346. doi: 10.1128/EC.5.2.330-346.2006
    [26] Versele M, de Winde J H, Thevelein J M. A novel regulator of G protein signalling in yeast, Rgs2, downregulates glucose-activation of the cAMP pathway through direct inhibition of Gpa2[J]. The EMBO Journal, 1999, 18(20): 5577−5591. doi: 10.1093/emboj/18.20.5577
    [27] Fujita A, Lord M, Hiroko T, et al. Rax1, a protein required for the establishment of the bipolar budding pattern in yeast[J]. Gene, 2004, 327(2): 161−169. doi: 10.1016/j.gene.2003.11.021
    [28] Fisk H A, Yaffe M P. Mutational analysis of Mdm1p function in nuclear and mitochondrial inheritance[J]. The Journal of Cell Biology, 1997, 138(3): 485−494. doi: 10.1083/jcb.138.3.485
    [29] McConnell S J, Yaffe M P. Intermediate filament formation by a yeast protein essential for organelle inheritance[J]. Science, 1993, 260: 687−689. doi: 10.1126/science.8480179
    [30] Lee B N, Adams T H. Overexpression of flbA, an early regulator of Aspergillus asexual sporulation, leads to activation of brlA and premature initiation of development[J]. Molecular Microbiology, 1994, 14(2): 323−334. doi: 10.1111/j.1365-2958.1994.tb01293.x
    [31] Molnár Z, Mészáros E, Szilágyi Z, et al. Influence of fadAG203R and ΔflbA mutations on morphology and physiology of submerged Aspergillus nidulans cultures[J]. Applied Biochemistry and Biotechnology, 2004, 118: 349−360. doi: 10.1385/ABAB:118:1-3:349
    [32] Shin K S, Park H S, Kim Y H, et al. Comparative proteomic analyses reveal that FlbA down-regulates gliT expression and SOD activity in Aspergillus fumigatus[J]. Journal of Proteomics, 2013, 87: 40−52. doi: 10.1016/j.jprot.2013.05.009
    [33] Han K H, Seo J A, Yu J H. Regulators of G-protein signalling in Aspergillus nidulans: RgsA downregulates stress response and stimulates asexual sporulation through attenuation of GanB (Galpha) signalling[J]. Molecular Microbiology, 2004, 53(2): 529−540. doi: 10.1111/j.1365-2958.2004.04163.x
    [34] Zhang H F, Tang W, Liu K Y, et al. Eight RGS and RGS-like proteins orchestrate growth, differentiation, and pathogenicity of Magnaporthe oryzae[J]. PLoS Pathogens, 2011, 7(12): e1002450. doi: 10.1371/journal.ppat.1002450
    [35] Li X, Zhong K L, Yin Z Y, et al. The seven transmembrane domain protein MoRgs7 functions in surface perception and undergoes coronin MoCrn1-dependent endocytosis in complex with Gα subunit MoMagA to promote cAMP signaling and appressorium formation in Magnaporthe oryzae[J]. PLoS Pathogens, 2019, 15(2): e1007382. doi: 10.1371/journal.ppat.1007382
    [36] 韩长志. 禾谷炭疽菌RGS蛋白生物信息学分析[J]. 微生物学通报, 2014, 41(8):1582−1594.

    Han C Z. Bioinformatics analysis on regulators of G-protein signaling in Colletotrichum graminicola[J]. Microbiology China, 2014, 41(8): 1582−1594.
    [37] 韩长志. 希金斯炭疽菌RGS蛋白生物信息学分析[J]. 生物技术, 2014, 24(1):36−41.

    Han C Z. Bioinformatics analysis on regulators of G-protein signaling in Coletotrichum higginsianum[J]. Biotechnology, 2014, 24(1): 36−41.
    [38] 韩长志. 胶孢炭疽菌RGS蛋白生物信息学分析[J]. 河南师范大学学报(自然科学版), 2015(1):116−122.

    Han C Z. Bioinformatics analysis on regulators of G-protein signaling in Colletotrichum gloeosporioides[J]. Journal of Henan Normal University (Natural Science Edition), 2015(1): 116−122.
    [39] 吴曼莉. 橡胶树胶孢炭疽菌G蛋白信号调控因子CgRGS1、CgRGS2和CgRGS7的克隆及生物学功能[D]. 海南: 海南大学, 2017.

    Wu M L. Cloning and biological function of G protein signaling factor CgRGS1, CgRGS2 and CgRGS7 in Colletotrichum gloeosporioides[D]. Hainan: Hainan University, 2017.
  • 加载中
图(3)
计量
  • 文章访问数:  414
  • HTML全文浏览量:  157
  • PDF下载量:  46
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-25
  • 修回日期:  2021-02-25
  • 网络出版日期:  2021-04-09
  • 刊出日期:  2021-04-30

目录

    /

    返回文章
    返回