Response of leaf photosynthetic characteristics of Cotinus coggygria to combined application of mineral nitrogen, phosphorus and potassium
-
摘要:
目的 通过研究黄栌叶片光合特性对氮磷钾配施处理的响应,探讨光合特性与氮磷钾肥的关系,为黄栌的养分管理提供科学依据。 方法 以黄栌盆栽苗为试验材料,根据 L9(34)正交设计进行氮肥(N为0、6、12 g/株)、磷肥(P为0、10、20 g/株)和钾肥(K为4、8、12 g/株)试验,设置10个处理,分别为T1(N1P1K1)、T2(N1P2K2)、T3(N1P3K3)、T4(N2P1K2)、T5(N2P2K3)、T6(N2P3K1)、T7(N3P1K3)、T8(N3P2K1)、T9(N3P2K1)和T10(N0P0K0)。测定不同配施下黄栌叶片的光合色素含量、叶面积、光合参数日变化和光响应曲线,分析氮磷钾与黄栌叶片光合特征参数的关系。 结果 各处理黄栌叶片净光合速率(Pn)和气孔导度(Gs)呈双峰型曲线变化,蒸腾速率(Tr)呈单峰型曲线变化。T5、T6和T8的叶绿素总量(Chl s)和类胡萝卜素(Car)含量较高;除T2外,其余处理的Pn日平均值显著高于对照(P < 0.05),其中T5、T6和T9较高。T9的光合日变化参数值(Pn、Tr、Gs和光能利用效率(LUE))以及光响应参数值(最大净光合速率(Pnmax)、光饱和点(LSP)、光补偿点(LCP)和暗呼吸速率(Rd))日平均值最高。冗余分析结果表明,肥料贡献率大小为磷肥 > 氮肥 > 钾肥。其中磷对光合色素(Chl s和Car)的影响大,与Pn、Pnmax和LSP正相关程度较显著。氮钾对LUE的影响大,同时LUE与LCP、Tr和Gs正相关程度较显著。 结论 本研究T9(氮肥施用量12 g/株、磷肥施用量20 g/株、钾肥施用量8 g/株)是本试验的最优处理,进一步说明磷肥对提高黄栌叶片光合色素含量起重要作用,从而显著促进黄栌叶片的光合能力。 Abstract:Objective Relationship between photosynthetic characteristics and combined application of mineral nitrogen, phosphorus and potassium (N, P and K) has been studied to provide nutrient management strategies of Cotinus coggygria. Method Under 10 treatments (see below), the photosynthetic pigment, leaf area, diurnal variation of photosynthetic parameters and light response curve of leaves of potted C. coggygria seedlings were measured, and theses generated data were then related to combined application of N, P and K. With a L9 (34) orthogonal design for N (0, 6, 12 g/plant), P (0, 10, 20 g/plant) and K (4, 8, 12 g/plant), these 10 treatments were T1 (N1P1K1), T2 (N1P2K2), T3 (N1P3K3), T4 (N2P1K2), T5 (N2P2K3), T6 (N2P3K1), T7 (N3P1K3), T8 (N3P2K1), T9 (N3P2K1) and T10 (N0P0K0). Result Under each treatment, the net photosynthetic rate (Pn) and stomatal conductance (Gs) had a “double peak curve” change, while the transpiration rate (Tr) had a “single peak curve” change. The contents of total chlorophyll and carotenoid were higher under T5, T6 and T8 than under other treatments. Except for T2, the daily average value of Pn was significantly higher than control (P < 0.05). Among all the 10 treatments, T9 had the highest performance on all the tested diurnal variation parameters (Gs, Pn, Tr and light energy use efficiency (LUE)), and the daily average values of light response parameters (maximum net photosynthetic rate (Pnmax), light saturation point (LSP), light compensation point (LCP) and dark absorption rate (Rd)). In addition, the redundancy analysis showed that the contribution rate of fertilizer was P > N > K, while P had a greater effect on photosynthetic pigments (Chl s and Car) and a positive correlation with Pn, Pnmax and LSP. In contrast, N and K had greater influences on LUE, which was positively correlated with LCP, Tr and Gs. Conclusion Results from this experiment demonstrate that among the tested 10 NPK treatments, T9 (12 g/plant N, 20 g/plant P and 8 g/plant K) is the optimal fertilization to significantly promote leaf photosynthetic capacity of C. coggygria. -
表 1 黄栌施肥处理的试验方案
Table 1. Test scheme of fertilization treatment for Cotinus coggygria
处理
Treatment配施组合
Combined fertilizer
application全年施肥量/(g·株−1)
Annual fertilizer amount/(g·plant−1)N P2O5 K2O T1 N1P1K1 0 0 4 T2 N1P2K2 0 10 8 T3 N1P3K3 0 20 12 T4 N2P1K2 6 0 8 T5 N2P2K3 6 10 12 T6 N2P3K1 6 20 4 T7 N3P1K3 12 0 8 T8 N3P2K1 12 10 4 T9 N3P3K2 12 20 8 T10 N0P0K0 0 0 0 表 2 不同氮磷钾配施下黄栌叶片光合参数日平均值
Table 2. Daily average values of photosynthetic parameters of C. coggygria under different combined applications of N, P and K
处理 Treatment Pn/(μmol·m−2·s−1) Tr/(mmol·m−2·s−1) Gs/(mol·m−2·s−1) LUE/% T1 7.654 ± 0.202b 2.776 ± 0.169c 0.114 ± 0.010d 2.314 ± 0.161c T2 6.949 ± 0.202c 3.132 ± 0.091b 0.134 ± 0.007cd 3.048 ± 0.079a T3 7.794 ± 0.150b 3.092 ± 0.833b 0.121 ± 0.014d 2.385 ± 0.040c T4 7.602 ± 0.225b 3.290 ± 0.147b 0.143 ± 0.007bc 2.688 ± 0.072b T5 8.802 ± 0.225a 3.497 ± 0.148a 0.151 ± 0.012b 2.735 ± 0.131b T6 8.833 ± 0.196a 3.606 ± 0.125a 0.129 ± 0.004d 2.323 ± 0.161c T7 7.476 ± 0.151b 3.069 ± 0.109b 0.141 ± 0.009c 3.177 ± 0.047a T8 7.943 ± 0.186b 3.385 ± 0.833b 0.147 ± 0.010b 2.597 ± 0.115b T9 9.008 ± 0.177a 3.644 ± 0.103a 0.158 ± 0.005a 3.218 ± 0.072a T10 6.853 ± 0.614c 3.319 ± 0.183b 0.148 ± 0.008b 2.002 ± 0.160d 表 3 不同氮磷钾配施下黄栌叶片光合-光响应参数
Table 3. Phtosynthesis-light response parameters of C. coggygria leaves under different combined applications of N, P and K
处理 Treatment AQY/(μmol·m−2·s−1) Pnmax/(μmol·m−2·s−1) LSP/(μmol·m−2·s−1) LCP/(μmol·m−2·s−1) Rd/(μmol·m−2·s−1) T1 0.047 ± 0.003d 6.515 ± 0.251d 1 110.258 ± 60.836c 14.325 ± 0.800d 0.634 ± 0.191d T2 0.069 ± 0.003ab 6.705 ± 0.212d 1 166.762 ± 28.746c 28.196 ± 2.212b 1.643 ± 0.211ab T3 0.063 ± 0.003bc 7.604 ± 0.407c 1 208.546 ± 73.310b 26.258 ± 1.986b 1.514 ± 0.171bc T4 0.069 ± 0.003ab 7.624 ± 0.202c 1 038.744 ± 44.339d 20.807 ± 1.600b 1.262 ± 0.191c T5 0.062 ± 0.003bc 9.285 ± 0.295b 1 045.167 ± 19.850d 27.366 ± 1.975b 1.523 ± 0.206b T6 0.059 ± 0.003c 10.846 ± 0.113a 1 142.211 ± 41.416c 28.954 ± 2.165b 1.507 ± 0.207bc T7 0.067 ± 0.003b 6.866 ± 0.215d 1 028.514 ± 19.836d 21.514 ± 1.643c 1.257 ± 0.203c T8 0.050 ± 0.003d 8.018 ± 0.216c 1 232.757 ± 60.396b 25.881 ± 0.851b 1.179 ± 0.149c T9 0.065 ± 0.003bc 11.206 ± 0.277a 1 596.117 ± 22.237a 33.284 ± 2.582a 1.817 ± 0.160a T10 0.074 ± 0.003a 6.412 ± 0.197d 1 072.515 ± 11.667cd 15.419 ± 0.949d 1.010 ± 0.085c 表 4 氮磷钾与黄栌光合特征参数的RDA分析
Table 4. RDA analysis of photosynthetic characteristic parameters of C. coggygria with N, P and K
统计
Statistic特征值
Eigenvalue累计解释变量
Cumulative explaviation
variable/%解释拟合累积变量
Explaining the fitting
cumulative variable/%轴1 Axis 1 0.571 2 57.12 71.60 轴2 Axis 2 0.147 1 71.84 90.05 轴3 Axis 3 0.079 4 79.78 100.00 轴4 Axis 4 0.165 6 96.33 表 5 氮磷钾配施下黄栌光合日变化的模糊综合质量评价与排序
Table 5. Evaluation and sequencing of diurnal variations of photosynthesis of C. coggygria to combined fertilization of N, P and K
处理 Treatment Pn Tr Gs LUE 综合值 Comprehensive value 排序 Sort T1 0.46 ± 0.05b 0.60 ± 0.07cde 0.68 ± 0.07abc 0.60 ± 0.03b 2.34 5 T2 0.20 ± 0.12c 0.62 ± 0.09cd 0.77 ± 0.08ab 0.12 ± 0.06d 1.71 8 T3 0.23 ± 0.04c 0.46 ± 0.04de 0.52 ± 0.07bcd 0.85 ± 0.03a 2.06 7 T4 0.89 ± 0.04a 0.41 ± 0.05de 0.43 ± 0.04cde 0.35 ± 0.06c 2.08 6 T5 0.58 ± 0.04b 0.68 ± 0.04bc 0.75 ± 0.09ab 0.54 ± 0.05b 2.55 4 T6 0.87 ± 0.04a 0.16 ± 0.08e 0.18 ± 0.10e 0.34 ± 0.06c 1.55 10 T7 0.42 ± 0.03b 0.90 ± 0.05a 0.65 ± 0.09abc 0.94 ± 0.02a 2.91 2 T8 0.48 ± 0.04b 0.78 ± 0.07abc 0.81 ± 0.12ab 0.63 ± 0.05b 2.7 3 T9 0.95 ± 0.04a 0.87 ± 0.06ab 0.93 ± 0.05a 0.97 ± 0.03a 3.72 1 T10 0.53 ± 0.03b 0.43 ± 0.04de 0.30 ± 0.14de 0.39 ± 0.02c 1.65 9 -
[1] da Silva J A, Pacholczak A, Ilczuk A. Smoke tree (Cotinus Coggygria Scop.) propagation and biotechnology: a mini-review[J]. South African Journal of Botany, 2018, 114: 232−240. doi: 10.1016/j.sajb.2017.11.009. [2] 聂江力, 裴毅, 李作鹏. 黄栌茎叶的生药学研究[J]. 北方园艺, 2015(10):136−141.Nie J L, Pei Y, Li Z P. Pharmacognostical study on the stems and leaves of Cotinus coggygria Scop.[J]. Northern Horticulture, 2015(10): 136−141. [3] 刘国卫. 黄栌水溶性成分的提取及其抗高血压作用研究[D]. 郑州: 郑州大学, 2016.Liu G W. The extract of water-soluble ingredient and the anti-hypertensive function of Cotinus coggygria[D]. Zhengzhou: Zhengzhou University, 2016. [4] Serôdio J, Lavaud J. A model for describing the light response of the nonphotochemical quenching of chlorophyll fluorescence[J]. Photosynthesis Research, 2011, 108(1): 61−76. doi: 10.1007/s11120-011-9654-0. [5] Lachapelle P P, Shipley B. Interspecific prediction of photosynthetic light response curves using specific leaf mass and leaf nitrogen content: effects of differences in soil fertility and growth irradiance[J]. Annals of Botany, 2012, 109(6): 1149−1157. doi: 10.1093/aob/mcs032. [6] 赵海波, 林琪, 刘义国, 等. 氮磷肥配施对超高产冬小麦灌浆期光合日变化及产量的影响[J]. 应用生态学报, 2010, 21(10):2545−2550.Zhao H B, Lin Q, Liu Y G, et al. Effects of combined application of nitrogen and phosphorus on diurnal variation of photosynthesis at grain-filling stage and grain yield of super high-yielding wheat[J]. Chinese Journal of Applied Ecology, 2010, 21(10): 2545−2550. [7] 熊靓, 龚伟, 王景燕, 等. 配方施肥对汉源葡萄青椒叶片光合特性的影响[J]. 西北农林科技大学学报(自然科学版), 2019, 47(1):79−89.Xiong L, Gong W, Wang J Y, et al. Effects of formulated fertilization on photosynthetic characteristics of ‘Hanyuan Putao Qingjiao’[J]. Journal of Northwest A&F University (Nature Science Edition), 2019, 47(1): 79−89. [8] Moynul H M, Hamid A, Khanam M, et al. The effect of elevated CO2 concentration on leaf chlorophyll and nitrogen contents in rice during post-flowering phases[J]. Biologia Plantarum, 2006, 50(1): 69−73. doi: 10.1007/s10535-005-0076-8. [9] 王虎兵, 曹红霞, 郝舒雪, 等. 温室番茄植株养分和光合对水肥耦合的响应及其与产量关系[J]. 中国农业科学, 2019, 52(10):1761−1771. doi: 10.3864/j.issn.0578-1752.2019.10.009.Wang H B, Cao H X, Hao S X, et al. Responses of plant nutrient and photosynthesis in greenhouse tomato to water-fertilizer coupling and their relationship with yield[J]. Scientia Agricultura Sinica, 2019, 52(10): 1761−1771. doi: 10.3864/j.issn.0578-1752.2019.10.009. [10] 李金航, 齐秀慧, 徐程扬, 等. 黄栌幼苗叶片气体交换对干旱胁迫的短期响应[J]. 林业科学, 2015, 51(1):29−41.Li J H, Qi X H, Xu C Y, et al. Short-term responses of leaf gas exchange characteristics to drought stress of Cotinus coggygria seedlings[J]. Scientia Silvae Sinicae, 2015, 51(1): 29−41. [11] 齐秀慧. 华北四个产地黄栌叶片气体交换对干旱胁迫的响应[D]. 北京: 北京林业大学, 2012.Qi X H. Responses of leaf gas exchange of Cotinus coggygria Scop. seedlings coming from four locations in North China to drought stress[D]. Beijing: Beijing Forestry University, 2012. [12] 葛雨萱, 赵阳, 甘长青, 等. 不同光环境对黄栌光合特性及生长势和叶色的影响[J]. 中国农学通报, 2011, 27(19):19−22.Ge Y X, Zhao Y, Gan C Q, et al. The effects of different light environments on photosynthetic characteristics, growth potential and leaves color of Cotinus coggygria Scop.[J]. Chinese Agricultural Science Bulletin, 2011, 27(19): 19−22. [13] 陈磊, 潘青华, 金洪. 温湿度对紫叶黄栌光合特性变化的影响[J]. 中国农学通报, 2008, 24(6):124−128.Chen L, Pan Q H, Jin H. Research on influence of relative humidity and air temparature on photosynthetic characteristics of Cotinus coggygria ‘Purpureus’[J]. Chinese Agricultural Science Bulletin, 2008, 24(6): 124−128. [14] 叶子飘, 张海利, 黄宗安, 等. 叶片光能利用效率和水分利用效率对光响应的模型构建[J]. 植物生理学报, 2017, 53(6):1116−1122.Ye Z P, Zhang H L, Huang Z A, et al. Model construction of light use efficiency and water use efficiency based on a photosynthetic mechanistic model of light response[J]. Plant Physiology Journal, 2017, 53(6): 1116−1122. [15] 叶子飘. 光合作用对光和CO2响应模型的研究进展[J]. 植物生态学报, 2010, 34(6):727−740. doi: 10.3773/j.issn.1005-264x.2010.06.012.Ye Z P. A review on modeling of responses of photosynthesis to light and CO2 [J]. Chinese Journal of Plant Ecology, 2010, 34(6): 727−740. doi: 10.3773/j.issn.1005-264x.2010.06.012. [16] 贡璐, 罗艳, 解丽娜. 塔里木盆地北缘绿洲不同土地利用方式土壤有机碳、无机碳变化及其土壤影响因子[J]. 中国农业大学学报, 2017, 22(12):83−94. doi: 10.11841/j.issn.1007-4333.2017.12.10.Gong L, Luo Y, Xie L N. Changes in SOC and SIC concentration with land uses and their soil influencing factors in northern marginal zones of Tarim Basin[J]. Journal of China Agricultural University, 2017, 22(12): 83−94. doi: 10.11841/j.issn.1007-4333.2017.12.10. [17] 王景燕, 龚伟, 包秀兰, 等. 水肥耦合对汉源花椒幼苗叶片光合作用的影响[J]. 生态学报, 2016, 36(5):1321−1330.Wang J Y, Gong W, Bao X L, et al. Coupling effects of water and fertilizer on diurnal variation of photosynthesis of Zanthoxylum bungeanum Maxim ‘Hanyuan’ seedling leaf[J]. Acta Ecologica Sinica, 2016, 36(5): 1321−1330. [18] 乐佳兴, 田秋玲, 吴焦焦, 等. 无患子幼苗的生长和光合特性对重庆低山丘陵区不同生境的响应[J]. 北京林业大学学报, 2019, 41(6):75−85.Yue J X, Tian Q L, Wu J J, et al. Response of seedling growth and photosynthetic characteristics of Sapindus mukorossi to different habitats in low mountainous upland region of Chongqing, southwestern China[J]. Journal of Beijing Forestry University, 2019, 41(6): 75−85. [19] 孟鹏, 李玉灵, 尤国春, 等. 彰武松、樟子松光合生产与蒸腾耗水特性[J]. 生态学报, 2012, 32(10):3050−3060. doi: 10.5846/stxb201104260547.Meng P, Li Y L, You G C, et al. Characteristics of photosynthetic productivity and water-consumption for transpiration in Pinus densiflora var. zhangwuensis and Pinus sylvestris var. mongolica[J]. Acta Ecologica Sinica, 2012, 32(10): 3050−3060. doi: 10.5846/stxb201104260547. [20] 高岚, 乐佳兴, 张文, 等. 2种树龄巴山榧对光照的响应[J]. 北京林业大学学报, 2018, 40(10):34−42.Gao L, Yue J X, Zhang W, et al. Response to light intensity of Torreya fargesii in two kinds of tree age[J]. Journal of Beijing Forestry University, 2018, 40(10): 34−42. [21] Vytautas B, Duffy C. Excitation quenching in chlorophyll-carotenoid antenna systems: ‘coherent’ or ‘incoherent’[J]. Photosynthesis Research, 2020, 144(3): 301−315. doi: 10.1007/s11120-020-00737-8. [22] Amy K, Veronica C, Neal B, et al. Ecophysiological responses of Schizachyrium scoparium to water and nitrogen manipulations[J]. Great Plains Research, 2006, 16(1): 29−36. [23] Jajoo A, Bharti S, Mohanty P. Evaluation of the specific roles of anions in electron transport and energy transfer reactions in photosynthesis[J]. Photosynthetica, 2001, 39(3): 321−337. doi: 10.1023/A:1015125008028. [24] 邱佳妹, 王康才, 朱光明, 等. 不同施肥配比对麦冬幼苗光合特性及干物质分配的影响[J]. 植物资源与环境学报, 2015, 24(2):61−66, 111. doi: 10.3969/j.issn.1674-7895.2015.02.09.Qiu J M, Wang K C, Zhu G M, et al. Effects of different fertilizing proportion on photosynthetic characteristics and dry matter allocation of Ophiopogon japonicas[J]. Journal of Plant Resources and Environment, 2015, 24(2): 61−66, 111. doi: 10.3969/j.issn.1674-7895.2015.02.09. [25] 曹兆阳, 舒洪岚, 俞元春. 氮、磷、钾对银杏幼苗养分吸收及生长的影响[J]. 林业科技开发, 2009, 23(6):108−110. doi: 10.3969/j.issn.1000-8101.2009.06.030.Cao Z Y, Shu H L, Yu Y C. Effects of N, P, K on nutrient absorption and height growth of Ginkgo biloba seedling[J]. China Forestry Science and Technology, 2009, 23(6): 108−110. doi: 10.3969/j.issn.1000-8101.2009.06.030. [26] 罗凡, 张厅, 龚雪蛟, 等. 不同施肥方式对茶树新梢氮磷钾含量及光合生理的影响[J]. 应用生态学报, 2014, 25(12):3499−3506.Luo F, Zhang T, Gong X J, et al. Effects of different fertilization ways on the contents of N, P, K in new shoots and photobiological characters of tea tree[J]. Chinese Journal of Applied Ecology, 2014, 25(12): 3499−3506. [27] 杨腾, 马履一, 段劼, 等. 氮处理对文冠果幼苗光合、干物质积累和根系生长的影响[J]. 林业科学, 2014, 50(6):82−89.Yang T, Ma L Y, Duan J, et al. Effect of N application on photosynthesis, dry matter accumulation and root growth of Xanthoceras sorbifolia seedlings[J]. Scientia Silvae Sinicae, 2014, 50(6): 82−89. [28] Singh S K, Reddy V R, Fleisher D H, et al. Phosphorus nutrition affects temperature response of soybean growth and canopy photosynthesis[J/OL]. Frontiers in Plant Science, 2018, 9: 1116 (2018−08−06) [2019−04−15]. https://doi.org/10.3389/fpls.2018.01116. [29] 王进斌, 谢军红, 李玲玲, 等. 氮肥运筹对陇中旱农区玉米光合特性及产量的影响[J]. 草业学报, 2019, 28(1):60−69. doi: 10.11686/cyxb2018096.Wang J B, Xie J H, Li L L, et al. Effects of nitrogen management on photosynthetic characteristics and yield of maize in arid areas of central Gansu, China[J]. Acta Prataculturae Sinica, 2019, 28(1): 60−69. doi: 10.11686/cyxb2018096. [30] 汪顺义, 李欢, 刘庆, 等. 施钾对甘薯根系生长和产量的影响及其生理机制[J]. 作物学报, 2017, 43(7):1057−1066. doi: 10.3724/SP.J.1006.2017.01057.Wang S Y, Li H, Liu Q, et al. Effect of potassium application on root grow and yield of sweet potato and its physiological mechanism[J]. Acta Agronomica Sinica, 2017, 43(7): 1057−1066. doi: 10.3724/SP.J.1006.2017.01057. [31] 陆燕元, 马焕成, 李昊民, 等. 土壤干旱对转基因甘薯光合曲线的响应[J]. 生态学报, 2015, 35(7):2155−2160.Lu Y Y, Ma H C, Li H M, et al. Light response characteristics of photosynthetic of transgenic sweet potato under drought stress[J]. Acta Ecologica Sinica, 2015, 35(7): 2155−2160. -