Genetic diversity analysis of Chionanthus retusus natural population based on SRAP molecular markers
-
摘要:目的 揭示我国不同地区流苏树(Chionanthus retusus)天然群体的遗传多样性,更好地为合理保护和开发利用提供科学依据。方法 采用相关序列扩增多态性(SRAP)分子标记技术对不同地区的7个流苏树天然群体的62份样品进行了遗传多样性和群体遗传结构研究。结果 (1)7个流苏树天然群体具有较高的遗传多样性,8对SRAP引物共扩增出1 728条清晰条带,其中1 649条具有多态性,PPB(多态性条带比例)为95.43%;群体间的有效等位基因数为 1.213 7,Nei’s基因多样性指数为 0.153 7,Shannon’s信息多样性指数为0.268 0。(2)流苏树天然群体存在较高水平的种群内遗传变异和较低水平的群体间遗传变异(Gst = 0.133 6),7个流苏树天然群体间存在较高水平的基因交流(Nm = 3.243 7)。(3)流苏树群体间的遗传相似系数介于0.898 0 ~ 0.973 6之间,平均值为0.934 4,经Mantel检验(r = 0.288,P = 0.205)及群体间的聚类证明群体间的遗传距离与地理距离之间无明显相关性;62份流苏树初级种质聚类结果表明大部分种质表现为同一群体的多数个体聚在一起,部分种质存在不同群体间的个体聚在一起的现象,表现出群体间遗传变异相对稳定而种群内的遗传变异水平相对较高的特点,与基因多样性分析结果一致。结论 综合多因素分析推测,太行山地区可能是我国流苏树种质资源的主要产区。Abstract:Objective This paper aims to reveal the genetic diversity of natural populations of Chionanthus retusus in different regions of China, and to provide a scientific basis for rational protection development and utilization.Method The genetic diversity and population genetic structure of 62 samples from 7 Chionanthus retusus natural populations in different regions were studied using sequence related amplified polymorphism (SRAP) molecular marker technique.Result Seven natural populations of Chionanthus retusus had higher genetic diversity, and 8 pairs of SRAP primers amplified a total of 1 728 clear bands, of which 1 649 were polymorphic, and the percentage of polymorphic bands (PPB) was 95.43%. The number of effective alleles between populations was 1.213 7, the diversity of Nei’s gene was 0.153 7, and the information diversity index of Shannon’s was 0.268 0. There were higher levels of intra-population genetic variation and lower levels of inter-population genetic variation among natural populations of Chionanthus retusus (Gst = 0.133 6), and higher levels of gene flow among seven natural populations of Chionanthus retusus (Nm = 3.243 7). The genetic similarity coefficient between Chionanthus retusus populations ranged from 0.898 0 to 0.973 6, with an average of 0.934 4. The Mantel test (r = 0.288, P = 0.205) and the clustering among populations proved that there was no significant correlation between genetic distance and geographical distance among populations. The clustering results of 62 primary germplasm showed that most of the germplasms were characterized by the fact that most individuals in the same population came together, and some germplasms had the phenomenon that individuals of different populations gathered together, showing that the genetic variation between populations was relatively stable and the level of genetic variation within the populations was relatively high, which was consistent with the results of genetic diversity analysis.Conclusion Comprehensive multi-factor analysis speculated that Taihang Mountain area may be the main producing area of Chinese Chionanthus retusus germplasm resources.
-
Keywords:
- Chionanthus retusus /
- SRAP /
- genetic diversity /
- genetic structure
-
-
表 1 流苏树天然群体采样地位置和生境
Table 1 Location and habitat of natural population sampling of Chionanthus retusus
群体及编号
Population and No.取样株数
Sampling plant number海拔
Altitude/m纬度
Latitude (N)经度
Longitude (E)北京市怀柔区 Huairou District, Beijing City (B-H) 10 40 116°38′ 40°17′ 河北省保定市 Baoding City, Hebei Province (H-B) 5 20 115°28′ 38°55′ 河南省南阳市桐柏县 Tongbai County, Nanyang City, Henan Province (H-T) 10 240 113°17′ 32°27′ 山东省青州市 Qingzhou City, Shandong Province (S-Q) 10 250 118°18′ 36°41′ 山西省临汾市安泽县 Anze County, Linfen City, Shanxi Province (S-A) 10 260 112°14′ 36°08′ 江苏省宿迁市沭阳县 Shuyang County, Suqian City, Jiangsu Province(J-S) 10 10 118°39′ 34°09′ 湖北省安陆市 Anlu City, Hubei Province (H-A) 7 130 113°41′ 31°15′ 表 2 7个流苏树天然群体间的地理距离
Table 2 Geographic distance of seven Chionanthus retusus natural populations
km 群体 Population H-T H-A S-A S-Q J-S B-H H-B H-T — H-A 246 — S-A 609 752 — S-Q 856 966 672 — J-S 698 795 799 373 — B-H 1 039 1 204 736 512 809 — H-B 862 993 547 448 710 221 — 表 3 试验所用SRAP引物信息
Table 3 Information of SRAP primers used in the experiment
上游引物
Forward primer引物序列
Primer sequence (5′→3′)下游引物
Reverse primer引物序列
Primer sequence (5′→3′)T-ATA TGAGTCCAAACCGGATA G-AAT GACTGCGTACGAATTAAT T-AGC TGAGTCCAAACCGGAGC G-TGC GACTGCGTACGAATTTGC T-AAT TGAGTCCAAACCGGAAT G-GAC GACTGCGTACGAATTGAC T-ACC TGAGTCCAAACCGGACC G-TGA GACTGCGTACGAATTTGA T-AAG TGAGTCCAAACCGGAAG G-AAC GACTGCGTACGAATTAAC T-TAA TGAGTCCAAACCGGTAA G-GCA GACTGCGTACGAATTGCA T-ACA TGAGTCCAAA CCGG ACA G-CAA GACTGCGTACG AATT CAA T-TGT TGAGTCCAAA CCGG TGT G-AGC GACTGCGTACG AATT AGC 表 4 基于SRAP选择性扩增引物产生的条带多态性
Table 4 Polymorphism of SRAP bands obtained by selective amplification based on the primer combinations
引物组合
Primer combination总带数
Total number of band多态性条带数
Polymorphic band number多态性条带比例
Percentage of polymorphic band/%T-AGC/G-AAT 216 202 93.52 T-AGC/G-GCA 216 203 93.98 T-AGC/G-CAA 216 206 95.37 T-ACC/G-AAT 216 212 98.15 T-TAA/G-AAT 216 206 95.37 T-TAA/G-GCA 216 211 97.69 T-TAA/G-CAA 216 214 99.07 T-ACA/G-TGA 216 195 90.28 合计 Sum 1 728 1 649 — 平均 Mean 216 206.13 95.43 表 5 基于不同引物组合的流苏树遗传多样性水平
Table 5 Genetic diversity level of Chionanthus retusus based on different primer combinations
引物组合
Primer combination有效等位基因数
Number of effective allele (Ne)Nei’s基因多样性指数
Nei’s gene diversity (H)Shannon多态性信息指数
Shannon polymorphism information index (I)T-AGC/G-AAT 1.216 6 0.151 6 0.261 1 T-AGC/G-GCA 1.235 6 0.163 3 0.278 4 T-AGC/G-CAA 1.237 4 0.163 9 0.277 8 T-ACC/G-AAT 1.227 3 0.164 8 0.286 7 T-TAA/G-AAT 1.162 6 0.122 7 0.224 4 T-TAA/G-GCA 1.221 2 0.168 5 0.298 7 T-TAA/G-CAA 1.215 9 0.159 0 0.280 5 T-ACA/G-TGA 1.193 2 0.135 6 0.236 3 平均 Mean 1.213 7 0.153 7 0.268 0 表 6 7个流苏树天然群体内遗传多样性水平和显著性分析
Table 6 Analysis of genetic diversity and significance of the seven Chionanthus retusus natural populations
群体 Population Ne H I B-H 1.220 4a 0.146 1ab 0.238 9a H-B 1.204 3a 0.131 5b 0.207 7b H-T 1.195 0a 0.134 2ab 0.224 1ab S-Q 1.206 1a 0.138 5ab 0.228 2ab S-A 1.210 3a 0.143 7ab 0.238 9a J-S 1.226 5a 0.150 4a 0.245 2a H-A 1.207 4a 0.137 9ab 0.223 7ab 注:同列不同小写字母表示种群间差异显著(P < 0.05)。 Note: different lowercase letters in same column indicate significant differences among populations (P < 0.05). 表 7 7个流苏树天然群体遗传分化分析
Table 7 Genetic differentiation of the seven Chionanthus retusus natural populations
所有群体
All population总基因多样性指数
Total gene diversity
index (Ht)群体内基因多样性
Genetic diversity within
the population (Hs)群体间基因多样性
Genetic diversity between populations (Dst)基因分化系数
Coefficient of gene differentiation (Gst)基因流
Gene flow (Nm)平均数 Mean 0.408 6 0.354 0 0.054 6 0.133 6 3.243 7 标准差 Standard deviation 0.027 6 0.012 0 — — — 表 8 基于SRAP检测的7个流苏树天然群体间遗传一致度和遗传距离
Table 8 Genetic identity and genetic distance between seven Chionanthus retusus natural populations based on SRAP
群体 Population H-T H-A S-A S-Q J-S B-H H-B H-T — 0.958 3 0.973 6 0.965 8 0.920 0 0.918 9 0.907 4 H-A 0.042 6 — 0.964 5 0.951 7 0.911 0 0.909 9 0.895 1 S-A 0.026 7 0.036 1 — 0.960 6 0.931 0 0.933 2 0.898 0 S-Q 0.034 8 0.049 5 0.040 2 — 0.954 7 0.947 2 0.935 8 J-S 0.083 4 0.093 3 0.071 5 0.046 4 — 0.957 8 0.904 1 B-H 0.084 5 0.094 4 0.069 2 0.054 2 0.043 1 — 0.922 8 H-B 0.097 2 0.110 8 0.107 5 0.066 3 0.100 9 0.080 4 — 注:右上部为遗传一致度,左下部为遗传距离。Notes: Nei’s genetic identity is showed above diagonal and genetic distance is showed below diagonal. -
[1] 中国科学院中国植物志编辑委员会. 中国植物志[M]. 1版. 北京: 科学出版社, 2004. Flora of China Editorial Committee of the Academy of Sciences of China. Flora of China [M]. 1st ed. Beijing: Science Press, 2004.
[2] 方丽. 流苏树的综合利用价值及栽培管理技术[J]. 现代农业科技, 2017(18):123−124. doi: 10.3969/j.issn.1007-5739.2017.18.086. Fang L. Comprehensive utilization value and cultivation and management technology of Chionanthus retusus[J]. Modern Agricultural Science and Technology, 2017(18): 123−124. doi: 10.3969/j.issn.1007-5739.2017.18.086.
[3] 胡世才. 优良饮料植物—流苏树及其枝叶泡制法[J]. 林业科技开发, 1991(3):16. Hu S C. Excellent beverage plants: Chionanthus retusus and its leaf and branch soaking method[J]. China Forestry Science and Technology, 1991(3): 16.
[4] 马震亚. 流苏树栽培技术[J]. 青海农林科技, 2015(4):72−73. doi: 10.3969/j.issn.1004-9967.2015.04.022. Ma Z Y. Cultivation technique of Chionanthus retusus[J]. Science and Technology of Qinghai Agriculture and Forestry, 2015(4): 72−73. doi: 10.3969/j.issn.1004-9967.2015.04.022.
[5] Gill J D, Fogge F L. Chionanthus retusus L.[M]//Seeds of woody plant in the United States. Washington: USDA Agri Handbook, 1974, 450: 323−325.
[6] Gulcin I, Elias R, Gepdiremen A, et al. Antioxidant secoiridoids from fringe tree (Chionanthus virginicus L.)[J]. Wood Science Technology, 2009, 43(3−4): 195−212. doi: 10.1007/s00226-008-0234-1.
[7] Lee Y G, Lee H, Jung J W, et al. Flavonoids from Chionanthus retusus (Oleaceae) flowers and their protective effects against glutamate-induced cell toxicity in HT22 cells[J]. International Journal of Molecular Sciences, 2019, 20(14): 3517. doi: 10.3390/ijms20143517.
[8] Saeki I. Application of aerial survey for detecting a rare maple species and endangered wetland ecosystems[J]. Forest Ecology and Management, 2005, 216(1): 283−294.
[9] Song J H, Kong M J, Hong S P, et al. Morphological characteristics, distribution and taxonomic consideration of Chionanthus retusus Lindl & Paxton in Korea[J]. Korean Journal of Plant Taxonomy, 2011, 41(2): 156−163. doi: 10.11110/kjpt.2011.41.2.156.
[10] Soejima A, Maki M, Ueda K. Genetic variation in relic and isolated populations of Chionanthus retusus (Oleaceae) of Tsushima Island and the Tono Region, Japan[J]. Genes & Genetic Systems, 1998, 73(1): 29−37.
[11] 刘棠瑞. 台湾木本植物图志:下卷 [M]. 台北: 台湾大学, 1991: 1061. Liu T R. Woody flora of Taiwan: Vol. 2 [M]. Taibei: Taiwan University, 1991: 1061.
[12] 樊莉丽, 党远, 樊巍, 等. 珍稀树种流苏研究进展与保护利用策略[J]. 江苏农业科学, 2016, 44(6):20−24. Fan L L, Dang Y, Fan W, et al. Research progress and protection and utilization strategies of rare tree species Chionanthus retusus[J]. Jiangsu Agricultural Sciences, 2016, 44(6): 20−24.
[13] 李际红. 山东省流苏古树资源[M]. 1版. 北京: 中国林业出版社, 2018. Li J H. Ancient tree resources of Chionanthus retusus in Shandong Province[M]. 1st ed. Beijing: China Forestry Publishing House, 2018.
[14] 吴东旭. 辽西青龙河流域流苏树种子繁育技术[J]. 江西农业, 2016(19):72. Wu D X. Seed breeding techniques of Chionanthus retusus in Qinglong River Basin, western Liaoning Province[J]. Jiangxi Agriculture, 2016(19): 72.
[15] 贾明财, 温保龙, 张璐, 等. 北京怀柔流苏树资源调查及繁育[J]. 中国花卉园艺, 2017(24):36. doi: 10.3969/j.issn.1009-8496.2017.24.017. Jia M C, Wen B L, Zhang L, et al. Investigation and breeding of Chionanthus retusus in Beijing Huairou District[J]. China Flowers & Horticulture, 2017(24): 36. doi: 10.3969/j.issn.1009-8496.2017.24.017.
[16] Lee Y N, Jeong C H, Shim K H. Isolation of antioxidant and antibrowning substance from Chionanthus retusa leaves[J]. Journal of the Korean Society of Food Science and Nutrition, 2004, 33(9): 1419−1425. doi: 10.3746/jkfn.2004.33.9.1419.
[17] 缴丽莉. 流苏和青榨槭耐荫性与抗寒性研究[D]. 保定: 河北农业大学, 2006. Jiao L L. The study on shading-tolerance and freezing-resistance of Chionanthus retusus and Acer davidii[D]. Baoding: Agricultural University of Hebei, 2006.
[18] 邓瑞雪, 卢宗元, 张创峰, 等. 流苏花的化学成分研究[J]. 河南科技大学学报(自然科学版), 2013, 34(6):92−95. Deng R X, Lu Z Y, Zhang C F, et al. Chemical constituents from flowers of Chionanthus retusa[J]. Journal of Henan University of Science and Technology (Natural Science), 2013, 34(6): 92−95.
[19] 邹莉. 流苏树的栽培管理技术[J]. 农业与技术, 2018, 38(21):98−99. Zou L. Cultivation and management techniques of Chionanthus retusus[J]. Agriculture and Technology, 2018, 38(21): 98−99.
[20] 禹霖, 柏文富, 李建辉, 等. ‘彩虹’彩桂高位嫁接技术研究[J]. 湖南林业科技, 2018, 45(6):19−23, 28. doi: 10.3969/j.issn.1003-5710.2018.06.004 Yu L, Bai W F, Li J H, et al. Study on high-position grafting technology of Osmanthus fragrans var. semperflorens ‘Rainbow’[J]. Hunan Forestry Science & Technolog, 2018, 45(6): 19−23, 28. doi: 10.3969/j.issn.1003-5710.2018.06.004
[21] Gardens R B. World checklist of selected plant families [EB/OL] [2016−04−14]. http://apps.kew.org/wcsp/Retrieved.
[22] 曹福亮, 花喆斌, 汪贵斌, 等. 野生银杏资源群体遗传多样性的RAPD分析[J]. 浙江农林大学学报, 2008, 25(1):22−27. doi: 10.3969/j.issn.2095-0756.2008.01.005. Cao F L, Hua Z B, Wang G B, et al. Genetic diversity in wild populations of Ginkgo biloba using random amplified polymorphic DNA (RAPD) analysis[J]. Journal of Zhejiang Forestry College, 2008, 25(1): 22−27. doi: 10.3969/j.issn.2095-0756.2008.01.005.
[23] 王凯, 韦善忠, 罗江, 等. DNA分子标记及其进展[J]. 黑龙江八一农垦大学学报, 2003, 15(1):39−43. doi: 10.3969/j.issn.1002-2090.2003.01.010. Wang K, Wei S Z, Luo J, et al. DNA molecular markers and their advances[J]. Journal of Heilongjiang BaYi Agricultural University, 2003, 15(1): 39−43. doi: 10.3969/j.issn.1002-2090.2003.01.010.
[24] Li G, Quiros C F. Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction:its application to mapping and gene tagging in Brassica[J]. Theoretical and Applied Genetics, 2001, 103(2−3): 455−461. doi: 10.1007/s001220100570.
[25] 贺蕤, 余学琼, 杨志建, 等. 河南省南召县玉兰遗传多样性SRAP分析[J]. 分子植物育种, 2019, 17(13):4320−4330. He R, Yu X Q, Yang Z J, et al. SRAP analysis of Yulania genetic diversity in Nanzhao County, Henan Province[J]. Molecular Plant Breeding, 2019, 17(13): 4320−4330.
[26] 郭彩杰, 侯丽霞, 崔娜, 等. 番茄耐低温相关基因的SRAP标记筛选[J]. 植物生理学报, 2011, 47(1):102−106. Guo C J, Hou L X, Cui N, et al. Identification of the specific SRAP marker associated with cold resistance of Tamoto[J]. Plant Physiology Communications, 2011, 47(1): 102−106.
[27] 王茂芊, 李博, 王华忠. 甜菜遗传连锁图谱初步构建[J]. 作物学报, 2014, 40(2):222−230. doi: 10.3724/SP.J.1006.2014.00222. Wang M Q, Li B, Wang H Z. Construction of molecular genetic linkage map of Sugarbeet[J]. Acta Agronomica Sinica, 2014, 40(2): 222−230. doi: 10.3724/SP.J.1006.2014.00222.
[28] Budak H, Shearman R C, Parmaksiz I, et al. Molecular characterization of Buffalograss germplasm using sequence-related amplified polymorphism markers[J]. Theoretical and Applied Genetics, 2004, 108(2): 328−334. doi: 10.1007/s00122-003-1428-4.
[29] 王萱. 玉铃花遗传多样性的AFLP分析[D]. 泰安: 山东农业大学, 2016. Wang X. Genetic diversity of Styrax obassia Sieb & Zucc based on AFLP markers[D]. Taian: Shandong Agricultural University, 2016.
[30] 曲凯. 流苏种质资源的收集评价及遗传多样性的分析[D]. 泰安: 山东农业大学, 2019. Qu K. Collection and evaluation of Chionanthus retusus resources and analysis of genetic diversity[D]. Taian: Shandong Agricultural University, 2019.
[31] Rohlf F J. NTSYSpc: numerical taxonomy and multivariate analysis system [M]. New York: Exeter Software, Setauket, 1988.
[32] Nei M. Estimation of average heterozygosity and genetic distance from a small number of individuals[J]. Genetics, 1978, 89(3): 583−590.
[33] 沈浩, 刘登义. 遗传多样性概述[J]. 生物学杂志, 2001, 18(3):4, 5−7 . doi: 10.3969/j.issn.2095-1736.2001.03.002. Shen H, Liu D Y. Summary of genetic diversity[J]. Journal of Biology, 2001, 18(3): 4, 5−7 . doi: 10.3969/j.issn.2095-1736.2001.03.002.
[34] Zietkiewicz E, Rafalski A, Labuda D. Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification[J]. Genomics, 1994, 20(2): 176−183. doi: 10.1006/geno.1994.1151.
[35] Fang D Q, Roose M L. Identification of closely related citrus cultivars with inter-simple sequence repeat markers[J]. Theoretical and Applied Genetics, 1997, 95(3): 408−417. doi: 10.1007/s001220050577.
[36] Esselman E J, Li J Q, Crawford D J, et al. Clonal diversity in the rare Calamagrostis porteri ssp. insperata (Poaceae): comparative results for allozymes and random amplified polymorphic DNA (RAPD) and intersimple sequence repeat (ISSR) markers[J]. Molecular Ecology, 1999, 8(3): 443−451. doi: 10.1046/j.1365-294X.1999.00585.x.
[37] 钱韦, 葛颂, 洪德元. 采用RAPD和ISSR标记探讨中国疣粒野生稻的遗传多样性[J]. 植物学报, 2000, 42(7):741−750. Qian W, Ge S, Hong D Y. Assessment of genetic variation of Oryza granulata detected by RAPDs and ISSRs[J]. Journal of Integrative Plant Biology, 2000, 42(7): 741−750.
[38] 马朝芝, 傅廷栋, Stine Tuevesson, 等. 用ISSR标记技术分析中国和瑞典甘蓝型油菜的遗传多样性[J]. 中国农业科学, 2003, 36(11):1403−1408. doi: 10.3321/j.issn:0578-1752.2003.11.031. Ma C Z, Fu T D, Tuevesson S, et al. Genetic diversity of Chinese and Swedish rapeseed (Brassica napus L.) analysed by inter-simple sequence repeats(ISSRs)[J]. Scientia Agricultura Sinica, 2003, 36(11): 1403−1408. doi: 10.3321/j.issn:0578-1752.2003.11.031.
[39] 陈良华, 胡庭兴, 张帆. 四川干旱干热河谷核桃资源遗传多样性分析[J]. 果树学报, 2009, 26(1):48−54. Chen L H, Hu T X, Zhang F. AFLP analysis on genetic diversity of Juglans populations in dry and dryhot valleys of Sichuan Province[J]. Journal of Fruit Science, 2009, 26(1): 48−54.
[40] Hickey R J, Vincent M A, Guttman S I. Genetic variation in running buffalo clover Trifolium stoloniferum Fabaceae[J]. Conservation Biology, 1991, 5(3): 309−316. doi: 10.1111/j.1523-1739.1991.tb00142.x.
[41] Swensen S M, Allan G J, Howe M, et al. Genetic analysis of the endangered island endemic Malacothamnus fasciculatus (Nutt.) Greene var. nesioticus (Rob.) Kearn. (Malvaceae)[J]. Conservation Biology, 1995, 9(2): 404−415. doi: 10.1046/j.1523-1739.1995.9020404.x.
[42] Ayres D R, Ryan F J. Genetic diversity and structure of the narrow endemic Wyethia reticulate and its congener W. bolanderi (Asteraceae) using RAPD and allozyme techniques[J]. American Journal of Botany, 1999, 86(3): 344−353. doi: 10.2307/2656756
[43] Kang U, Chang C S, Kim Y S. Genetic structure and conservation considerations of rare endemic Abeliophyllum distichum Nakai (Oleaceae) in Korea[J]. Journal of Plant Reserach, 2000, 113(2): 127−138. doi: 10.1007/PL00013923.
[44] 肖龙骞, 葛学军, 龚洵, 等. 贵州苏铁遗传多样性研究[J]. 植物分类与资源学报, 2003, 25(6):648−652. Xiao L Q, Ge X J, Gong X, et al. Genetic diversity of Cycas guizhouensis[J]. Plant Diversity, 2003, 25(6): 648−652.
[45] 明军, 顾万春. 紫丁香天然群体遗传多样性的AFLP分析[J]. 园艺学报, 2006, 33(6):1269−1274. doi: 10.3321/j.issn:0513-353X.2006.06.018. Ming J, Gu W C. Genetic diversity in natural populations of Syringa oblata detected by AFLP markers[J]. Acta Horticulturae Sinica, 2006, 33(6): 1269−1274. doi: 10.3321/j.issn:0513-353X.2006.06.018.
[46] 孟宪婷. 东北地区不同种源水曲柳遗传分化的研究[D]. 哈尔滨: 东北林业大学, 2009. Meng X T. Study on genetic differentiation of Fraxinus Mandshurica Rupr. in different provenances, northeast of China[D]. Harbin: Northeast Forestry University, 2009.
[47] 李梅, 侯喜林, 郝日明. 基于SRAP分子标记的桂花品种亲缘关系研究[J]. 园艺学报, 2009, 36(11):1667−1675. doi: 10.3321/j.issn:0513-353X.2009.11.015. Li M, Hou X L, Hao R M. Analysis of genetic relationships of Osmanthus fragrans based on SRAP markers[J]. Acta Horticulturae Sinica, 2009, 36(11): 1667−1675. doi: 10.3321/j.issn:0513-353X.2009.11.015.
[48] 葛颂, 陈家宽, 杨继. 植物进化生物学[M]. 1版. 武汉: 武汉大学出版社, 1994. Ge S, Chen J K, Yang J. Plant evolutionary biology[M]. 1st ed. Wuhan: Wuhan University Press, 1994.
[49] 何艳霞, 孔令茜, 陈鹏臻, 等. 雄全异株流苏树的花部特征及繁育系统研究[J]. 生态学报, 2017, 37(24):8467−8476. He Y X, Kong L Q, Chen P Z, et al. Floral syndrome and reproductive strategy of an androdioecious species, Chionanthus retusus (Oleaceae)[J]. Acta Ecologica Sinica, 2017, 37(24): 8467−8476.
[50] Frankham R, Briscoe D A. Introduction to conservation genetics[M]. Cambridge: Cambridge University Press, 2010: 309−336.
[51] Turpein T, Tehola T, Manninen O, et al. Microsatellite diversity associated with ecological factors in Hordeum spontaneum populations in Israel[J]. Molecular Ecology, 2001, 10(6): 1577−1591. doi: 10.1046/j.1365-294X.2001.01281.x.
[52] 苏晓华, 张绮纹, 郑先武, 等. 利用RAPD分析大青杨天然群体的遗传结构[J]. 林业科学, 1997, 33(6):504−512. doi: 10.3321/j.issn:1001-7488.1997.06.004. Su X H, Zhang Q W, Zheng X W, et al. Genetic structure in Populus ussuriensis Kom. confirmed by RAPD markers[J]. Scientia Silvae Sinicae, 1997, 33(6): 504−512. doi: 10.3321/j.issn:1001-7488.1997.06.004.
[53] 邱英雄, 黄爱军, 傅承新. 明党参的遗传多样性研究[J]. 植物分类学报, 2000, 38(2):111−120. Qiu Y X, Huang A J, Fu C X. Studies on genetic diversity in Changium smyrnioides Wolff (Umbelliferae)[J]. Journal of Systematics and Evolution, 2000, 38(2): 111−120.
[54] Govindaraju D R. Relationship between dispersal ability and levels of gene flow in plants[J]. Oikos, 1988, 52(1): 31−35. doi: 10.2307/3565978.
[55] 庞广昌, 王军厚. 胡杨群体遗传结构及其与自然环境关系的研究[J]. 西北植物学报, 1992, 12(4):295−302. doi: 10.3321/j.issn:1000-4025.1992.04.008. Pang G C, Wang J H. Study on population genetic structure geographical provenance of Populus euphratica Oliv. and their interaction with environment[J]. Acta Botanica Boreali-Occidentalia Sinica, 1992, 12(4): 295−302. doi: 10.3321/j.issn:1000-4025.1992.04.008.
[56] Heywood J S. Spatial analysis of genetic variation in plant population[J]. Annals Review of Ecology, Evolution and Systematics, 1991, 22(1): 335−355. doi: 10.1146/annurev.es.22.110191.002003.
[57] 江亚雯, 孙小琴, 罗火林, 等. 基于ISSR标记的江西野生寒兰居群遗传多样性研究[J]. 园艺学报, 2017, 44(10):1993−2000. Jiang Y W, Sun X Q, Luo H L, et al. Studies on genetic diversity of Cymbidium kanran populations from the main mountains in Jiangxi Province based on ISSR marker[J]. Acta Horticulturae Sinica, 2017, 44(10): 1993−2000.
[58] 穆立蔷, 刘赢男. 不同地理分布区紫椴种群的遗传多样性变化[J]. 植物生态学报, 2007, 31(6):1190−1198. doi: 10.17521/cjpe.2007.0148. Mu L Q, Liu Y N. Genetic diversity of Tilia Amurensis populations in different geographical distribution regions[J]. Journal of Plant Ecology, 2007, 31(6): 1190−1198. doi: 10.17521/cjpe.2007.0148.
-
期刊类型引用(10)
1. 区少碧,杨小慧,陈奕洁,周依琳,郑先涛,耿梦楠,姜浩,白卫东. 竹叶黄酮的提取、生理机制与应用研究进展. 食品安全质量检测学报. 2024(03): 69-79 . 百度学术
2. 刘亚倩,王进,汤锋. 低共熔溶剂-球磨法提取竹叶黄酮碳苷工艺优化. 林产化学与工业. 2023(04): 60-66 . 百度学术
3. 谢博. 常见热加工方式对食源性活性成分影响的研究进展. 天然产物研究与开发. 2023(08): 1457-1467 . 百度学术
4. 赵丹,王昌涛,李萌,张佳婵,王冬冬. 黑枸杞发酵液的抗衰老功效与安全性探究. 日用化学工业. 2021(08): 761-767 . 百度学术
5. 韩姝葶,王婉馨,袁国强,昌萍,董兰营,王增利. 干燥方式对铁皮石斛品质的影响. 食品科学. 2019(03): 142-148 . 百度学术
6. 龙旭,高静,张光辉,孟庆华,李小蓉,李榜伟. 竹叶黄酮的提取、纯化及抗氧化性能研究. 当代化工. 2019(02): 299-302 . 百度学术
7. 杨彬,金小青,李彩霞,焦扬. 响应面法优化太空茄子叶总黄酮的提取工艺. 甘肃农业大学学报. 2019(03): 163-170 . 百度学术
8. 王正兴,李芳. 浙江毛竹叶绿素野外测量与实验室分析数据集(2018). 全球变化数据学报(中英文). 2019(02): 194-199+215-220 . 百度学术
9. 崔美林,苏玉芳,高红. 不同加工方式对基于双水相体系提取的小米黄酮的影响. 食品与发酵工业. 2018(05): 156-161 . 百度学术
10. 刘梦,史智佳,贡慧,杨震. 天然抗氧化剂对不同热加工方式牛肉制品脂肪氧化的影响. 肉类研究. 2017(12): 17-22 . 百度学术
其他类型引用(5)