高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

兴安落叶松人工林空间结构优化

林富成 王维芳 门秀莉 孙钰森 李国春 刘丹丹

林富成, 王维芳, 门秀莉, 孙钰森, 李国春, 刘丹丹. 兴安落叶松人工林空间结构优化[J]. 北京林业大学学报, 2021, 43(4): 68-76. doi: 10.12171/j.1000-1522.20200228
引用本文: 林富成, 王维芳, 门秀莉, 孙钰森, 李国春, 刘丹丹. 兴安落叶松人工林空间结构优化[J]. 北京林业大学学报, 2021, 43(4): 68-76. doi: 10.12171/j.1000-1522.20200228
Lin Fucheng, Wang Weifang, Men Xiuli, Sun Yusen, Li Guochun, Liu Dandan. Spatial structure optimal of Larix gmelinii plantation[J]. Journal of Beijing Forestry University, 2021, 43(4): 68-76. doi: 10.12171/j.1000-1522.20200228
Citation: Lin Fucheng, Wang Weifang, Men Xiuli, Sun Yusen, Li Guochun, Liu Dandan. Spatial structure optimal of Larix gmelinii plantation[J]. Journal of Beijing Forestry University, 2021, 43(4): 68-76. doi: 10.12171/j.1000-1522.20200228

兴安落叶松人工林空间结构优化

doi: 10.12171/j.1000-1522.20200228
基金项目: “十三五”国家重点研发计划项目(2017YFD0601204)
详细信息
    作者简介:

    林富成。主要研究方向:森林可持续经营。Email:815967578@qq.com 地址:150040黑龙江省哈尔滨市和兴路26号东北林业大学林学院

    责任作者:

    王维芳,博士,副教授。主要研究方向:森林可持续经营。Email:weifangwang@126.com 地址:同上

  • 中图分类号: S758.5

Spatial structure optimal of Larix gmelinii plantation

  • 摘要:   目的  以小兴安岭林区兴安落叶松人工林为研究对象,基于林分空间结构参数和经营密度表确定采伐强度及采伐木,对林分空间结构进行优化,分析优化效果,为人工林空间结构优化提供理论依据。  方法  在黑龙江省伊春市南岔县设置4块面积为0.2 hm2的兴安落叶松人工林固定样地,选择常用林分空间结构参数角尺度、大小比数、竞争指数和开阔比,并构建空间结构评价指数,结合兴安落叶松经营密度表确定采伐强度和采伐木,并分析间伐前后林分空分间结构变化。  结果  样地中的林木分别属于聚集分布、随机分布和均匀分布,中小径级林木较多,处于劣势状态,林木的生长空间处于严重不足状态和不足状态,林木竞争压力较大,各样地评价等级都为2级。根据经营密度表对监测样地2和监测样地4进行采伐,采伐株数强度分别为20.7%和12.7%,采伐之后角尺度分别降低3.9%和增加3.8%,大小比数分别降低0.5%和0.4%,竞争指数分别降低16.8%和5.2%,开阔比分别增加24.5%和4.2%,空间结构评价指数分别增加27.8%和7.2%。  结论  采用林分空间结构参数结合经营密度表进行林分抚育间伐可以有效改善林分空间结构,提升林木生长空间和优势程度,并减小了竞争压力。

     

  • 表  1  样地基本信息

    Table  1.   Basic information of sample plots

    样地号
    Sample plot No.
    年龄/a
    Age/year
    平均胸径
    Mean DBH/cm
    平均树高
    Mean tree height/m
    公顷蓄积/(m3·hm−2)
    Volume/(m3·ha−1)
    林分密度/(株·hm−2)
    Stand density/(tree·ha−1)
    12518.915.6254.01 325
    22518.315.8232.51 155
    31811.311.1184.82 125
    41811.010.0154.71 845
    下载: 导出CSV

    表  2  林分空间结构评价指数等级划分

    Table  2.   Classification of forest spatial structure evaluation index

    评价指数值
    Evaluation index value
    特征描述
    Feature description
    等级评价
    Grade evaluation
    ≤ 0.20 几乎所有林分空间结构参数值与理想取值的标准相差很大,林木大小分化明显,林分分布呈非随机分布,林木个体生长空间严重不足
    Spatial structure parameters of almost all stands differ greatly from the standard of ideal values, the tree size differentiation is obvious, the stand distribution is non-random, and the individual growth space of trees is seriously insufficient
    1
    0.20 ~ 0.40 有一小部分林分空间结果接近于理想的取值标准。林分分布非随机分布,林木大小差异分布较明显,林木个体生长空间不足
    A small part of stand space results close to the ideal value standard. The distribution of stands is non-random, the distribution of tree size difference is obvious, and the individual growth space of trees is insufficient
    2
    0.40 ~ 0.60 接近于1/2左右的林分空间结构参数满足理想的取值标准,林木分布为均匀分布或均匀分布向随机分布转变,林木个体生长空间不足
    Spatial structure parameters of stands close to 1/2 meet the ideal value standard, the tree distribution is uniform distribution or uniform distribution changes to random distribution, and the individual growth space of trees is insufficient
    3
    0.60 ~ 0.80 大部分林分空间结构因子结构参数值满足理想取值的标准,林木分布格局接近于随机分布,林木大小分化不明显,林木个体生长空间较充足
    Structural parameters of spatial structure factor of most stands meet the criteria of ideal value, the tree distribution pattern is close to random distribution, the tree size differentiation is not obvious, and the individual growth space of trees is sufficient
    4
    ≥ 0.80 林分空间结构因子基本满足取值标准,林木整体格局成随机分布,林木大小分化明显,林木个体生长空间充足
    Spatial structure factor of stand basically meets the value standard, the overall pattern of the tree is random distribution, the tree size differentiation is obvious, and the individual growth space of the tree is sufficient
    5
    下载: 导出CSV

    表  3  林木角尺度频率分布及平均值

    Table  3.   Frequency distribution and mean of angle scale of forests

    样地号
    Sample plot No.
    频率分布 Frequency distribution平均值
    Mean
    wi (0)wi (0.25)wi (0.5)wi (0.75)wi (1)
    10.0050.1020.5610.2860.0460.565
    20.0130.1200.5470.2730.0470.555
    30.0250.2110.5990.1520.0130.479
    40.1390.2130.5100.13800.412
    下载: 导出CSV

    表  4  不同径级大小比数平均值

    Table  4.   Average value of different diameter grades of each sample plot size ratio

    样地号
    Sample plot No.
    大小比数 Size ratio平均值
    Mean
    10.8970.5030.12500.490
    20.9670.6160.1940.0360.505
    30.8110.5590.2880.1780.497
    40.7920.5450.3170.1170.499
    下载: 导出CSV

    表  5  各样地平均竞争指数

    Table  5.   Average competition index of different sample plots

    样地号 Sample plot No.1234
    平均竞争指数 Mean competitive index2.282.342.432.07
    下载: 导出CSV

    表  6  开阔比分布频率及平均值

    Table  6.   Frequency and average value of open ratio distribution

    样地号
    Sample
    plot No.
    频率分布 Frequency distribution平均值
    Mean
    $ \mathrm{O}{\mathrm{P}}_{i} $ (0)$ \mathrm{O}{\mathrm{P}}_{i} $ (0.25)$ \mathrm{O}{\mathrm{P}}_{i} $ (0.5)$ \mathrm{O}{\mathrm{P}}_{i} $ (0.75)$ \mathrm{O}{\mathrm{P}}_{i} $ (1)
    10.1080.0830.1780.2990.3320.666
    20.0930.0930.1470.3200.3470.683
    30.0760.0890.1440.3140.3770.710
    40.0450.0640.1330.1980.5500.791
    下载: 导出CSV

    表  7  各样地空间结构指标与评价指数

    Table  7.   Spatial structure indexes and evaluation indexes of each sample plot

    样地号
    Sample plot No.
    角尺度
    Angular scale
    大小比数
    Neighborhood comparison
    竞争指数
    Competition index
    开阔比
    Open ratio
    空间结构评价指数
    Spatial structure evaluation index
    10.5650.4902.280.6660.320
    20.5550.5052.340.6830.317
    30.4790.4872.430.7100.328
    40.4120.4992.070.7910.358
    下载: 导出CSV

    表  8  采伐木信息

    Table  8.   Thinning tree information

    样地号
    Sample plot No.
    树号
    Tree No.
    胸径
    DBH/cm
    角尺度
    Angle scale
    大小比数
    Neighborhood comparison
    竞争指数
    Competition index
    空间结构评价指数
    Spatial structure evaluation index
    2 4 13.0 0.5 1 5.785 0.059
    11 13.0 0.25 1 2.533 0.122
    20 15.4 0.75 0.75 1.749 0.184
    24 13.6 0.75 1 2.156 0.133
    25 9.7 0.75 1 2.745 0.115
    29 9.5 0.75 1 5.718 0.160
    35 12.8 0.5 1 3.310 0.095
    38 11.7 0.5 1 3.477 0.095
    63 12.4 0.5 1 4.043 0.080
    222 15.5 0.5 1 4.849 0.067
    4 22 9.4 0.75 1 2.529 0.070
    44 8.0 0.5 1 2.892 0.065
    92 8.9 0.75 1 2.523 0.136
    112 9.9 0.75 1 1.797 0.097
    182 7.5 0.5 1 2.851 0.068
    235 8.0 0.5 1 2.456 0.075
    281 6.0 0.5 1 2.179 0.081
    320 8.0 0.5 1 2.628 0.071
    357 7.6 0.5 1 2.811 0.068
    下载: 导出CSV

    表  9  样木间伐的原因

    Table  9.   Reasons for thinning of sample trees

    样地号
    Sample plot No.
    树木号
    Tree No.
    胸径
    DBH/cm
    间伐原因
    Cause of tending thinning
    2 4 13.0 与6号和7号树距离太近,竞争压力过大,评价指数低
    Too close to No. 6 and No. 7 trees, too much competitive pressure, low evaluation index
    11 13.0 与10号树距离太近,处于绝对劣势状态
    Too close to tree No. 10, at an absolute disadvantage
    20 15.4 被周围林木挤压
    Squeezed by surrounding trees
    24 13.6 处于劣势状态,受到相邻木挤压
    At a disadvantage state, squeezed by adjacent wood
    25 9.7 林木分布不均匀,被周围林木严重挤压
    Uneven distribution of trees, severely squeezed by surrounding trees
    29 9.5 与224号树距离过近,受到相邻木挤压,竞争压力过大
    Too close to No. 224 tree, squeezed by adjacent wood, too much competition pressure
    35 12.8 与36号树距离过近,竞争压力大,评价指数过低
    Too close to tree No. 36, high competitive pressure and low evaluation index
    38 11.7 受到39号树严重挤压,竞争压力过大
    Severely squeezed by tree No.39, the competition pressure is too high
    63 12.4 与81号树距离过近,受到严重挤压,评价指数过低
    Too close to No.81 tree, severely squeezed, and the evaluation index is too low
    222 15.5 与45号树距离过近竞争压力大,评价指数低
    Too close to No.45 tree, high competitive pressure and low evaluation index
    4 22 9.4 处于绝对劣汰,被邻木严重挤压
    In absolute disadvantage state, severely squeezed by neighboring trees
    38 8.8 与39号树靠的太近,竞争压力过大
    Too close to tree No. 39, too much pressure from competition
    92 8.0 被周围邻木严重挤压
    Severely squeezed by surrounding wood
    112 8.9 被周围林木严重挤压,评价指数低
    Severely squeezed by surrounding trees, with low evaluation index
    182 9.9 受183号树严重挤压,竞争压力大评价指数低
    Seriously squeezed by No. 183 tree, the evaluation index of competitive pressure is low
    235 7.5 受234号邻木挤压,评价指数低
    Squeezed by No. 234 neighboring tree, low evaluation index
    281 8.0 被周围林木挤压
    Squeezed by surrounding trees
    320 6.0 竞争压力大,评价指数低
    High competitive pressure and low evaluation index
    357 7.6 受336号树挤压,评价指数低
    Squeezed by No. 336 tree, low evaluation index
    下载: 导出CSV

    表  10  抚育间伐前后空间结构指标变化

    Table  10.   Spatial index changes of sample plots before and after tending thinning

    样地号
    Sample plot No.
    项目
    Project
    平均胸径
    Mean
    DBH
    角尺度
    Angle
    scale
    大小比数
    Neighborhood
    comparison
    竞争指数
    Competition
    index
    开阔比
    Open
    ratio
    空间结构评价指数
    Spatial structure
    evaluation index
    2 间伐前 Before thinning 18.3 0.555 0.505 2.340 0.683 0.317
    间伐后 After thinning 19.0 0.533 0.502 1.946 0.850 0.405
    变化幅度 Amplitude of variation/% 3.8 −3.9 −0.5 −16.8 24.5 27.8
    4 间伐前 Before thinning 11.0 0.412 0.499 2.070 0.791 0.358
    间伐后 After thinning 11.2 0.428 0.497 1.963 0.824 0.384
    变化幅度 Amplitude of variation/% 1.8 3.8 −0.4 −5.2 4.2 7.2
    注:间伐前、间伐后的平均胸径单位为cm。Note: unit of mean DBH before and after thinning is cm.
    下载: 导出CSV
  • [1] Baskent E Z, Keles S. Spatial forest planning: a review[J]. Ecological Modelling, 2005, 188(2−4): 145−173. doi: 10.1016/j.ecolmodel.2005.01.059
    [2] 惠刚盈, 赵中华, 胡艳波. 结构化森林经营技术指南[M]. 北京: 中国林业出版社, 2010.

    Hui G Y, Zhao Z H, Hu Y B. Technical guide to structured forest management[M]. Beijing: China Forestry Publishing House, 2010.
    [3] Pommerening A. Evaluating structural indices by reversing forest structural analysis[J]. Forest Ecology & Management, 2006, 224(3): 266−277.
    [4] 汤孟平, 周国模, 陈永刚. 基于Voronoi图的天目山常绿阔叶林混交度[J]. 林业科学, 2009, 45(6):1−5.

    Tang M P, Zhou G M, Chen Y G. Mingling of evergreen broad-leaved forests in Tianmu Mountain based on Voronoi diagram[J]. Scientia Silvae Sinicae, 2009, 45(6): 1−5.
    [5] Pommerening A. Approaches to quantifying forest structures[J]. Forestry, 2002, 75(3): 305−324. doi: 10.1093/forestry/75.3.305
    [6] Pastorella F, Paletto A. Stand structure indices as tools to support forest management: an application in Trentino forests (Italy)[J]. Journal of Forest Science, 2013, 59(4): 159−168. doi: 10.17221/75/2012-JFS
    [7] 赵中华, 惠刚盈, 胡艳波. 基于大小比数的林分空间优势度表达方法及其应用[J]. 北京林业大学报, 2014, 36(1):78−82.

    Zhao Z H, Hui G Y, Hu Y B. Method and application of stand spatial advantage degree based on the neighborhood comparison[J]. Journal of Beijing Forestry University, 2014, 36(1): 78−82.
    [8] Li Y, Hui G, Zhao Z, et al. The bivariate distribution characteristics of spatial structure in natural Korean pine broad-leaved forest[J]. Journal of Vegetation Science, 2012, 23 (6): 1180−1190. doi: 10.1111/j.1654-1103.2012.01431.x
    [9] Ruiqiang N, Baiketuerhan Y, Zhang C Y, et al. Analysing structural diversity in two temperate forests in northeastern China[J]. Forest Ecology & Management, 2014, 316: 139−147.
    [10] 胡刚, 张忠华, 程安云. 黔中天龙山喀斯特次生林林分空间结构的量化与分析[J]. 地球与环境, 2017, 45(1):25−31.

    Hu G, Zhang Z H, Cheng A Y. Characterizing and analyzing stand spatial structure of a northern subtropical karst secondary forest in Tianlong Mountain of central Guizhou Province, China[J]. Earth and Environment, 2017, 45(1): 25−31.
    [11] 李建, 彭鹏, 何怀江, 等. 采伐对吉林蛟河针阔混交林空间结构的影响[J]. 北京林业大学学报, 2017, 39 (9):48−57.

    Li J, Peng P, He H J, et al. Effects of thinning intensity on spatial structure of multi-species temperate forest at Jiaohe in Jilin Province, northeastern China[J]. Journal of Beijing Forestry University, 2017, 39 (9): 48−57.
    [12] 胡艳波, 惠刚盈, 戚继忠. 吉林蛟河天然红松阔叶林的空间结构分析[J]. 林业科学研究, 2003, 16(5):523−530.

    Hu Y B, Hui G Y, Qi J Z. Analysis of the spatial structure of natural korean pine broadleaved forest[J]. Forest Research, 2003, 16(5): 523−530.
    [13] 黄金火, 吴必虎. 区域旅游系统空间结构的模式与优化: 以西安地区为例[J]. 地理科学进展, 2010, 24(1):116−126.

    Huang J H, Wu B H. The spatial structure of regional tourism system: its model and optimization-a case study of Xi’an[J]. Progress in Geography, 2010, 24(1): 116−126.
    [14] Li J J, Zhang H R, Wang C L. Discussion on spatial optimization modeling of water resource conservation forests and management practice of forest functions[J]. Chinese Forestry Science and Technology, 2012(3): 63−63.
    [15] 董灵波, 刘兆刚. 樟子松人工林空间结构优化及可视化模拟[J]. 林业科学, 2012, 48(10):77−85.

    Dong L B, Liu Z G. Visual management simulation for Pinus sylvestris var. mongolica plantation based on optimized spatial structure[J]. Scientia Silvae Sincae, 2012, 48(10): 77−85.
    [16] 汤孟平, 唐守正, 雷相东. 林分择伐空间结构优化模型研究[J]. 林业科学, 2004, 40(5):25−31.

    Tang M P, Tang S Z, Lei X D. Study on spatial structure optimizing model of stand selection cutting[J]. Scientia Silvae Sinicae, 2004, 40(5): 25−31.
    [17] 董灵波, 刘兆刚, 李凤日. 大兴安岭主要森林类型林分空间结构及最优树种组成[J]. 林业科学研究, 2014, 27(6):734−740.

    Dong L B, Liu Z G, Li F R. Quantitative analysis of forest spatial structure and optimal species composition for the main forest types in Daxing’anling, northeast China[J]. Forest Research, 2014, 27(6): 734−740.
    [18] 张连金, 胡艳波, 赵中华. 北京九龙山侧柏人工林空间结构多样性[J]. 生态学杂志, 2015, 34(1):60−69.

    Zhang L J, Hu Y B, Zhao Z H. Spatial structure diversity of platycladus orientalis plantation in Beijing Jiulong Mountain[J]. Journal of Ecology, 2015, 34(1): 60−69.
    [19] 赵中华, 惠刚盈. 21世纪以来我国首创的森林经营方法[J]. 北京林业大学学报, 2019, 41 (12):50−57.

    Zhao Z H, Hui G Y. Forest management method originated by China since the 21st century[J]. Journal of Beijing Forestry University, 2019, 41 (12): 50−57.
    [20] 赵中华, 惠刚盈, 刘文桢. 小陇山林区2种锐齿栎次生林林分的结构特征[J]. 西北农林科技大学学报(自然科学版), 2019, 47 (8):75−82.

    Zhao Z H, Hui G Y, Liu W Z. Stand structural characteristics of two Quercus aliena secondary forests on the Xiaolongshan Forest Area[J]. Journal of Northwest A&F (Natural Science Edition), 2019, 47 (8): 75−82.
    [21] 胡艳波, 惠刚盈. 优化林分空间结构的森林经营方法探讨[J]. 林业科学研究, 2006,19(1):1−8.

    Hu Y B, Hui G Y. A discussion on forest management method for optimizing forest spatial structure[J]. Forestry Research, 2006,19(1): 1−8.
    [22] 汤孟平, 陈永刚, 施拥军. 基于Voronoi图的群落优势树种种内种间竞争[J]. 生态学报, 2007,27(11):4707−4716.

    Tang M P, Chen Y G, Shi Y J. Intraspecific and intraspecific competition analysis of community dominant plant populations based on Voronoi diagram[J]. Journal of Ecology, 2007,27(11): 4707−4716.
    [23] 方景. 将乐林场杉木游憩林空间结构调整技术研究[D]. 北京: 北京林业大学, 2015.

    Fang J. Spatial structure adjustment technology of cunninghamia lanceolata recreation forest in Jiangle Forest Farm[D]. Beijing: Beijing Forestry University, 2015.
    [24] 许晓东, 莫晓勇, 邓海燕, 等. 桉树人工林抚育间伐优化模型[J]. 福建农林大学学报, 2020, 49 (3):341−347.

    Xu X D, Mo X Y, Deng H Y, et al. Optimization model of tending and thinning for Eucalyptus plantation[J]. Journal of Fujian Agricultural and Forestry University, 2020, 49 (3): 341−347.
    [25] 董灵波, 刘兆刚, 马妍. 天然林林分空间结构综合指数的研究[J]. 北京林业大学学报, 2013, 35(1):16−22.

    Dong L B, Liu Z G, Ma Y. A new composite index of stand spatial structure for natural forest[J]. Journal of Beijing Forestry University, 2013, 35(1): 16−22.
    [26] 惠刚盈, Klaus von Gadow, Matthias A. 角尺度:一个描述林木个体分布格局的结构参数[J]. 林业科学, 1999, 35(1):37−42.

    Hui G Y, von Gadow K, Matthias A. The neighbourhood pattern: a new structure parameter for describing distribution of forest tree position[J]. Scientia Silvae Sinicae, 1999, 35(1): 37−42.
    [27] 惠刚盈, Klaus von Gadow, Matthias Albert. 一个新的林分空间结构参数:大小比数[J]. 林业科学研究, 1999, 12(1):4−9.

    Hui G Y, von Gadow K, Albert M. A new parameter for stand spatial structure: neighborhood comparsion[J]. Forest Research, 1999, 12(1): 4−9.
    [28] 汤孟平, 陈永刚, 施拥军, 等. 基于Voronoi图的群落优势树种种内种间竞争[J]. 生态学报, 2007, 27(11):4707−4716.

    Tang M P, Chen Y G, Shi Y J, et al. Intranspecific and interspecific competition analysis of community dominant plant populations based on Voronoi diagram[J]. Acta Ecologica Sinica, 2007, 27(11): 4707−4716.
    [29] 胡艳波. 基于结构化森林经营的天然异龄林空间优化经营模型研究[D]. 北京: 中国林业科学研究院, 2010.

    HU Y B. Structure based spatial optimization management model for natural uneven aged forest[D]. Beijing: Beijing Chinese Academy of Forestry, 2010.
    [30] 曹小玉, 李际平, 封尧, 等. 杉木生态公益林林分空间结构分析及评价[J]. 林业科学, 2015, 51(7):37−48.

    Cao X Y, Li J P, Feng Y, et al. Analysis and evaluation of the stand spatial structure of Cunninghamia lanceolata ecological forest[J]. Scientia Silvae Sinicae, 2015, 51(7): 37−48.
    [31] 郝月兰, 张会儒, 唐守正. 基于空间结构优化的采伐木确定方法研究[J]. 西北林学院学报, 2012, 27(5):163−168.

    Hao Y L, Zhang H R, Tang S Z. Determination method of cutting tree based on forest stand spatial structure optimization[J]. Journal of Northwest Forestry University, 2012, 27(5): 163−168.
  • 加载中
表(10)
计量
  • 文章访问数:  829
  • HTML全文浏览量:  251
  • PDF下载量:  39
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-22
  • 修回日期:  2020-08-24
  • 网络出版日期:  2021-04-22
  • 刊出日期:  2021-04-30

目录

    /

    返回文章
    返回