高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

油用牡丹茎秆切割本构方程及其参数测定

刘嘉明 赵健 张建忠 赵东

刘嘉明, 赵健, 张建忠, 赵东. 油用牡丹茎秆切割本构方程及其参数测定[J]. 北京林业大学学报, 2020, 42(11): 138-144. doi: 10.12171/j.1000-1522.20200229
引用本文: 刘嘉明, 赵健, 张建忠, 赵东. 油用牡丹茎秆切割本构方程及其参数测定[J]. 北京林业大学学报, 2020, 42(11): 138-144. doi: 10.12171/j.1000-1522.20200229
Liu Jiaming, Zhao Jian, Zhang Jianzhong, Zhao Dong. Cutting constitutive equation and its parameter measurement of oil tree peony stem[J]. Journal of Beijing Forestry University, 2020, 42(11): 138-144. doi: 10.12171/j.1000-1522.20200229
Citation: Liu Jiaming, Zhao Jian, Zhang Jianzhong, Zhao Dong. Cutting constitutive equation and its parameter measurement of oil tree peony stem[J]. Journal of Beijing Forestry University, 2020, 42(11): 138-144. doi: 10.12171/j.1000-1522.20200229

油用牡丹茎秆切割本构方程及其参数测定

doi: 10.12171/j.1000-1522.20200229
基金项目: 青海省重点研发与转化项目(2019-NK-118),北京市自然科学基金(2182045)
详细信息
    作者简介:

    刘嘉明,博士生。主要研究方向:作物采收设备及切割理论。Email:ljmjim19940109@163.com 地址:100083北京市海淀区清华东路35号北京林业大学工学院

    责任作者:

    赵东,教授,博士生导师。主要研究方向:农林装备制造和机械设计。Email:zhaodong68@bjfu.edu.cn 地址:同上

  • 中图分类号: S225.99

Cutting constitutive equation and its parameter measurement of oil tree peony stem

  • 摘要:   目的  油用牡丹是我国特有的木本油料树种,属于多年生小灌木,其果实采收可以采用茎秆切割的方式,而灌木茎秆切割机理研究一直是林业生产中的难点问题之一。研究灌木茎秆在不同应变率下的动态力学性能并建立其本构模型对茎秆切割有着重要意义。  方法  通过准静态拉伸试验和动态拉伸试验,研究茎秆塑性变形特点,并提出以Johnson-Cook模型作为本构模型,根据模型参数的物理意义,试验拟合得到模型参数。采用ANSYS/LS-DYNA软件模拟分析了油用牡丹茎秆切割过程,并对仿真结果与试验结果进行了相关性分析。  结果  准静态拉伸试验结果表明茎秆断裂过程存在明显的应变硬化现象;动态拉伸试验结果说明茎秆断裂存在显著的应变率效应,拉伸强度随应变率增加而增加;基于试验结果拟合得到了Johnson-Cook模型作为茎秆本构方程时的材料参数值;应用这些参数的模型在茎秆切割仿真中,切割力与切割能量与试验结果对比均无显著性差异,验证了本构方程及参数测定的准确性。  结论  基于Johnson-Cook模型建立了油用牡丹茎秆切割本构方程并验证了其可靠性,为油用牡丹茎秆切割性能的数值模拟研究及采摘机割刀设计提供了依据。

     

  • 图  1  油用牡丹茎秆横截面

    Figure  1.  Cross section of oil tree peony stem

    图  2  茎秆拉伸试验预处理

    Figure  2.  Pretreatment of stem tensile test

    图  3  试验装置

    Figure  3.  Experiment device

    图  4  视频引伸计工作原理

    L0表示拉伸前两标记点间距,∆L表示拉伸后标记点伸长距离。此图引自文献[27]。L0 represents the distance between two marker points before stretching, ∆L represents the elongation distance of marker points after stretching. This figure is quoted from reference [27].

    Figure  4.  Working principle of the video extensometer

    图  5  准静态拉伸应力–应变曲线

    Figure  5.  Stress-strain curve of quasi-tensile test

    图  6  油用牡丹茎秆在不同应变率下应力–应变曲线

    Figure  6.  Stress-strain curves of tensile test of oil tree peony stem under different strain rates

    图  7  Johnson-Cook模型计算结果与试验结果对比

    Figure  7.  Comparison in test results and fittingresults of Johnson-Cook model

    图  8  茎秆剪切试验

    Figure  8.  Stem shear test

    图  9  油用牡丹茎秆剪切仿真有限元模型和不同时刻的应力场

    Figure  9.  Finite model of oil tree peony stem shearing and the stress field of simulation

    图  10  茎秆峰值切割力的仿真结果与试验结果

    Figure  10.  Simulation results and test results of maximum cutting force

    表  1  油用牡丹茎秆本构模型参数

    Table  1.   Constitutive model parameters of oil tree peony stem

    参数
    Parameter
    屈服强度
    Yield strength (A)/MPa
    应变硬化模量
    Strain hardening modulus (B)/MPa
    应变硬化指数
    Strain hardening index (n)
    应变率系数
    Strain rate coefficient (C)
    值 Value4.753.4040.1470.103
    下载: 导出CSV

    表  2  峰值切割力仿真结果与试验结果的成对样本相关系数

    Table  2.   Correlation coefficient between simulation results and test results of cutting force

    样本数量 Sample number相关系数 Correlation coefficientPP value
    100.937 < 0.000 1
    下载: 导出CSV

    表  4  切割能量仿真结果与试验结果的配对t检验

    Table  4.   Paired t test between simulation results and test results of cutting energy

    成对差分 Paired differencet
    t value
    自由度
    df
    P
    P value
    均值
    Mean
    标准差
    SD
    均值的标准差
    SD of mean
    差分的95%置信区间 95% confidence interval of difference
    下限 Lower limit上限 Upper limit
    2.9753.5351.543−1.6914.201−1.62590.086
    下载: 导出CSV

    表  3  峰值切割力仿真结果与试验结果的配对t检验

    Table  3.   Paired t test between simulation results and test results of cutting force

    成对差分 Paired differencet
    t value
    自由度
    df
    P
    P value
    均值
    Mean
    标准差
    SD
    均值的标准差
    SD of mean
    差分的95%置信区间 95% confidence interval of difference
    下限 Lower limit上限 Upper limit
    0.1584.4091.394−2.9963.3120.11390.912
    下载: 导出CSV
  • [1] 周琳, 王雁. 我国油用牡丹开发利用现状及产业化发展对策[J]. 世界林业研究, 2014, 27(1):68−71.

    Zhou L, Wang Y. Development and utilization of oil seed peony and its industrial development strategy in China[J]. World Forestry Research, 2014, 27(1): 68−71.
    [2] 修宇, 吴国栋, 陈德忠, 等. 牡丹绿化油用品种繁殖栽培技术[J]. 北京林业大学学报, 2017, 39(1):112−118.

    Xiu Y, Wu G D, Chen D Z, et al. Propagation and afforestation techniques of tree peonies for greening and seed oil production[J]. Journal of Beijing Forestry University, 2017, 39(1): 112−118.
    [3] 李育才. 中国油用牡丹工程的战略思考[J]. 中国工程科学, 2014, 16(10):57−63.

    Li Y C. The strategy on the oil tree peony industry in China[J]. Engineering Sciences, 2014, 16(10): 57−63.
    [4] 史国安, 焦封喜, 焦元鹏, 等. 中国油用牡丹发展前景及对策[J]. 中国粮油学报, 2014, 29(9):124−128.

    Shi G A, Jiao F X, Jiao Y P, et al. Development prospects and strategies of oil tree peony industry in China[J]. Journal of the Chinese Cereals and Oils Association, 2014, 29(9): 124−128.
    [5] 张栋. 油用牡丹果实采摘装置的设计与实现[D]. 北京: 北京林业大学, 2016.

    Zhang D. Design and implementation of oil peony fruit picking device[D]. Beijing: Beijing Forestry University, 2016.
    [6] 李卅. 油用牡丹果实高地隙收获机底盘结构与稳定性研究[D]. 北京: 北京林业大学, 2016.

    Li S. Study on the structure and stability of high clearance chassis for peony fruit harvester[D]. Beijing: Beijing Forestry University, 2016.
    [7] 张宇. 自走式油用牡丹果实采摘机设计与实现[D]. 北京: 北京林业大学, 2017.

    Zhang Y. Design and implementation of self propelled oil peony fruit picking machine[D]. Beijing: Beijing Forestry University, 2017.
    [8] 张涵, 张洪喜, 王德成, 等. 作物茎秆剪切特性研究进展[J]. 农机化研究, 2014, 36(1):247−252. doi: 10.3969/j.issn.1003-188X.2016.04.051.

    Zhang H, Zhang H X, Wang D C, et al. The research progress of the shear properties of crop stalks[J]. Journal of Agricultural Mechanization Research, 2014, 36(1): 247−252. doi: 10.3969/j.issn.1003-188X.2016.04.051.
    [9] 陈诚, 俞国胜. 往复式灌木切割器滑切角对灌木切割的影响[J]. 北京林业大学学报, 2011, 33(2):115−119.

    Chen C, Yu G S. Effect of sliding cutting angle of bush reciprocating cutter on bush cutting[J]. Journal of Beijing Forestry University, 2011, 33(2): 115−119.
    [10] Johnson P C, Clementson C L, Mathanker S K, et al. Cutting energy characteristics of Miscanthus × giganteus stems with varying oblique angle and cutting speed[J/OL]. Biosystems Engineering, 2012, 112: 42−48 [2019−12−02]. http://DOI: 10.1016/j.biosystemseng.2012.02.003.
    [11] Gupta C P, Oduori M F. Design of the revolving knife-typesugarcane basecutter[J]. Transactions of the American Society of Agricultural Engineers, 1992, 35(6): 1747−1752. doi: 10.13031/2013.28793.
    [12] 杨永福, 李黎, 武丽清. 毛竹物理性质对刨切表面质量的影响[J]. 北京林业大学学报, 2008, 30(1):133−136. doi: 10.3321/j.issn:1000-1522.2008.01.024.

    Yang Y F, Li L, Wu L Q. Effects of physical properties of Moso bamboo on planing surface quality[J]. Journal of Beijing Forestry University, 2008, 30(1): 133−136. doi: 10.3321/j.issn:1000-1522.2008.01.024.
    [13] 张燕青, 崔清亮, 郭玉明, 等. 谷子茎秆切割力学特性试验与分析[J]. 农业机械学报, 2019, 50(4):146−155, 162. doi: 10.6041/j.issn.1000-1298.2019.04.016.

    Zhang Y Q, Cui Q L, Guo Y M, et al. Experiment and analysis of cutting mechanical properties of millet stem[J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(4): 146−155, 162. doi: 10.6041/j.issn.1000-1298.2019.04.016.
    [14] 钟卫洲, 邓志方, 黄西成, 等. 中应变率加载下云杉各向异性力学行为研究[J]. 工程力学, 2016, 33(5):25−32.

    Zhong W Z, Deng Z F, Huang X C, et al. Investigation on anisotropic behavior of spruce mechanical properties under medium strain rate loading conditions[J]. Engineering Mechanics, 2016, 33(5): 25−32.
    [15] Widehammar S. Stress-strain relationships for spruce wood: influence of strain rate, moisture content and loading direction[J]. Experimental Mechanics, 2004, 44(1): 44−48. doi: 10.1007/BF02427975.
    [16] 赵帅, 赵建新, 韩国柱. 俄罗斯红松的应变率效应及吸能特性[J]. 高压物理学报, 2017, 31(3):271−279. doi: 10.11858/gywlxb.2017.03.008.

    Zhao S, Zhao J X, Han G Z. Strain rate and energy absorption characteristics of Russian pine[J]. Chinese Journal of High Pressure Physics, 2017, 31(3): 271−279. doi: 10.11858/gywlxb.2017.03.008.
    [17] Johnson G R, Cook W H. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures[J]. Engineering Fracture Mechanics, 1983, 21: 541−547.
    [18] Johnson G R, Cook W H. Fracture characteristics of three metals subjected to various strains, strains rates, temperatures and pressure[J]. Engineering Fracture Mechanics, 1985, 21(1): 31−48. doi: 10.1016/0013-7944(85)90052-9.
    [19] Liao Y T, Liao Q X, Shu C X, et al. Matching of cutting and feeding speed for reaping Arundo donax L. based on ANSYS/LS-DYNA[J]. Transactions of the Chinese Society for Agricultural Machinery, 2011, 42(S1): 30−34.
    [20] 廖宜涛. 基于有限元法的锯齿式芦竹切割器切割机理研究[D]. 武汉: 华中农业大学, 2007.

    Liao Y T. Study on FEM-based incising mechanism of saw-tooth type cutter for Arundo donax L. [D]. Wuhan: Huazhong Agricultural University, 2007.
    [21] 郭茜. 藤茎类秸秆切割机理与性能试验研究[D]. 苏州: 江苏大学, 2014.

    Guo Q. Experimental research on the cutting mechanism and performance of rattan straw[D]. Suzhou: Jiangsu University, 2014.
    [22] 苏工兵. 苎麻茎秆力学建模及有限元模拟分析研究[D]. 武汉: 华中农业大学, 2007.

    Su G B. Mechanical modeling and analysis of finite element method for ramie stalk[D]. Wuhan: Huazhong Agricultural University, 2007.
    [23] 苏工兵, 刘俭英, 王树才, 等. 苎麻茎秆木质部力学性能试验[J]. 农业机械学报, 2007, 38(5):62−65. doi: 10.3969/j.issn.1000-1298.2007.05.016.

    Su G B, Liu J Y, Wang S C, et al. Study on mechanical properties of xylem of ramie stalk[J]. Transactions of the Chinese Society for Agricultural Machinery, 2007, 38(5): 62−65. doi: 10.3969/j.issn.1000-1298.2007.05.016.
    [24] 柳爱群, 黄西成. 高应变率变形的Johnson-Cook动态本构模型参数识别方法[J]. 应用数学和力学, 2014, 35(2):219−225. doi: 10.3879/j.issn.1000-0887.2014.02.010.

    Liu A Q, Huang X C. Identification of high-strain-rate material parameters in dynamic Johnson-Cook constitutive model[J]. Applied Mathematics and Mechanics, 2014, 35(2): 219−225. doi: 10.3879/j.issn.1000-0887.2014.02.010.
    [25] 季玉辉. 基于Johnson-Cook模型的硬物损伤数值模拟研究[D]. 南京: 南京航空航天大学, 2009.

    Ji Y H. Numerical simulation of hard-body foreign object damage based on Johnson-Cook model[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2009.
    [26] 高宏阁. 视频引伸计研发[D]. 天津: 天津大学, 2005.

    Gao H G. The development of video-extensometer[D]. Tianjin: Tianjin University, 2005.
    [27] 葛云燕, 王健. 视频引伸计[J]. 工程与试验, 2015(增刊1):24−26.

    Ge Y Y, Wang J. Video extensometer[J]. Engineering and Test, 2015(Suppl.1): 24−26.
    [28] 张敬敏, 王春华, 周巍松, 等. 视频引伸计的误差源解析[J]. 物理测试, 2013(3):25−28.

    Zhang J M, Wang C H, Zhou W S, et al. Error analysis of video-extensometer[J]. Physics Examination and Testing, 2013(3): 25−28.
    [29] 申荣华. 变形功计算法在金属塑性挤压工艺中的应用[J]. 贵州工业大学学报(自然科学版), 1999, 28(4):38−40.

    Sheng R H. Application of deformation work calculation in the metallic plastic extrusion processes[J]. Journal of Guizhou University of Technology (Natural Science), 1999, 28(4): 38−40.
    [30] 崔慧然, 杨蕴林, 王长生. 约束条件下铜合金加热时的塑性变形及变形功[J]. 河南科技大学学报(自然科学版), 2005, 26(1):1−5.

    Cui H R, Yang Y L, Wang C S. Plastic deformation and plastic deformation work of copper alloy under condition of confining pressure in heating process[J]. Journal of Henan University of Science and Technology (Natural Science), 2005, 26(1): 1−5.
    [31] 范亚夫, 段祝平. Johnson-Cook材料模型参数的实验测定[J]. 力学与实践, 2003, 25(5):40−43. doi: 10.3969/j.issn.1000-0879.2003.05.013.

    Fan Y F, Duan Z P. Cylinder explosive test and material model of Johnson-Cook[J]. Mechanics in Engineering, 2003, 25(5): 40−43. doi: 10.3969/j.issn.1000-0879.2003.05.013.
    [32] 李建光, 施琪, 曹结东. Johnson-Cook本构方程的参数标定[J]. 兰州理工大学学报, 2012, 38(2):164−167. doi: 10.3969/j.issn.1673-5196.2012.02.038.

    Li J G, Shi Q, Cao J D. Parameters calibration for Johnson-Cook constitutive equation[J]. Journal of Lanzhou University of Technology, 2012, 38(2): 164−167. doi: 10.3969/j.issn.1673-5196.2012.02.038.
  • 加载中
图(10) / 表(4)
计量
  • 文章访问数:  487
  • HTML全文浏览量:  167
  • PDF下载量:  38
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-26
  • 修回日期:  2020-09-05
  • 网络出版日期:  2020-11-06
  • 刊出日期:  2020-12-14

目录

    /

    返回文章
    返回