高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

美洲黑杨表型和生理性状多样性及群体结构分析

陈存 丁昌俊 黄秦军 张静 刘宁 李波 李政宏 苏晓华

陈存, 丁昌俊, 黄秦军, 张静, 刘宁, 李波, 李政宏, 苏晓华. 美洲黑杨表型和生理性状多样性及群体结构分析[J]. 北京林业大学学报, 2021, 43(6): 1-12. doi: 10.12171/j.1000-1522.20200231
引用本文: 陈存, 丁昌俊, 黄秦军, 张静, 刘宁, 李波, 李政宏, 苏晓华. 美洲黑杨表型和生理性状多样性及群体结构分析[J]. 北京林业大学学报, 2021, 43(6): 1-12. doi: 10.12171/j.1000-1522.20200231
Chen Cun, Ding Changjun, Huang Qinjun, Zhang Jing, Liu Ning, Li Bo, Li Zhenghong, Su Xiaohua. Phenotypic and physiological trait diversity and population structure of Populus deltoides[J]. Journal of Beijing Forestry University, 2021, 43(6): 1-12. doi: 10.12171/j.1000-1522.20200231
Citation: Chen Cun, Ding Changjun, Huang Qinjun, Zhang Jing, Liu Ning, Li Bo, Li Zhenghong, Su Xiaohua. Phenotypic and physiological trait diversity and population structure of Populus deltoides[J]. Journal of Beijing Forestry University, 2021, 43(6): 1-12. doi: 10.12171/j.1000-1522.20200231

美洲黑杨表型和生理性状多样性及群体结构分析

doi: 10.12171/j.1000-1522.20200231
基金项目: 中央级公益性科研院所基本科研业务费专项重点项目子项目(CAFYBB2017ZA001-3)
详细信息
    作者简介:

    陈存,博士。主要研究方向:林木遗传改良。Email:chencun0610@163.com 地址:100091 北京市海淀区东小府1号中国林业科学研究院林业研究所

    责任作者:

    苏晓华,研究员。主要研究方向:林木遗传改良。Email:suxh@caf.ac.cn 地址:同上

  • 中图分类号: S792.11;S718.43

Phenotypic and physiological trait diversity and population structure of Populus deltoides

  • 摘要:   目的   基于表型和生理性状对美洲黑杨种质资源的多样性和群体结构进行研究,为美洲黑杨种质资源的科学管理、高效利用和有效保护提供理论依据。   方法   对6个种源群体27个采样点的258个美洲黑杨无性系的1年生植株的22个表型和生理性状进行测定,通过方差分析、多重比较、相关性分析、主成分分析和聚类分析等方法研究美洲黑杨种质资源表型和生理性状的多样性和相关性、种源群体间的差异及分化水平、群体的遗传结构,采用模糊数学隶属函数的方法对无性系的表型和生理性状进行综合评价。   结果   美洲黑杨种质资源22个表型和生理性状的变异系数在0.56% ~ 53.48%之间,茎段和根系生物量性状的变异较大,叶绿素荧光参数(Fv/Fm)的变异最小;Shannon-Wiener指数在1.844 ~ 2.097之间;方差分析结果表明,除叶绿素荧光参数外,其他21个性状在种源群体内无性系间和种源群体间均存在极显著的差异(P < 0.01),表型分化系数(Vst)在1.37% ~ 31.40%之间。与生理性状相比,种源群体间表型性状表现出更大的遗传变异。相关性分析结果表明美洲黑杨植株的株高、地径、根系生物量、茎生物量、叶片生物量、净光合速率(Pn)、叶片形状和叶片碳、氮含量之间均存在较强的正相关关系,胞间CO2浓度(Ci)和蒸腾速率(Tr)与植株生长量相关性状指标之间表现为负相关关系。通过主成分分析提取了5个主成分因子,累计贡献率达到80.51%。构建了表型生理性状评价模型,将美洲黑杨无性系分为优、良、中和差4个等级。基于种源群体间的平方欧式距离将6个种源群体划分为3类:位于南方密西西比河中下游流域的密苏里州(Mis)、田纳西州(Ten)与路易斯安那州(Lou)种源群体的无性系为一类;分布在密西西比河上游流域的艾奥瓦州(Iow)种源群体的无性系和圣劳伦斯河流域的魁北克省(Que)种源群体的无性系为一类;位于西北方向的哥伦比亚河流域的华盛顿州(Was)种源群体无性系单独分为一类。   结论   美洲黑杨表型和生理性状具有丰富的多样性,种源群体间和种源群体内无性系间植株的表型和生理性状发生了变异,同时其表型和生理性状的特征与种源群体的分布和气候类型有一定的关联。本研究的结果为美洲黑杨种质资源的保护、管理和利用及优良种质的选育和评价提供了科学依据。

     

  • 图  1  不同种源群体表型性状数据分布和多重比较

    不同字母表示在0.05水平上差异显著。下同。Different letters represent significant differences at 0.05 level. Same as below.

    Figure  1.  Distribution and multiple comparison of phenotypic and biomass traits in different provenances

    图  2  不同种源群体生理性状数据分布与多重比较

    Figure  2.  Distribution and multiple comparison of physiological traits in different provenances

    图  3  表型和生理性状的相关性分析

    左下角是相关性系数,黑色字体表示具有极显著的正相关关系(P < 0.01),蓝色字体表示具有显著的正相关关系(P < 0.05),绿色字体表示具有正相关关系但不显著,红色字体表示具有极显著的负相关关系(P < 0.01),粉色字体表示具有显著的正相关关系(P < 0.05),浅红色字体表示具有正相关关系但不显著;右上角为显著性水平,圆圈大小和颜色表示相关性大小,颜色由黄色到红色表示负相关性越来越强,由黄色到绿色表示正相关性越来越强,*表示 P < 0.05;**表示 P < 0.01,右侧变色柱表示相关性系数。The lower left corner is the correlation coefficient, the black font: a significant positive correlation (P < 0.01), the blue font: a significant positive correlation (P < 0.05), the green font indicates that there is a positive correlation but not significant; the red font: a significant negative correlation (P < 0.01), and the pink font: a significant positive correlation (P < 0.05), the light red font indicates that there is a positive correlation but not significant. The upper right corner is the level of significance, the size and color of the circle indicate the degree of correlation, color from yellow to red indicates stronger negative correlation, and color from yellow to green indicates stronger positive correlation. * means P < 0.05, ** means P < 0.01. The right color column represents the correlation coefficient.

    Figure  3.  Correlation analysis of phenotypic and physiological traits

    图  4  美洲黑杨不同种源群体和无性系的聚类分析

    Figure  4.  Cluster analysis of different provenances and clones of P. deltoides

    表  1  美洲黑杨种质资源信息

    Table  1.   Information of P. deltoides germplasm resources

    种源群体
    Provenance population
    气候类型
    Type of climate
    采样点代码
    Sample code
    无性系数量
    Clone number
    密西西比河流域
    Mississippi River Basin
    美国艾奥瓦州
    Iowa, America (Iow)
    温带大陆性气候(夏季较暖)
    Humid continental (warm summer) climate
    I 19
    美国密苏里州
    Missouri, America (Mis)
    亚热带湿润气候
    Humid subtropical climate
    M1 3
    M2 8
    小计 Subtotal 11
    美国路易斯安那州
    Louisiana, America (Lou)
    亚热带湿润气候
    Humid subtropical climate
    L1 3
    L3 2
    L4 4
    L5 8
    L6 4
    L7 7
    L8 5
    L9 4
    小计 Subtotal 37
    美国田纳西州
    Tennessee, America (Ten)
    亚热带湿润气候
    Humid subtropical climate
    T1 10
    T2 10
    T3 12
    T4 6
    T5 13
    小计 Subtotal 51
    哥伦比亚河流域
    Columbia River Basin
    美国华盛顿州
    Washington, America (Was)
    温带大陆性气候
    Humid continental climate
    W 15
    圣劳伦斯河流域
    Saint Lawrence River Basin
    加拿大魁北克省
    Quebec, Canada (Que)
    温带大陆性气候(夏季较凉)
    Humid continental (cool summer) climate
    Q1 30
    Q2 4
    Q3 2
    Q4 3
    Q5 48
    Q6 8
    Q7 23
    Q8 2
    Q9 3
    Q10 2
    小计 Subtotal 125
    总计 Total 258
    下载: 导出CSV

    表  2  表型性状多样性参数

    Table  2.   Diversity parameters of phenotypic traits

    性状 Trait均值 Mean value标准差 SD最小值 Min. value最大值 Max. value变异系数 Coefficient of variation/%H
    H/cm 64.84 15.99 18.50 111.00 24.66 2.074
    GD/mm 7.35 1.19 4.45 11.54 16.14 2.056
    RFW/g 11.40 4.36 1.87 23.35 38.22 2.070
    RDW/g 4.77 1.99 0.44 10.50 41.68 2.080
    SFW/g 10.20 5.45 1.86 35.25 53.48 1.844
    SDW/g 4.90 2.57 0.82 16.81 52.37 1.849
    LFW/g 1.09 0.28 0.53 2.20 25.27 2.034
    LDW/g 0.32 0.08 0.15 0.55 24.57 2.040
    LN 32.97 6.89 18.33 54.33 20.90 2.076
    LA/cm2 48.45 11.71 22.91 94.27 24.17 2.041
    LL/cm 8.80 1.19 5.90 12.27 13.48 2.072
    LW/cm 8.11 0.88 4.72 10.84 10.80 2.033
    注:H. 株高;GD. 地径;RFW. 根系鲜质量;RDW. 根系干质量;SFW. 茎段鲜质量;SDW. 茎段干质量;LFW. 单叶鲜质量;LDW. 单叶干质量;LN. 叶片数;LA. 单叶面积;LL. 叶片长度;LW. 叶片宽度。H'. Shannon-Wiener 指数。下同。Notes: H, plant height; GD, ground diameter; RFW, fresh mass of root; RDW, dry mass of root; SFW, fresh mass of stem; SDW, dry mass of stem; LFW, fresh mass of single leaf; LDW, dry mass of single leaf; LN, number of leaf; LA, single leaf area; LL, leaf length; LW, leaf width. H', Shannon-Wiener index. The same below.
    下载: 导出CSV

    表  3  表型性状方差分析

    Table  3.   Variance analysis of phenotypic traits

    性状 Trait均方 Mean squareFF value表型分化系数
    Differentiation coefficient
    of phenotypic
    trait (Vst)/%
    种源群体间
    Among populations
    of provenance
    种源群体内
    Within population
    of provenance
    随机误差
    Random error
    种源群体间
    Among populations
    of provenance
    种源群体内
    Within population
    of provenance
    H 2 952.000 723.900 118.400 24.940** 6.116** 7.49
    GD 27.455 3.994 0.708 38.766** 5.639** 12.00
    RFW 418.700 49.800 13.100 31.930** 3.797** 14.30
    RDW 151.940 9.070 2.270 66.974** 3.999** 24.94
    SFW 615.500 78.800 15.100 40.798** 5.221** 13.42
    SDW 96.490 18.250 3.420 28.175** 5.329** 9.49
    LFW 3.625 0.160 0.031 115.146** 5.077** 31.03
    LDW 0.241 0.014 0.003 84.994** 4.962** 25.36
    LN 1 695.100 111.700 22.100 76.801** 5.061** 23.14
    LA 5 368.000 313.000 72.000 74.672** 4.351** 25.40
    LL 62.500 3.060 0.700 89.438** 4.382** 28.82
    LW 5.870 2.232 0.524 11.205** 4.262** 4.95
    注:**表示在P < 0.01水平上差异显著。下同。Notes: ** means significant difference at P < 0.01 level. Same as below.
    下载: 导出CSV

    表  4  生理性状多样性参数

    Table  4.   Diversity parameters of physiological traits

    性状 Trait均值 Mean value标准差 SD最小值 Min. value最大值 Max. value变异系数 Coefficient of variation/%H
    Pn/(μmol·m−2·s−1) 10.39 2.44 3.48 18.74 23.45 2.066
    Gs/(mol·m−2·s−1) 0.25 0.09 0.05 0.58 37.57 2.056
    Ci/(μmol·mol−1) 289.67 28.64 132.36 345.02 9.89 1.921
    Tr/(mmol·m−2·s−1) 5.13 1.45 1.03 8.72 28.32 2.078
    Fv/Fm 0.84 0.01 0.83 0.85 0.56 2.097
    FWC/g 0.74 0.20 0.35 1.62 26.42 1.997
    BWC/mg 33.03 12.16 5.39 86.32 36.83 2.030
    SPAD 37.17 5.28 21.01 50.19 14.21 2.043
    CC/(mg·g−1) 436.20 15.66 387.32 489.29 3.59 2.027
    CN/(mg·g−1) 29.09 4.08 18.05 40.79 14.02 2.067
    注:Pn. 净光合速率;Gs. 气孔导度;Ci. 胞间CO2浓度;Tr. 蒸腾速率;Fv/Fm. PSⅡ最大光化学效率;FWC. 单叶自由水含量;BWC. 单叶结合水含量;SPAD. 叶绿素相对含量;CC. 叶片碳元素含量;CN. 叶片氮元素含量。下同。Notes: Pn, net photosynthetic rate; Gs, stomatal conductance; Ci, intercellular CO2 concentration; Tr, transpiration rate; Fv/Fm, maximal photochemical efficiency of PSⅡ; FWC, free water content of single leaf; BWC, bound water content of single leaf; SPAD, relative content of chlorophyll; CC, carbon content of leaves; CN, nitrogen content of leaves. The same below.
    下载: 导出CSV

    表  5  生理性状方差分析

    Table  5.   Variance analysis of physiological traits

    性状
    Trait
    均方 Mean squareFF value表型分化系数
    Differentiation coefficient
    of phenotypic
    trait (Vst)/%
    种源群体间
    Among populations
    of provenance
    种源群体内
    Within population
    of provenance
    随机误差
    Random error
    种源群体间
    Among populations
    of provenance
    种源群体内
    Within population
    of provenance
    Pn 29.251 17.580 1.234 23.700** 14.250** 3.19
    Gs 0.044 0.026 0.003 12.928** 7.727** 3.21
    Ci 1 729.100 2 474.800 300.200 5.760** 8.244** 1.37
    Tr 7.898 6.291 0.970 8.143** 6.487** 2.43
    Fv/Fm 0.001 0.016 0.042 2.874* 0.765 6.95
    FWC 1.833 0.079 0.017 106.486** 4.617** 31.40
    BWC 4 888.000 356.000 71.000 68.402** 4.978** 21.42
    SPAD 477.500 75.900 16.600 28.793** 4.574** 11.10
    CC 2 246.500 705.300 150.400 14.940** 4.690** 5.94
    CN 98.950 48.920 6.890 14.370** 7.105** 3.86
    下载: 导出CSV

    表  6  表型生理性状的主成分分析

    Table  6.   Principal component analysis of phenotypic and physiological traits

    性状 Trait主成分 Principal component
    12345
    LFW 0.958 0.164 −0.047 −0.030 0.054
    LDW 0.952 0.082 −0.055 0.075 0.038
    LA 0.952 0.153 −0.065 0.046 0.064
    FWC 0.925 0.196 −0.043 −0.065 0.056
    LL 0.894 0.059 −0.055 0.063 0.001
    LW 0.789 0.173 −0.096 0.221 0.169
    BWC 0.729 0.032 −0.018 −0.116 0.091
    H 0.098 0.897 −0.034 0.235 0.088
    SDW 0.341 0.881 −0.027 0.179 0.047
    SFW 0.376 0.874 −0.014 0.123 0.022
    LN −0.140 0.835 −0.058 −0.156 0.096
    GD 0.427 0.786 −0.042 0.092 0.054
    Pn −0.015 0.610 0.465 0.115 0.171
    Gs −0.030 0.159 0.940 −0.085 0.037
    Tr −0.145 0.010 0.892 −0.092 −0.093
    Ci −0.067 −0.288 0.779 −0.195 −0.053
    RDW −0.028 0.130 −0.161 0.944 0.156
    RFW 0.071 0.207 −0.172 0.921 0.142
    SPAD 0.026 −0.277 0.108 0.328 0.670
    CN 0.070 0.418 −0.070 0.071 0.626
    CC 0.266 0.294 −0.112 0.036 0.611
    特征值
    Eigenvalue
    6.114 4.668 2.619 2.134 1.372
    贡献率
    Contribution rate/%
    29.12 22.23 12.47 10.16 6.54
    累计贡献率
    Cumulative contribution rate/%
    29.12 51.34 63.81 73.98 80.51
    下载: 导出CSV

    表  7  美洲黑杨分类统计表

    Table  7.   Classification and statistics of P. deltoides

    种源群体
    Provenance
    population
    分类等级 Classification level合计
    Total
    优 Excellent良 Good中 Medium差 Poor
    Mis 3 4 3 1 11
    Iow 0 6 11 2 19
    Was 0 6 6 3 15
    Que 8 45 52 20 125
    Lou 11 12 8 6 37
    Ten 14 14 19 4 51
    合计 Total 36 87 99 36 258
    下载: 导出CSV
  • [1] Pigliucci M, Murren C J, Schlichting C D. Phenotypic plasticity and evolution by genetic assimilation[J]. Journal of Experimental Biology, 2006, 209(12): 2362−2367. doi: 10.1242/jeb.02070
    [2] 李洪果, 陈达镇, 许靖诗, 等. 濒危植物格木天然种群的表型多样性及变异[J]. 林业科学, 2019, 55(4):69−83.

    Li H G, Chen D Z, Xu J S, et al. Phenotypic diversity and variation in natural populations of Erythrophleum fordii, an endangered plant species[J]. Scientia Silvae Sinicae, 2019, 55(4): 69−83.
    [3] Collevatti R G, Rodrigues E E, Vitorino L C, et al. Unravelling the genetic differentiation among varieties of the Neotropical savanna tree Hancornia speciosa Gomes[J]. Annals of Botany, 2018, 122(6): 973−984.
    [4] Wang M L, Zhang J X, Guo Z P, et al. Morphological variation in Cynodon dactylon (L.) Pers., and its relationship with the environment along a longitudinal gradient[J]. Hereditas, 2020, 157(1): 4. doi: 10.1186/s41065-020-00117-1
    [5] Watt M, Fiorani F, Usadel B, et al. Phenotyping: new windows into the plant for breeders[J]. Annual Review of Plant Biology, 2020, 71: 689−712.
    [6] 于振旭, 秦光华, 宋玉民, 等. 旱柳野生种质资源收集及多样性分析[J]. 北京林业大学学报, 2018, 40(10):67−76.

    Yu Z X, Qin G H, Song Y M, et al. Collection and genetic diversity analysis of wild germplasm in Salix matsudana[J]. Journal of Beijing Forestry University, 2018, 40(10): 67−76.
    [7] 童跃伟, 唐杨, 陈红, 等. 红松种子园种群表型多样性研究[J]. 生态学报, 2019, 39(17):6341−6348.

    Tong Y W, Tang Y, Chen H, et al. Phenotypic diversity of Pinus koraiensis populations in a seed orchard[J]. Acta Ecologica Sinica, 2019, 39(17): 6341−6348.
    [8] Zhou T, Fan J J, Zhao M M, et al. Phenotypic variation of floral organs in Malus using frequency distribution functions[J]. BMC Plant Biology, 2019, 19(1): 1−11. doi: 10.1186/s12870-018-1600-2
    [9] 李伟, 王攀, 其其格, 等. 蓝莓种质资源表型多样性研究[J]. 北京林业大学学报, 2020, 42(2):124−134. doi: 10.12171/j.1000-1522.20190279

    Li W, Wang P, Qiqige, et al. Phenotypic diversity analysis of blueberry germplasm resources[J]. Journal of Beijing Forestry University, 2020, 42(2): 124−134. doi: 10.12171/j.1000-1522.20190279
    [10] Nankar A N, Tringovska I, Grozeva S, et al. Tomato phenotypic diversity determined by combined approaches of conventional and high-throughput tomato analyzer phenotyping[J]. Plants, 2020, 9: 197. doi: 10.3390/plants9020197
    [11] 苏晓华, 丁昌俊, 马常耕. 我国杨树育种的研究进展及对策[J]. 林业科学研究, 2010, 23(1):31−37.

    Su X H, Ding C J, Ma C G. Research progress and strategies of poplar breeding in China[J]. Forest Research, 2010, 23(1): 31−37.
    [12] Fahrenkrog A M, Neves L G, Resende M F, et al. Population genomics of the eastern cottonwood (Populus deltoides)[J]. Ecology & Evolution, 2017, 7(22): 9426−9440.
    [13] 张绮纹, 苏晓华, 李金花, 等. 美洲黑杨基因资源收存及其遗传评价的研究[J]. 林业科学, 1999, 35(2):31−37.

    Zhang Q W, Su X H, Li J H, et al. Study on collection, preservation and genetic valuation of genetic resources of Populus deltoides Bartr[J]. Scientia Silvae Sinicae, 1999, 35(2): 31−37.
    [14] 丁昌俊, 黄秦军, 张冰玉, 等. 北方型美洲黑杨不同无性系重要性状评价[J]. 林业科学研究, 2016, 29(3):331−339.

    Ding C J, Huang Q J, Zhang B Y, et al. Evaluation of important traits of different clones of north-typed Populus deltoides[J]. Forest Research, 2016, 29(3): 331−339.
    [15] 李珊, 甘小洪, 憨宏艳, 等. 濒危植物水青树叶的表型性状变异[J]. 林业科学研究, 2016, 29(5):687−697.

    Li S, Gan X H, Han H Y, et al. Leaf phenotypic traits of Tetracentron sinense, an endangered plant species[J]. Forest Research, 2016, 29(5): 687−697.
    [16] Chen C, Chu Y G, Ding C J, et al. Genetic diversity and population structure of black cottonwood (Populus deltoides) revealed using simple sequence repeat markers[J]. BMC Genetics, 2020, 21(1): 2.
    [17] 褚延广, 苏晓华, 黄秦军, 等. 欧洲黑杨基因资源光合生理特征与生长的关系[J]. 林业科学, 2010, 46(7):77−83.

    Chu Y G, Su X H, Huang Q J, et al. Relationships between photosynthetic characteristics and growth traits in gene resources of Populus nigra[J]. Scientia Silvae Sinicae, 2010, 46(7): 77−83.
    [18] 刘成功, 王明援, 刘宁, 等. 不同光照时间对欧美杨幼苗生长和光合特性的影响[J]. 林业科学, 2018, 54(12):33−41. doi: 10.11707/j.1001-7488.20181204

    Liu C G, Wang M Y, Liu N, et al. Effects of different irradiation duration on growth and photosynthetic characteristics of Populus × euramericana seedlings[J]. Scientia Silvae Sinicae, 2018, 54(12): 33−41. doi: 10.11707/j.1001-7488.20181204
    [19] 王明援, 刘宁, 李波, 等. 不同光强对6个欧美杨无性系苗期生长及光合特性的影响[J]. 林业科学研究, 2020, 33(1):123−130.

    Wang M Y, Liu N, Li B, et al. Effects of light intensity on the growth and photosynthetic characteristics of six Populus × euramericana clones at seedling stage[J]. Forest Research, 2020, 33(1): 123−130.
    [20] 曾宪君, 李丹, 胡彦鹏, 等. 欧洲黑杨优质核心种质库的初步构建[J]. 林业科学, 2014, 50(9):51−58.

    Zeng X J, Li D, Hu Y P, et al. A preliminary study on construction of high-quality core collection of Populus nigra[J]. Scientia Silvae Sinicae, 2014, 50(9): 51−58.
    [21] 杨艳, 汤玉喜, 唐洁, 等. 南方型黑杨种质资源表型及生长性状遗传多样性分析[J]. 中南林业科技大学学报, 2019, 39(7):31−36.

    Yang Y, Tang Y X, Tang J, et al. Genetic diversity of phenotypic and growth characters of southern type of Populus deltoides[J]. Journal of Central South University of Forestry & Technology, 2019, 39(7): 31−36.
    [22] Porth I, Klápště J, McKown A D, et al. Evolutionary quantitative genomics of Populus trichocarpa[J/OL]. PLoS ONE, 2015, 10(11): e0142864 [2020−02−11]. https://doi.org/10.1371/journal.pone.0142864.
    [23] 张圣奎. 木薯种质资源综合评价及主要农艺性状的全基因组关联分析[D]. 武汉: 华中农业大学, 2018.

    Zhang S K. Phenotyping and genome-wide association studies of improtant agronomic traits in cassava (Manihot esculenta Cranz)[D]. Wuhan: Huazhong Agricultural University, 2018.
    [24] 刘济铭, 陈仲, 孙操稳, 等. 无患子属种质资源种实性状变异及综合评价[J]. 林业科学, 2019, 55(6):44−54. doi: 10.11707/j.1001-7488.20190606

    Liu J M, Chen Z, Sun C W, et al. Variation in fruit and seed properties and comprehensive assessment of germplasm resources of the genus Sapindus[J]. Scientia Silvae Sinicae, 2019, 55(6): 44−54. doi: 10.11707/j.1001-7488.20190606
    [25] 白羿雄, 郑雪晴, 姚有华, 等. 青稞种质资源表型性状的遗传多样性分析及综合评价[J]. 中国农业科学, 2019, 52(23):4201−4214.

    Bai Y X, Zheng X Q, Yao Y H, et al. Genetic diversity analysis and comprehensive evaluation of phenotypic traits in hulless barley germplasm resources[J]. Scientia Agricultura Sinica, 2019, 52(23): 4201−4214.
    [26] Geraldes A, Farzaneh N, Grassa C J, et al. Landscape genomics of Populus trichocarpa: the role of hybridization, limited gene flow, and natural selection in shaping patterns of population structure[J]. Evolution, 2014, 68(11): 3260−3280. doi: 10.1111/evo.12497
    [27] Bothwell H M, Cushman S A, Woolbright S A, et al. Conserving threatened riparian ecosystems in the American West: precipitation gradients and river networks drive genetic connectivity and diversity in a foundation riparian tree (Populus angustifolia)[J]. Molecular Ecology, 2017, 26(19): 5114−5132. doi: 10.1111/mec.14281
    [28] Singh N, Wu S, Raupp W J, et al. Efficient curation of genebanks using next generation sequencing reveals substantial duplication of germplasm accessions[J/OL]. Scientific Reports, 2019, 9(1): 650 [2020−03−12]. https://doi.org/10.3389/fpls.2018.01320.
    [29] Belaj A, De La Rosa R, Lorite I J, et al. Usefulness of a new large set of high throughput EST-SNP markers as a tool for olive germplasm collection management[J]. Frontiers in Plant Science, 2018, 9: 1320−1335. doi: 10.3389/fpls.2018.01320
  • 加载中
图(4) / 表(7)
计量
  • 文章访问数:  432
  • HTML全文浏览量:  236
  • PDF下载量:  53
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-23
  • 修回日期:  2020-09-15
  • 网络出版日期:  2021-06-08
  • 刊出日期:  2021-06-30

目录

    /

    返回文章
    返回