A review on mass distribution of active components from Hippophae rhamnoides fruits
-
摘要: 沙棘作为一种抗逆性、适应性、萌蘖性较强的植物资源,被广泛应用于黄土丘陵地区荒山绿化、土壤改良、水土保持和砒砂岩治理。沙棘不仅具有良好的生态价值,其果实中富含多种生物活性物质。本文凝练了沙棘果实中活性化合物的构成、分布及活性特征,并对沙棘果实活性物质的研究进行展望。基于相关文献,针对黄酮、花青素、酚酸、有机酸、肌醇、维生素、类胡萝卜素、不饱和脂肪酸、甾醇等广泛存在于沙棘果实中的化学成分进行总结分析,提供沙棘果实中上述活性物质分布情况的综合信息。研究表明,针对沙棘果实中活性物质的构成、分布和活性特征的研究较为丰富,但在部分领域仍缺乏研究,如栽培技术条件对活性物质的影响,活性物质与沙棘果实加工中异味的关联性等。本文为沙棘果实在食品、药品及保健品行业中的综合利用提供了理论支撑,为促进沙棘资源在经济中的全面发展提供参考。Abstract: Seabuckthorn (Hippophae rhamnoides) is a plant resource with strong resistance to stress, adaptability and sprouting. It is widely used in barren hill greening, soil improvement, soil and water conservation, and sandstone management in loess hilly areas. Seabuckthorn not only has good ecological value, but also its fruits are rich in various biologically active substances. This study summarized and analyzed the composition, distribution, and activity characteristics of activated substances in seabuckthorn fruits by literature data. The current research status of active substances in seabuckthorn fruits is also prospected. Based on the related literatures reviewed, the chemical constituents, which widely present in seabuckthorn fruits including flavonoids, anthocyanins, phenolic acids, organic acids, inositol, vitamins, carotenoids, unsaturated fatty acids and sterols, were described and summarized. And the purpose is to provide comprehensive information on the distribution of important active substances in seabuckthorn fruit. The current research on the composition, distribution and active characteristics of active substances in seabuckthorn fruits is abundant. However, there are still shortages in some areas, such as the impact of cultivation techniques on active substances, and the correlation between active substances and odors in seabuckthorn fruit processing, there is no relevant literature on the concerns of these compounds in the development of seabuckthorn. This article provides theoretical support for the comprehensive utilization of seabuckthorn fruits in food, pharmaceutical and health product industries. It also provides a reference for promoting the comprehensive development of seabuckthorn resources in the economy.
-
Keywords:
- seabuckthorn berry /
- active component /
- mass distribution
-
-
表 1 沙棘果实基础成分数据
Table 1 Basic composition data of seabuckthorn fruit
指标
Index含量
Content/%沙棘品种
Seabuckthorn variety沙棘产地
Seabuckthorn origin参考文献
Reference果实含水量
Fruit water content61.5 ~ 85.3 中国沙棘;“印第安夏”
Hippophae rhamnoides subsp. sinensis;
Hippophae rhamnoides ‘Indian-Summer’ 中国山西;加拿大
Shanxi, China; Canada[18-19] 果油含量
Fruit oil content0.26 ~ 4.50 中国沙棘;海滨沙棘
Hippophae rhamnoides subsp. sinensis;
Hippophae rhamnoides subsp. rhamnoides中国山西;芬兰
Shanxi, China; Finland0.8 ~ 4.1a 中国沙棘;海滨沙棘
Hippophae rhamnoides subsp. sinensis;
Hippophae rhamnoides subsp. rhamnoides中国山西;芬兰
Shanxi, China; Finland含籽率
Seed rate2.09 ~ 6.72 中国沙棘;大果沙棘
Hippophae rhamnoides subsp. sinensis;
Large berry cultivars of Hippophae rhamnoides中国山西,内蒙古,辽宁,河北,
中国黑龙江,新疆
Shanxi, Inner Mongolia, Liaoning, Hebei, Heilongjiang, Xinjiang, China籽油含量
Seed oil content5.5 ~ 14.2 中国沙棘;海滨沙棘
Hippophae rhamnoides subsp. sinensis;
Hippophae rhamnoides subsp. rhamnoides中国山西;芬兰
Shanxi, China; Finland[19] 总糖含量
Total sugar content0.5 ~ 7.4 海滨沙棘;蒙古沙棘
Hippophae rhamnoides subsp. rhamnoides;
Hippophae rhamnoides subsp. mongolica芬兰;爱沙尼亚
Finland; Estonia[20] 总酸含量
Total acid content2.4 ~ 5.4 海滨沙棘;蒙古沙棘
Hippophae rhamnoides subsp. rhamnoides;
Hippophae rhamnoides subsp. mongolica芬兰;爱沙尼亚
Finland; Estonia[20] 注:a为去除籽的果肉中果油含量。 Note: a means fruit oil content in seed-removing pulp. 表 2 沙棘果中黄酮类化合物含量
Table 2 Content of flavonoids in different seabuckthorn sample
黄酮类化合物 Flavonoids 含量 Content/(mg·kg−1) RS RY RW NS TI 3-O-槐糖-7-鼠李糖苷槲皮素 Quercetin 3-O-sophoroside-7-rhamnoside 680 ± 350 1 200 ± 840 180 ± 170 10 ± 10 80 ± 10 3-O-槐糖-7-O-鼠李糖苷山柰酚 Kaempferol 3-O-sophoroside-7-O rhamnoside 460 ± 210 460 ± 100 650 ± 490 280 ± 70 80 ± 10 3-O-槐糖-7-O-鼠李糖苷异鼠李素 Isorhamnetin 3-O-sophoroside-7-O-rhamnoside 960 ± 240 1 760 ± 960 220 ± 110 50 ± 40 210 ± 40 3-O-葡萄糖-7-O-鼠李糖苷异鼠李素 Isorhamnetin 3-O-glucoside-7-O-rhamnoside 2 170 ± 1 360 3 350 ± 1890 140 ± 120 50 ± 30 230 ± 40 3-O-芸香糖苷槲皮素 Quercetin 3-O-rutinoside 580 ± 260 590 ± 210 390 ± 50 — — 3-O-葡萄糖苷槲皮素 Quercetin 3-O-glucoside 570 ± 210 670 ± 230 870 ± 410 — 20 ± 10 3-O-芸香糖苷异鼠李素 Isorhamnetin 3-O-rutinoside 1810 ± 1 230 1 470 ± 560 2 920 ± 1 560 130 ± 40 110 ± 20 O-葡萄糖苷异鼠李素 Isorhamnetin 3-O-glucoside 360 ± 230 560 ± 210 1 340 ± 790 — 10 ± 10 槲皮素 Quercetin 140 ± 80 110 ± 20 160 ± 50 — 20 ± 10 O-鼠李糖苷山柰酚 Kaempferol 7-O-rhamnoside 60 ± 10 100 ± 10 — 480 ± 150 40 ± 10 山柰酚 Kaempferol 20 ± 20 — 30 ± 10 20 ± 10 10 ± 10 异鼠李素 Isorhamnetin 140 ± 120 120 ± 50 290 ± 130 — 20 ± 10 注:RS. 中国沙棘;RY. 云南沙棘;RW. 卧龙沙棘;NS. 肋果沙棘;TI. 西藏沙棘;— 未检出。Notes: RS, Hippophae rhamnoides subsp. sinensis; RY, Hippophae rhamnoides subsp. yunnanensis; RW, Hippophae rhamnoides subsp. wolongensis; NS, Hippophae rhamnoides subsp. stellatopilosa; TI, Hippophae rhamnoides subsp. tibetana; — means not detected. 表 3 两亚种浆果和种子中TAG和GPL中脂肪酸构成表
Table 3 Fatty acid composition of TAG and GPL in seeds and berries of the two subspecies
% 脂肪酸
Fatty acidTAG GPL 果实 Fruit 种子 Seed 果实 Fruit 籽 Seed 中国沙棘
Hippophae rhamnoides subsp. sinensis蒙古沙棘
Hippophae rhamnoides subsp.
mongonica中国沙棘
Hippophae rhamnoides subsp. sinensis蒙古沙棘
Hippophae rhamnoides subsp.
mongonica中国沙棘
Hippophae rhamnoides subsp. sinensis蒙古沙棘
Hippophae rhamnoides subsp.
mongonica中国沙棘
Hippophae rhamnoides subsp. sinensis蒙古沙棘
Hippophae rhamnoides subsp.
mongonica16∶00 27.4 33.9 9 8.6 16.4 21.1 14.1 17.0 16∶1 (n-7) 21.9 32.8 < 0.5 < 0.5 15.9 21.5 < 0.5 < 0.5 18∶00 1.5 1.2 2.2 3.3 1.6 2.4 3.3 6.0 18∶1 (n-9) 20.2 4.6 22.4 17.9 18.5 4.3 22.2 10 18∶1 (n-7) 6.2 6.4 2 2.1 9.2 8.5 4.7 4.3 18∶2 (n-6) 13.2 15.5 35.4 38.6 22.2 32.1 42.7 47.7 18∶3 (n-3) 9.7 5.6 29 29.1 16.2 10.1 13 14.8 合计 Total 100 100 100 100 100 100 100 100 -
[1] 周文洁. 陕北黄土区沙棘林下植被特征及群落稳定性研究[D]. 北京: 北京林业大学, 2020. Zhou W J. Characteristics and community stability of Hippophae rhamnoides in loess area of northern Shaanxi Province[D]. Beijing: Beijing Forestry University, 2020.
[2] Suryakumar G, Gupta A. Medicinal and therapeutic potential of sea buckthorn (Hippophae rhamnoides L.)[J]. Journal of Ethnopharmacology, 2011, 138(2): 268−278. doi: 10.1016/j.jep.2011.09.024.
[3] Srivastava R B, Korekar G, Stobdan T. Nutritional attributes and health application of seabuckthorn (Hippophae rhamnoides L.) : a review[J]. Current Nutrition & Food Science, 2013, 9(2): 151−165. doi: 10.2174/1573401311309020008.
[4] Joseph S V, Edirisinghe I, Burton-Freeman B M. Berries: anti-inflammatory effects in humans[J]. Journal of Agricultural and Food Chemistry, 2014, 62(18): 3886−3903. doi: 10.1021/jf4044056.
[5] Lehtonen H M, Suomela J P, Tahvonen R, et al. Different berries and berry fractions have various but slightly positive effects on the associated variables of metabolic diseases on overweight and obese women[J]. European Journal of Clinical Nutrition, 2011, 65(3): 394−401. doi: 10.1038/ejcn.2010.268.
[6] Xu Y J, Kaur M, Dhillon R S, et al. Health benefits of sea buckthorn for the prevention of cardiovascular diseases[J]. Journal of Functional Foods, 2011, 3(1): 2−12. doi: 10.1016/j.jff.2011.01.001.
[7] Yang B, Kortesniemi M. Clinical evidence on potential health benefits of berries[J]. Current Opinion in Food Science, 2015, 2: 36−42. doi: 10.1016/j.cofs.2015.01.002.
[8] Yang B. Sugars, acids, ethyl β-d-glucopyranose and a methyl inositol in sea buckthorn (Hippophae rhamnoides) berries[J]. Food Chemistry, 2009, 112(1): 89−97. doi: 10.1016/j.foodchem.2008.05.042.
[9] Bal L M, Meda V, Naik S N, et al. Seabuckthorn berries: a potential source of valuable nutrients for nutraceuticals and cosmoceuticals[J]. Food Research International, 2011, 44(7): 1718−1727. doi: 10.1016/j.foodres.2011.03.002.
[10] Vashishtha V, Barhwal K, Kumar A, et al. Effect of seabuckthorn seed oil in reducing cardiovascular risk factors: a longitudinal controlled trial on hypertensive subjects[J]. Clinical Nutrition, 2017, 36(5): 1231−1238. doi: 10.1016/j.clnu.2016.07.013.
[11] Li Z, Jian W, Xiong Y, et al. The determination of the fatty acid content of sea buckthorn seed oil using near infrared spectroscopy and variable selection methods for multivariate calibration[J]. Vibrational Spectroscopy, 2016, 84: 24−29. doi: 10.1016/j.vibspec.2016.02.008.
[12] Yang W, Laaksonen O, Kallio H, et al. Proanthocyanidins in sea buckthorn (Hippophae rhamnoides L.) serries of different origins with special reference to influence of genetic background and growth location[J]. Journal of Agricultural and Food Chemistry, 2016, 64: 1274−1282. doi: 10.1021/acs.jafc.5b05718.
[13] Besbes S, Blecker C, Deroanne C, et al. Date seed oil: phenolic, tocopherol and sterol profiles[J]. Journal of Food Lipids, 2010, 11(4): 251−265. doi: 10.1111/j.1745-4522.2004.01141.x.
[14] Ramadan M F, Wahdan K M M. Blending of corn oil with black cumin (Nigella sativa) and coriander (Coriandrum sativum) seed oils: impact on functionality, stability and radical scavenging activity[J]. Food Chemistry, 2012, 132(2): 873−879. doi: 10.1016/j.foodchem.2011.11.054
[15] Wang L G, Li E C, Qin J G, et al. Effect of oxidized fish oil and α-tocopherol on growth, antioxidation status, serum immune enzyme activity and resistance to aeromonas hydrophila challenge of Chinese mitten crab eriocheir sinensis[J]. Aquaculture Nutrition, 2015, 21(4): 414−424. doi: 10.1111/anu.12171.
[16] Rosch D, Bergmann M, Knorr D, et al. Structure-antioxidant efficiency relationships of phenolic compounds and their contribution to the antioxidant activityof sea buckthorn juice[J]. Journal of Agricultural and Food Chemistry, 2003, 51(15): 4233−4239. doi: 10.1021/jf0300339.
[17] Pawel B, Schulze-Lefert P. Role of plant secondary metabolites at the host-pathogen interface[M]//Annual plant reviews (Vol. 34): molecular aspects of plant disease resistance. Trenton: Wiley-Blackwell, 2009.
[18] Beveridge T, Li T S C, Oomah B D, et al. Seabuckthorn products: manufacture and composition.[J]. Journal of Agricultural and Food Chemistry, 1999, 47(9): 3480−3488. doi: 10.1021/jf981331m.
[19] Yang B R, Kallio H. Fatty acid composition of lipids in sea buckthorn (Hippophae rhamnoides L.) berries of different origins[J]. Journal of Agricultural and Food Chemistry, 2001, 49: 1939−1947. doi: 10.1021/jf001059s.
[20] Ma X, Yang W, Laaksonen O, et al. Role of flavonols and proanthocyanidins in the sensory quality of sea buckthorn (Hippophaë rhamnoides L.) berries[J]. Journal of Agricultural and Food Chemistry, 2017, 65(45): 9871−9879. doi: 10.1021/acs.jafc.7b04156.
[21] Cheng J, Kondo K, Suzuki Y, et al. Inhibitory effects of total flavones of Hippophae rhamnoides L. on thrombosis in mouse femoral artery and in vitro platelet aggregation[J]. Life Sciences, 2003, 72(20): 2262−2271. doi: 10.1016/s0024-3205(03)00114-0.
[22] Clair E, Yang B, Raija T, et al. Effects of an antioxidant-rich juice (seabuckthorn) on risk factors for coronary heart disease in humans[J]. Journal of Nutritional Biochemistry, 2002, 13(6): 346−354. doi: 10.1016/S0955-2863(02)00179-1.
[23] Raffo A, Paoletti F, Antonelli M. Changes in sugar, organic acid, flavonol and carotenoid composition during ripening of berries of three seabuckthorn (Hippophae rhamnoides L.) cultivars[J]. European Food Research and Technology, 2004, 219(4): 360−368. doi: 10.1007/s00217-004-0984-4.
[24] Jeppsson N, Gao X. Changes in the contents of kaempherol, quercetin and L-ascorbic acid in seabuckthorn berries during maturation[J]. Agricultural & Food Science in Finland, 2000, 9(1): 17−22. doi: 10.23986/afsci.5652.
[25] Chen C, Zhang H, Xiao W, et al. High-performance liquid chromatographic fingerprint analysis for different origins of sea buckthorn berries[J]. Journal of Chromatography A, 2007, 1154(1−2): 250−259. doi: 10.1016/j.chroma.2007.03.097.
[26] Rösch D, Mügge C, Fogliano V, et al. Antioxidant oligomeric proanthocyanidins from sea buckthorn (Hippophaë rhamnoides) pomace[J]. Journal of Agricultural and Food Chemistry, 2004, 52(22): 6712−6718. doi: 10.1021/jf040241g
[27] Alshaibani D, Rong Z, Wu V C H. Antibacterial characteristics and activity of vaccinium macrocarpon proanthocyanidins against diarrheagenic Escherichia coli[J]. Journal of Functional Foods, 2017, 39: 133−138. doi: 10.1016/j.jff.2017.10.003.
[28] Cádiz-Gurrea M L, Borrás-Linares I, Lozano-Sánchez J, et al. Cocoa and grape seed byproducts as a source of antioxidant and anti-inflammatory proanthocyanidins[J]. International Journal of Molecular Sciences, 2017, 18(2): 376. doi: 10.3390/ijms18020376.
[29] Lee N, Min S S, Kang Y, et al. Oligonol, a lychee fruit-derived low-molecular form of polyphenol mixture, suppresses inflammatory cytokine production from human monocytes[J]. Human Immunology, 2016, 77(6): 512−515. doi: 10.1016/j.humimm.2016.04.011.
[30] Yu R J, Liu H B, Yu Y, et al. Anticancer activities of proanthocyanidins from the plant urceola huaitingii and their synergistic effects in combination with chemotherapeutics[J]. Fitoterapia, 2016, 112: 175−182. doi: 10.1016/j.fitote.2016.05.015.
[31] Manach C. Bioavailability and bioefficacy of polyphenols in humans(I): review of 97 bioavailability studies[J]. The American Journal of Clinical Nutrition, 2005, 81(1): 230−242. doi: 10.1021/jo070579k.
[32] Ou K, Gu L. Absorption and metabolism of proanthocyanidins[J]. Journal of Functional Foods, 2014, 7: 43−53. doi: 10.1016/j.jff.2013.08.004.
[33] Hajazimi E, Landberg R, Zamaratskaia G. Simultaneous determination of flavonols and phenolic acids by HPLC-CoulArray in berries common in the Nordic diet[J]. LWT-Food Science and Technology, 2016, 74: 128−134. doi: 10.1016/j.lwt.2016.07.034.
[34] Li G, Hong G, Li X, et al. Synthesis and activity towards alzheimer’s disease in vitro: tacrine, phenolic acid and ligustrazine hybrids[J]. European Journal of Medicinal Chemistry, 2018, 148: 238−254. doi: 10.1016/j.ejmech.2018.01.028.
[35] Arimboor R, Kumar K S, Arumughan C. Simultaneous estimation of phenolic acids in sea buckthorn (Hippophae rhamnoides) using RP-HPLC with DAD[J]. Journal of Pharmaceutical and Biomedical Analysis, 2008, 47(1): 31−38. doi: 10.1016/j.jpba.2007.11.045.
[36] Chauhan A, Shirkot C K, Kaushal R, et al. Plant growth-promoting rhizobacteria of medicinal plants in NW himalayas: current status and future prospects[M]//Egamberdieva D, Shrivastava S, Varma A. Plant-growth-promoting rhizobacteria (PGPR) and medicinal plants. Berlin: Springer, 2015. DOI: 10.1007/978-3-319-13401-7_19.
[37] Laaksonen O, Mäkilä L, Tahvonen R, et al. Sensory quality and compositional characteristics of blackcurrant juices produced by different processes[J]. Food Chemistry, 2013, 138(4): 2421−2429. doi: 10.1016/j.foodchem.2012.12.035
[38] Fan X, Zhao H, Wang X, et al. Sugar and organic acid composition of apricot and their contribution to sensory quality and consumer satisfaction[J]. Scientia Horticulturae, 2017, 225: 553−560. doi: 10.1016/j.scienta.2017.07.016.
[39] 吴紫洁, 阮成江, 李贺, 等. 12个沙棘品种的果实可溶性糖和有机酸组分研究[J]. 西北林学院学报, 2016, 31(4):106−112. doi: 10.3969/j.issn.1001-7461.2016.04.18. Wu Z J, Ruan C J, Li H, et al. Compositions of soluble sugars and organic acids in berries of 12 seabuckthorn cultivars[J]. Journal of Northwest Forestry University, 2016, 31(4): 106−112. doi: 10.3969/j.issn.1001-7461.2016.04.18.
[40] Yang B, Zheng J, Kallio H. Influence of origin, harvesting time and weather conditions on content of inositols and methylinositols in sea buckthorn (Hippophae rhamnoides) berries[J]. Food Chemistry, 2011, 125(2): 388−396. doi: 10.1016/j.foodchem.2010.09.013.
[41] 陶翠, 王捷, 姚玉军, 等. 沙棘中白雀木醇表征方法及其分布规律[J]. 北京林业大学学报, 2020, 42(1):121−126. Tao C, Wang J, Yao Y J, et al. Characterization and distribution rule of quebrachitol in Hippophae rhamnoides L.[J]. Journal of Beijing Forestry University, 2020, 42(1): 121−126.
[42] Richter A, Popp M. The physiological importance of accumulation of cyclitols in Viscum album L.[J]. New Phytologist, 1992, 121(3): 431−438. doi: 10.1111/j.1469-8137.1992.tb02943.x.
[43] Xue Y, Miao Q, Zhao A, et al. Effects of seabuckthorn (Hippophae rhamnoides) juice and L-quebrachitol on type 2 diabetes mellitus in db/db mice[J]. Journal of Functional Foods, 2015, 16: 223−233. doi: 10.1016/j.jff.2015.04.041.
[44] Olinda T M D, Lemos T L G, Machado L L, et al. Quebrachitol-induced gastroprotection against acute gastric lesions: role of prostaglandins, nitric oxide and KATP + channels[J]. Phytomedicine, 2008, 15(5): 327−333. doi: 10.1016/j.phymed.2007.09.002.
[45] Hoshyar R, Mollaei H. A comprehensive review on anticancer mechanisms of the main carotenoid of saffron, crocin[J]. Journal of Pharmacy & Pharmacology, 2017, 69(11): 1419−1427. doi: 10.1111/jphp.12776.
[46] Andersson S C, Olsson M E, Johansson E, et al. Carotenoids in seabuckthorn (Hippophae rhamnoides L.) berries during ripening and use of pheophytin a as a maturity marker[J]. Journal of Agricultural & Food Chemistry, 2009, 57(1): 250−258. doi: 10.1021/jf802599f.
[47] Pop R M, Weesepoel Y, Socaciu C, et al. Carotenoid composition of berries and leaves from six Romanian seabuckthorn (Hippophae rhamnoides L.) varieties[J]. Food Chemistry, 2014, 147: 1−9. doi: 10.1016/j.foodchem.2013.09.083.
[48] Arif S, Khan M R, Gardezi S D A, et al. A novel Hydroxymethyldihydropterin pyrophosphokinase-dihydropteroate synthase (HPPK-DHPS) gene from a nutraceutical plant seabuckthorn, involved in folate pathway is predominantly expressed in fruit tissue[J/OL]. International Journal of Agriculture & Biology, 2016, 18(2) (2016−01−04) [2019−08−09]. https://doi.org/10.17957/IJAB/15.0104.
[49] Czaplicki S, Ogrodowska D, Zadernowski R, et al. Effect of sea-buckthorn (Hippophaë rhamnoides L.) pulp oil consumption on fatty acids and vitamin A and E accumulation in adipose tissue and liver of rats[J]. Plant Foods for Human Nutrition, 2017, 72(2): 1−7. doi: 10.1007/s11130-017-0610-9.
[50] Gutzeit D, Baleanu G, Winterhalter P, et al. Determination of processing effects and of storage stability on vitamin K1 (phylloquinone) in seabuckthorn berries (Hippophaë rhamnoides L. ssp. rhamnoides) and related products[J]. Journal of Food Science, 2010, 72(9): C491−C497. doi: 10.1111/j.1750-3841.2007.00567.x.
[51] Bazylko A, Granica S, Filipek A, et al. Comparison of antioxidant, anti-inflammatory, antimicrobial activity and chemical composition of aqueous and hydroethanolic extracts of the herb of Tropaeolum majus L.[J]. Industrial Crops & Products, 2013, 50(10): 88−94. doi: 10.1016/j.indcrop.2013.07.003.
[52] Gilles R, Roberto M, Gianni T, et al. Beta-carotene, vitamin C, and vitamin E and cardiovascular diseases[J]. Current Cardiology Reports, 2000, 2(4): 293−299. doi: 10.1007/s11886-000-0084-4
[53] Park S, Ahn S, Shin Y, et al. Vitamin C in cancer: a metabolomics perspective[J]. Frontiers in Physiology, 2018, 9: 762.
[54] Buettner G R. The pecking order of free radicals and antioxidants: lipid peroxidation, α-tocopherol, and ascorbate[J]. Archives of Biochemistry & Biophysics, 1993, 300(2): 535−543. doi: 10.1006/abbi.1993.1074.
[55] Mao Y, Han J, Tian F, et al. Chemical vomposition analysis, sensory, and feasibility study of tree peony seed[J]. Journal of Food Science, 2017, 82(2): 553−561. doi: 10.1111/1750-3841.13593.
[56] Nhe N A, Goon J A, Abdul G S M, et al. Comparing palm oil, tocotrienol-rich fraction and α-tocopherol supplementation on the antioxidant levels of older adults[J]. Antioxidants, 2018, 7(6): 42. doi: 10.3390/antiox7060074.
[57] Kalio H, Yang B, Peippo P, et al. Triacylglycerols, glycerophospholipids, tocopherols, and tocotrienols in berries and seeds of two subspecies (ssp. sinensis and mongolica) of seabuckthorn (Hippophae rhamnoides)[J]. Journal of Agricultural & Food Chemistry, 2002, 50(10): 3004−3009. doi: 10.1021/jf011556o
[58] Fatima T, Kesari V, Watt I, et al. Metabolite profiling and expression analysis of flavonoid, vitamin C and tocopherol biosynthesis genes in the antioxidant-rich sea buckthorn (Hippophae rhamnoides L.)[J]. Phytochemistry, 2015, 118: 181−191. doi: 10.1016/j.phytochem.2015.08.008.
[59] Zielinska A, Nowak I. Abundance of active ingredients in seabuckthorn oil[J]. Lipids in Health & Disease, 2017, 16(1): 95. doi: 10.1186/s12944-017-0469-7.
[60] Patel C A, Divakar K, Santani D, et al. Remedial prospective of Hippophae rhamnoides Linn. (seabuckthorn)[J]. Isrn Pharmacology, 2015, 2012(2): 436857. doi: 10.5402/2012/436857.
[61] Wysocki J, Nowicka-Falkowska K. Przegląd preparatów pochodzenia roślinnego stosowanych w stanach dysfunkcji błony śluzowej jamy ustnej i gardła[J]. Polski Przegląd Otorynolaryngologiczny, 2013, 2(3): 146−158. doi: 10.1016/j.ppotor.2013.08.004.
[62] Ito H, Asmussen S, Traber D L, et al. Healing efficacy of seabuckthorn (Hippophae rhamnoides L.) seed oil in an ovine burn wound model.[J]. Burns, 2014, 40(3): 511−519 . doi: 10.1016/j.burns.2013.08.011.
[63] Xu X Y, Pan S Y, Xie B J, et al. The anti-oxidative effect of sea buckthorn seed procyanidins in vitro[J]. Food Science, 2005, 26(2): 216−218. doi: 10.1007/s11769-005-0030-x.
[64] Enkhtaivan G, John K M M, Pandurangan M, et al. Extreme effects of seabuckthorn extracts on influenza viruses and human cancer cells and correlation between flavonol glycosides and biological activities of extracts[J]. Saudi Journal of Biological Sciences, 2016, 24(7): 1646−1656. doi: 10.1016/j.sjbs.2016.01.004.
[65] Zadernowski R, Nowak-Polakowska H, Lossow B, et al. Seabuckthorn lipids[J]. Journal of Food Lipids, 1997, 4(3): 165−172. doi: 10.1111/j.1745-4522.1997.tb00090.x.
[66] Ul’Chenko N T, Zhmyrko T G, Glushenkova A I, et al. Lipids of Hippophae rhamnoides, pericarp[J]. Chemistry of Natural Compounds, 1995, 31(5): 565−567. doi: 10.1007/BF01164880.
[67] Kralova J, Jurasek M, Krcova L, et al. Heterocyclic sterol probes for live monitoring of sterol trafficking and lysosomal storage disorders[J]. Scientific Reports, 2018, 8: 14428. doi: 10.1038/s41598-018-32776-6.
[68] Jones P, Macdougall D E, Ntanios F, et al. Dietary phytosterols as cholesterol-lowering agents in humans[J]. Canadian Journal of Physiology and Pharmacology, 1997, 75(3): 217−227. doi: 10.1139/y97-011.
[69] Reading C L, Stickney D R, Floresriveros J, et al. A synthetic anti-inflammatory sterol improves insulin sensitivity in insulin-resistant obese impaired glucose tolerance subjects[J]. Obesity, 2013, 21(9): 343−349. doi: 10.1002/oby.20207.
[70] Yang B, Karlsson R M, Oksman P H, et al. Phytosterols in sea buckthorn (Hippophae rhamnoides L.) berries: identification and effects of different origins and harvesting times.[J]. Journal of Agricultural & Food Chemistry, 2001, 49(11): 5620−5629. doi: 10.1021/jf010813m.
[71] Tiitinen K, Hakala M, Kallio H. Headspace volatiles from frozen berries of sea buckthorn (Hippophae rhamnoides L.) varieties[J]. European Food Research & Technology, 2006, 223(4): 455−460. doi: 10.1007/s00217-005-0224-6.
-
期刊类型引用(6)
1. 刘树超,邵全琴,杨帆,郭兴健,王东亮,黄海波,汪阳春,刘纪远,樊江文,李愈哲. 黄河源区放牧家畜数量及空间分布无人机遥感调查. 地球信息科学学报. 2021(07): 1286-1295 . 百度学术
2. 郑硕,薛兴盛,白杨,吴艳兰. 徐淮地区冬季AOD时空特征及气象因子研究. 环境科学与技术. 2020(01): 78-85 . 百度学术
3. 柴曼,周滨,徐威杰,陈晨,刘文权. 基于多尺度分割GF-1影像地表覆盖信息提取研究. 内蒙古煤炭经济. 2020(06): 1-4 . 百度学术
4. 贾亮亮,汪小钦,苏华,王峰. 台湾岛高分一号卫星WFV数据气溶胶反演与验证. 环境科学学报. 2018(03): 1117-1127 . 百度学术
5. 李裕冬,罗艳,赵海涛,王程亮,杜杰. 基于MaxEnt模型的九寨沟国家级自然保护区川金丝猴适宜生境研究. 四川动物. 2018(05): 585-591 . 百度学术
6. 贾亮亮,汪小钦,王峰. 基于波段运算和纹理特征的高分一号多光谱数据云检测. 遥感信息. 2018(05): 62-68 . 百度学术
其他类型引用(6)