高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

沙棘果实中主要活性成分质量分布

吕兆林 袁玮琼 张柏林 邢国良

吕兆林, 袁玮琼, 张柏林, 邢国良. 沙棘果实中主要活性成分质量分布[J]. 北京林业大学学报, 2021, 43(1): 144-152. doi: 10.12171/j.1000-1522.20200236
引用本文: 吕兆林, 袁玮琼, 张柏林, 邢国良. 沙棘果实中主要活性成分质量分布[J]. 北京林业大学学报, 2021, 43(1): 144-152. doi: 10.12171/j.1000-1522.20200236
Lü Zhaolin, Yuan Weiqiong, Zhang Bolin, Xing Guoliang. A review on mass distribution of active components from Hippophae rhamnoides fruits[J]. Journal of Beijing Forestry University, 2021, 43(1): 144-152. doi: 10.12171/j.1000-1522.20200236
Citation: Lü Zhaolin, Yuan Weiqiong, Zhang Bolin, Xing Guoliang. A review on mass distribution of active components from Hippophae rhamnoides fruits[J]. Journal of Beijing Forestry University, 2021, 43(1): 144-152. doi: 10.12171/j.1000-1522.20200236

沙棘果实中主要活性成分质量分布

doi: 10.12171/j.1000-1522.20200236
基金项目: 内蒙古自治区科技项目(2016HXFWSWXY011)
详细信息
    作者简介:

    吕兆林,副教授,博士。主要研究方向:林源活性物质提取与功能性食品开发。Email:zhaolinlv@bjfu.edu.cn 地址:100083 北京市海淀区清华东路35号北京林业大学生物科学与技术学院

  • 中图分类号: S718.3;S789.9

A review on mass distribution of active components from Hippophae rhamnoides fruits

  • 摘要: 沙棘作为一种抗逆性、适应性、萌蘖性较强的植物资源,被广泛应用于黄土丘陵地区荒山绿化、土壤改良、水土保持和砒砂岩治理。沙棘不仅具有良好的生态价值,其果实中富含多种生物活性物质。本文凝练了沙棘果实中活性化合物的构成、分布及活性特征,并对沙棘果实活性物质的研究进行展望。基于相关文献,针对黄酮、花青素、酚酸、有机酸、肌醇、维生素、类胡萝卜素、不饱和脂肪酸、甾醇等广泛存在于沙棘果实中的化学成分进行总结分析,提供沙棘果实中上述活性物质分布情况的综合信息。研究表明,针对沙棘果实中活性物质的构成、分布和活性特征的研究较为丰富,但在部分领域仍缺乏研究,如栽培技术条件对活性物质的影响,活性物质与沙棘果实加工中异味的关联性等。本文为沙棘果实在食品、药品及保健品行业中的综合利用提供了理论支撑,为促进沙棘资源在经济中的全面发展提供参考。

     

  • 图  1  沙棘果实酚酸结构式

    Figure  1.  Structures of phenolic acids

    表  1  沙棘果实基础成分数据

    Table  1.   Basic composition data of seabuckthorn fruit

    指标
    Index
    含量
    Content/%
    沙棘品种
    Seabuckthorn variety
    沙棘产地
    Seabuckthorn origin
    参考文献
    Reference
    果实含水量
    Fruit water content
    61.5 ~ 85.3 中国沙棘;“印第安夏”
    Hippophae rhamnoides subsp. sinensis;
    Hippophae rhamnoidesIndian-Summer’
    中国山西;加拿大
    Shanxi, China; Canada
    [18-19]
    果油含量
    Fruit oil content
    0.26 ~ 4.50 中国沙棘;海滨沙棘
    Hippophae rhamnoides subsp. sinensis;
    Hippophae rhamnoides subsp. rhamnoides
    中国山西;芬兰
    Shanxi, China; Finland
    0.8 ~ 4.1a 中国沙棘;海滨沙棘
    Hippophae rhamnoides subsp. sinensis;
    Hippophae rhamnoides subsp. rhamnoides
    中国山西;芬兰
    Shanxi, China; Finland
    含籽率
    Seed rate
    2.09 ~ 6.72 中国沙棘;大果沙棘
    Hippophae rhamnoides subsp. sinensis;
    Large berry cultivars of Hippophae rhamnoides
    中国山西,内蒙古,辽宁,河北,
    中国黑龙江,新疆
    Shanxi, Inner Mongolia, Liaoning, Hebei, Heilongjiang, Xinjiang, China
    籽油含量
    Seed oil content
    5.5 ~ 14.2 中国沙棘;海滨沙棘
    Hippophae rhamnoides subsp. sinensis;
    Hippophae rhamnoides subsp. rhamnoides
    中国山西;芬兰
    Shanxi, China; Finland
    [19]
    总糖含量
    Total sugar content
    0.5 ~ 7.4 海滨沙棘;蒙古沙棘
    Hippophae rhamnoides subsp. rhamnoides;
    Hippophae rhamnoides subsp. mongolica
    芬兰;爱沙尼亚
    Finland; Estonia
    [20]
    总酸含量
    Total acid content
    2.4 ~ 5.4 海滨沙棘;蒙古沙棘
    Hippophae rhamnoides subsp. rhamnoides;
    Hippophae rhamnoides subsp. mongolica
    芬兰;爱沙尼亚
    Finland; Estonia
    [20]
    注:a为去除籽的果肉中果油含量。 Note: a means fruit oil content in seed-removing pulp.
    下载: 导出CSV

    表  2  沙棘果中黄酮类化合物含量

    Table  2.   Content of flavonoids in different seabuckthorn sample

    黄酮类化合物 Flavonoids含量 Content/(mg·kg−1)
    RSRYRWNSTI
    3-O-槐糖-7-鼠李糖苷槲皮素 Quercetin 3-O-sophoroside-7-rhamnoside 680 ± 350 1 200 ± 840 180 ± 170 10 ± 10 80 ± 10
    3-O-槐糖-7-O-鼠李糖苷山柰酚 Kaempferol 3-O-sophoroside-7-O rhamnoside 460 ± 210 460 ± 100 650 ± 490 280 ± 70 80 ± 10
    3-O-槐糖-7-O-鼠李糖苷异鼠李素 Isorhamnetin 3-O-sophoroside-7-O-rhamnoside 960 ± 240 1 760 ± 960 220 ± 110 50 ± 40 210 ± 40
    3-O-葡萄糖-7-O-鼠李糖苷异鼠李素 Isorhamnetin 3-O-glucoside-7-O-rhamnoside 2 170 ± 1 360 3 350 ± 1890 140 ± 120 50 ± 30 230 ± 40
    3-O-芸香糖苷槲皮素 Quercetin 3-O-rutinoside 580 ± 260 590 ± 210 390 ± 50
    3-O-葡萄糖苷槲皮素 Quercetin 3-O-glucoside 570 ± 210 670 ± 230 870 ± 410 20 ± 10
    3-O-芸香糖苷异鼠李素 Isorhamnetin 3-O-rutinoside 1810 ± 1 230 1 470 ± 560 2 920 ± 1 560 130 ± 40 110 ± 20
    O-葡萄糖苷异鼠李素 Isorhamnetin 3-O-glucoside 360 ± 230 560 ± 210 1 340 ± 790 10 ± 10
    槲皮素 Quercetin 140 ± 80 110 ± 20 160 ± 50 20 ± 10
    O-鼠李糖苷山柰酚 Kaempferol 7-O-rhamnoside 60 ± 10 100 ± 10 480 ± 150 40 ± 10
    山柰酚 Kaempferol 20 ± 20 30 ± 10 20 ± 10 10 ± 10
    异鼠李素 Isorhamnetin 140 ± 120 120 ± 50 290 ± 130 20 ± 10
    注:RS. 中国沙棘;RY. 云南沙棘;RW. 卧龙沙棘;NS. 肋果沙棘;TI. 西藏沙棘;— 未检出。Notes: RS, Hippophae rhamnoides subsp. sinensis; RY, Hippophae rhamnoides subsp. yunnanensis; RW, Hippophae rhamnoides subsp. wolongensis; NS, Hippophae rhamnoides subsp. stellatopilosa; TI, Hippophae rhamnoides subsp. tibetana; — means not detected.
    下载: 导出CSV

    表  3  两亚种浆果和种子中TAG和GPL中脂肪酸构成表

    Table  3.   Fatty acid composition of TAG and GPL in seeds and berries of the two subspecies %

    脂肪酸
    Fatty acid
    TAGGPL
    果实 Fruit种子 Seed果实 Fruit籽 Seed
    中国沙棘
    Hippophae rhamnoides subsp. sinensis
    蒙古沙棘
    Hippophae rhamnoides subsp.
    mongonica
    中国沙棘
    Hippophae rhamnoides subsp. sinensis
    蒙古沙棘
    Hippophae rhamnoides subsp.
    mongonica
    中国沙棘
    Hippophae rhamnoides subsp. sinensis
    蒙古沙棘
    Hippophae rhamnoides subsp.
    mongonica
    中国沙棘
    Hippophae rhamnoides subsp. sinensis
    蒙古沙棘
    Hippophae rhamnoides subsp.
    mongonica
    16∶00 27.4 33.9 9 8.6 16.4 21.1 14.1 17.0
    16∶1 (n-7) 21.9 32.8 < 0.5 < 0.5 15.9 21.5 < 0.5 < 0.5
    18∶00 1.5 1.2 2.2 3.3 1.6 2.4 3.3 6.0
    18∶1 (n-9) 20.2 4.6 22.4 17.9 18.5 4.3 22.2 10
    18∶1 (n-7) 6.2 6.4 2 2.1 9.2 8.5 4.7 4.3
    18∶2 (n-6) 13.2 15.5 35.4 38.6 22.2 32.1 42.7 47.7
    18∶3 (n-3) 9.7 5.6 29 29.1 16.2 10.1 13 14.8
    合计 Total 100 100 100 100 100 100 100 100
    下载: 导出CSV
  • [1] 周文洁. 陕北黄土区沙棘林下植被特征及群落稳定性研究[D]. 北京: 北京林业大学, 2020.

    Zhou W J. Characteristics and community stability of Hippophae rhamnoides in loess area of northern Shaanxi Province[D]. Beijing: Beijing Forestry University, 2020.
    [2] Suryakumar G, Gupta A. Medicinal and therapeutic potential of sea buckthorn (Hippophae rhamnoides L.)[J]. Journal of Ethnopharmacology, 2011, 138(2): 268−278. doi: 10.1016/j.jep.2011.09.024.
    [3] Srivastava R B, Korekar G, Stobdan T. Nutritional attributes and health application of seabuckthorn (Hippophae rhamnoides L.) : a review[J]. Current Nutrition & Food Science, 2013, 9(2): 151−165. doi: 10.2174/1573401311309020008.
    [4] Joseph S V, Edirisinghe I, Burton-Freeman B M. Berries: anti-inflammatory effects in humans[J]. Journal of Agricultural and Food Chemistry, 2014, 62(18): 3886−3903. doi: 10.1021/jf4044056.
    [5] Lehtonen H M, Suomela J P, Tahvonen R, et al. Different berries and berry fractions have various but slightly positive effects on the associated variables of metabolic diseases on overweight and obese women[J]. European Journal of Clinical Nutrition, 2011, 65(3): 394−401. doi: 10.1038/ejcn.2010.268.
    [6] Xu Y J, Kaur M, Dhillon R S, et al. Health benefits of sea buckthorn for the prevention of cardiovascular diseases[J]. Journal of Functional Foods, 2011, 3(1): 2−12. doi: 10.1016/j.jff.2011.01.001.
    [7] Yang B, Kortesniemi M. Clinical evidence on potential health benefits of berries[J]. Current Opinion in Food Science, 2015, 2: 36−42. doi: 10.1016/j.cofs.2015.01.002.
    [8] Yang B. Sugars, acids, ethyl β-d-glucopyranose and a methyl inositol in sea buckthorn (Hippophae rhamnoides) berries[J]. Food Chemistry, 2009, 112(1): 89−97. doi: 10.1016/j.foodchem.2008.05.042.
    [9] Bal L M, Meda V, Naik S N, et al. Seabuckthorn berries: a potential source of valuable nutrients for nutraceuticals and cosmoceuticals[J]. Food Research International, 2011, 44(7): 1718−1727. doi: 10.1016/j.foodres.2011.03.002.
    [10] Vashishtha V, Barhwal K, Kumar A, et al. Effect of seabuckthorn seed oil in reducing cardiovascular risk factors: a longitudinal controlled trial on hypertensive subjects[J]. Clinical Nutrition, 2017, 36(5): 1231−1238. doi: 10.1016/j.clnu.2016.07.013.
    [11] Li Z, Jian W, Xiong Y, et al. The determination of the fatty acid content of sea buckthorn seed oil using near infrared spectroscopy and variable selection methods for multivariate calibration[J]. Vibrational Spectroscopy, 2016, 84: 24−29. doi: 10.1016/j.vibspec.2016.02.008.
    [12] Yang W, Laaksonen O, Kallio H, et al. Proanthocyanidins in sea buckthorn (Hippophae rhamnoides L.) serries of different origins with special reference to influence of genetic background and growth location[J]. Journal of Agricultural and Food Chemistry, 2016, 64: 1274−1282. doi: 10.1021/acs.jafc.5b05718.
    [13] Besbes S, Blecker C, Deroanne C, et al. Date seed oil: phenolic, tocopherol and sterol profiles[J]. Journal of Food Lipids, 2010, 11(4): 251−265. doi: 10.1111/j.1745-4522.2004.01141.x.
    [14] Ramadan M F, Wahdan K M M. Blending of corn oil with black cumin (Nigella sativa) and coriander (Coriandrum sativum) seed oils: impact on functionality, stability and radical scavenging activity[J]. Food Chemistry, 2012, 132(2): 873−879. doi: 10.1016/j.foodchem.2011.11.054
    [15] Wang L G, Li E C, Qin J G, et al. Effect of oxidized fish oil and α-tocopherol on growth, antioxidation status, serum immune enzyme activity and resistance to aeromonas hydrophila challenge of Chinese mitten crab eriocheir sinensis[J]. Aquaculture Nutrition, 2015, 21(4): 414−424. doi: 10.1111/anu.12171.
    [16] Rosch D, Bergmann M, Knorr D, et al. Structure-antioxidant efficiency relationships of phenolic compounds and their contribution to the antioxidant activityof sea buckthorn juice[J]. Journal of Agricultural and Food Chemistry, 2003, 51(15): 4233−4239. doi: 10.1021/jf0300339.
    [17] Pawel B, Schulze-Lefert P. Role of plant secondary metabolites at the host-pathogen interface[M]//Annual plant reviews (Vol. 34): molecular aspects of plant disease resistance. Trenton: Wiley-Blackwell, 2009.
    [18] Beveridge T, Li T S C, Oomah B D, et al. Seabuckthorn products: manufacture and composition.[J]. Journal of Agricultural and Food Chemistry, 1999, 47(9): 3480−3488. doi: 10.1021/jf981331m.
    [19] Yang B R, Kallio H. Fatty acid composition of lipids in sea buckthorn (Hippophae rhamnoides L.) berries of different origins[J]. Journal of Agricultural and Food Chemistry, 2001, 49: 1939−1947. doi: 10.1021/jf001059s.
    [20] Ma X, Yang W, Laaksonen O, et al. Role of flavonols and proanthocyanidins in the sensory quality of sea buckthorn (Hippophaë rhamnoides L.) berries[J]. Journal of Agricultural and Food Chemistry, 2017, 65(45): 9871−9879. doi: 10.1021/acs.jafc.7b04156.
    [21] Cheng J, Kondo K, Suzuki Y, et al. Inhibitory effects of total flavones of Hippophae rhamnoides L. on thrombosis in mouse femoral artery and in vitro platelet aggregation[J]. Life Sciences, 2003, 72(20): 2262−2271. doi: 10.1016/s0024-3205(03)00114-0.
    [22] Clair E, Yang B, Raija T, et al. Effects of an antioxidant-rich juice (seabuckthorn) on risk factors for coronary heart disease in humans[J]. Journal of Nutritional Biochemistry, 2002, 13(6): 346−354. doi: 10.1016/S0955-2863(02)00179-1.
    [23] Raffo A, Paoletti F, Antonelli M. Changes in sugar, organic acid, flavonol and carotenoid composition during ripening of berries of three seabuckthorn (Hippophae rhamnoides L.) cultivars[J]. European Food Research and Technology, 2004, 219(4): 360−368. doi: 10.1007/s00217-004-0984-4.
    [24] Jeppsson N, Gao X. Changes in the contents of kaempherol, quercetin and L-ascorbic acid in seabuckthorn berries during maturation[J]. Agricultural & Food Science in Finland, 2000, 9(1): 17−22. doi: 10.23986/afsci.5652.
    [25] Chen C, Zhang H, Xiao W, et al. High-performance liquid chromatographic fingerprint analysis for different origins of sea buckthorn berries[J]. Journal of Chromatography A, 2007, 1154(1−2): 250−259. doi: 10.1016/j.chroma.2007.03.097.
    [26] Rösch D, Mügge C, Fogliano V, et al. Antioxidant oligomeric proanthocyanidins from sea buckthorn (Hippophaë rhamnoides) pomace[J]. Journal of Agricultural and Food Chemistry, 2004, 52(22): 6712−6718. doi: 10.1021/jf040241g
    [27] Alshaibani D, Rong Z, Wu V C H. Antibacterial characteristics and activity of vaccinium macrocarpon proanthocyanidins against diarrheagenic Escherichia coli[J]. Journal of Functional Foods, 2017, 39: 133−138. doi: 10.1016/j.jff.2017.10.003.
    [28] Cádiz-Gurrea M L, Borrás-Linares I, Lozano-Sánchez J, et al. Cocoa and grape seed byproducts as a source of antioxidant and anti-inflammatory proanthocyanidins[J]. International Journal of Molecular Sciences, 2017, 18(2): 376. doi: 10.3390/ijms18020376.
    [29] Lee N, Min S S, Kang Y, et al. Oligonol, a lychee fruit-derived low-molecular form of polyphenol mixture, suppresses inflammatory cytokine production from human monocytes[J]. Human Immunology, 2016, 77(6): 512−515. doi: 10.1016/j.humimm.2016.04.011.
    [30] Yu R J, Liu H B, Yu Y, et al. Anticancer activities of proanthocyanidins from the plant urceola huaitingii and their synergistic effects in combination with chemotherapeutics[J]. Fitoterapia, 2016, 112: 175−182. doi: 10.1016/j.fitote.2016.05.015.
    [31] Manach C. Bioavailability and bioefficacy of polyphenols in humans(I): review of 97 bioavailability studies[J]. The American Journal of Clinical Nutrition, 2005, 81(1): 230−242. doi: 10.1021/jo070579k.
    [32] Ou K, Gu L. Absorption and metabolism of proanthocyanidins[J]. Journal of Functional Foods, 2014, 7: 43−53. doi: 10.1016/j.jff.2013.08.004.
    [33] Hajazimi E, Landberg R, Zamaratskaia G. Simultaneous determination of flavonols and phenolic acids by HPLC-CoulArray in berries common in the Nordic diet[J]. LWT-Food Science and Technology, 2016, 74: 128−134. doi: 10.1016/j.lwt.2016.07.034.
    [34] Li G, Hong G, Li X, et al. Synthesis and activity towards alzheimer’s disease in vitro: tacrine, phenolic acid and ligustrazine hybrids[J]. European Journal of Medicinal Chemistry, 2018, 148: 238−254. doi: 10.1016/j.ejmech.2018.01.028.
    [35] Arimboor R, Kumar K S, Arumughan C. Simultaneous estimation of phenolic acids in sea buckthorn (Hippophae rhamnoides) using RP-HPLC with DAD[J]. Journal of Pharmaceutical and Biomedical Analysis, 2008, 47(1): 31−38. doi: 10.1016/j.jpba.2007.11.045.
    [36] Chauhan A, Shirkot C K, Kaushal R, et al. Plant growth-promoting rhizobacteria of medicinal plants in NW himalayas: current status and future prospects[M]//Egamberdieva D, Shrivastava S, Varma A. Plant-growth-promoting rhizobacteria (PGPR) and medicinal plants. Berlin: Springer, 2015. DOI: 10.1007/978-3-319-13401-7_19.
    [37] Laaksonen O, Mäkilä L, Tahvonen R, et al. Sensory quality and compositional characteristics of blackcurrant juices produced by different processes[J]. Food Chemistry, 2013, 138(4): 2421−2429. doi: 10.1016/j.foodchem.2012.12.035
    [38] Fan X, Zhao H, Wang X, et al. Sugar and organic acid composition of apricot and their contribution to sensory quality and consumer satisfaction[J]. Scientia Horticulturae, 2017, 225: 553−560. doi: 10.1016/j.scienta.2017.07.016.
    [39] 吴紫洁, 阮成江, 李贺, 等. 12个沙棘品种的果实可溶性糖和有机酸组分研究[J]. 西北林学院学报, 2016, 31(4):106−112. doi: 10.3969/j.issn.1001-7461.2016.04.18.

    Wu Z J, Ruan C J, Li H, et al. Compositions of soluble sugars and organic acids in berries of 12 seabuckthorn cultivars[J]. Journal of Northwest Forestry University, 2016, 31(4): 106−112. doi: 10.3969/j.issn.1001-7461.2016.04.18.
    [40] Yang B, Zheng J, Kallio H. Influence of origin, harvesting time and weather conditions on content of inositols and methylinositols in sea buckthorn (Hippophae rhamnoides) berries[J]. Food Chemistry, 2011, 125(2): 388−396. doi: 10.1016/j.foodchem.2010.09.013.
    [41] 陶翠, 王捷, 姚玉军, 等. 沙棘中白雀木醇表征方法及其分布规律[J]. 北京林业大学学报, 2020, 42(1):121−126.

    Tao C, Wang J, Yao Y J, et al. Characterization and distribution rule of quebrachitol in Hippophae rhamnoides L.[J]. Journal of Beijing Forestry University, 2020, 42(1): 121−126.
    [42] Richter A, Popp M. The physiological importance of accumulation of cyclitols in Viscum album L.[J]. New Phytologist, 1992, 121(3): 431−438. doi: 10.1111/j.1469-8137.1992.tb02943.x.
    [43] Xue Y, Miao Q, Zhao A, et al. Effects of seabuckthorn (Hippophae rhamnoides) juice and L-quebrachitol on type 2 diabetes mellitus in db/db mice[J]. Journal of Functional Foods, 2015, 16: 223−233. doi: 10.1016/j.jff.2015.04.041.
    [44] Olinda T M D, Lemos T L G, Machado L L, et al. Quebrachitol-induced gastroprotection against acute gastric lesions: role of prostaglandins, nitric oxide and KATP + channels[J]. Phytomedicine, 2008, 15(5): 327−333. doi: 10.1016/j.phymed.2007.09.002.
    [45] Hoshyar R, Mollaei H. A comprehensive review on anticancer mechanisms of the main carotenoid of saffron, crocin[J]. Journal of Pharmacy & Pharmacology, 2017, 69(11): 1419−1427. doi: 10.1111/jphp.12776.
    [46] Andersson S C, Olsson M E, Johansson E, et al. Carotenoids in seabuckthorn (Hippophae rhamnoides L.) berries during ripening and use of pheophytin a as a maturity marker[J]. Journal of Agricultural & Food Chemistry, 2009, 57(1): 250−258. doi: 10.1021/jf802599f.
    [47] Pop R M, Weesepoel Y, Socaciu C, et al. Carotenoid composition of berries and leaves from six Romanian seabuckthorn (Hippophae rhamnoides L.) varieties[J]. Food Chemistry, 2014, 147: 1−9. doi: 10.1016/j.foodchem.2013.09.083.
    [48] Arif S, Khan M R, Gardezi S D A, et al. A novel Hydroxymethyldihydropterin pyrophosphokinase-dihydropteroate synthase (HPPK-DHPS) gene from a nutraceutical plant seabuckthorn, involved in folate pathway is predominantly expressed in fruit tissue[J/OL]. International Journal of Agriculture & Biology, 2016, 18(2) (2016−01−04) [2019−08−09]. https://doi.org/10.17957/IJAB/15.0104.
    [49] Czaplicki S, Ogrodowska D, Zadernowski R, et al. Effect of sea-buckthorn (Hippophaë rhamnoides L.) pulp oil consumption on fatty acids and vitamin A and E accumulation in adipose tissue and liver of rats[J]. Plant Foods for Human Nutrition, 2017, 72(2): 1−7. doi: 10.1007/s11130-017-0610-9.
    [50] Gutzeit D, Baleanu G, Winterhalter P, et al. Determination of processing effects and of storage stability on vitamin K1 (phylloquinone) in seabuckthorn berries (Hippophaë rhamnoides L. ssp. rhamnoides) and related products[J]. Journal of Food Science, 2010, 72(9): C491−C497. doi: 10.1111/j.1750-3841.2007.00567.x.
    [51] Bazylko A, Granica S, Filipek A, et al. Comparison of antioxidant, anti-inflammatory, antimicrobial activity and chemical composition of aqueous and hydroethanolic extracts of the herb of Tropaeolum majus L.[J]. Industrial Crops & Products, 2013, 50(10): 88−94. doi: 10.1016/j.indcrop.2013.07.003.
    [52] Gilles R, Roberto M, Gianni T, et al. Beta-carotene, vitamin C, and vitamin E and cardiovascular diseases[J]. Current Cardiology Reports, 2000, 2(4): 293−299. doi: 10.1007/s11886-000-0084-4
    [53] Park S, Ahn S, Shin Y, et al. Vitamin C in cancer: a metabolomics perspective[J]. Frontiers in Physiology, 2018, 9: 762.
    [54] Buettner G R. The pecking order of free radicals and antioxidants: lipid peroxidation, α-tocopherol, and ascorbate[J]. Archives of Biochemistry & Biophysics, 1993, 300(2): 535−543. doi: 10.1006/abbi.1993.1074.
    [55] Mao Y, Han J, Tian F, et al. Chemical vomposition analysis, sensory, and feasibility study of tree peony seed[J]. Journal of Food Science, 2017, 82(2): 553−561. doi: 10.1111/1750-3841.13593.
    [56] Nhe N A, Goon J A, Abdul G S M, et al. Comparing palm oil, tocotrienol-rich fraction and α-tocopherol supplementation on the antioxidant levels of older adults[J]. Antioxidants, 2018, 7(6): 42. doi: 10.3390/antiox7060074.
    [57] Kalio H, Yang B, Peippo P, et al. Triacylglycerols, glycerophospholipids, tocopherols, and tocotrienols in berries and seeds of two subspecies (ssp. sinensis and mongolica) of seabuckthorn (Hippophae rhamnoides)[J]. Journal of Agricultural & Food Chemistry, 2002, 50(10): 3004−3009. doi: 10.1021/jf011556o
    [58] Fatima T, Kesari V, Watt I, et al. Metabolite profiling and expression analysis of flavonoid, vitamin C and tocopherol biosynthesis genes in the antioxidant-rich sea buckthorn (Hippophae rhamnoides L.)[J]. Phytochemistry, 2015, 118: 181−191. doi: 10.1016/j.phytochem.2015.08.008.
    [59] Zielinska A, Nowak I. Abundance of active ingredients in seabuckthorn oil[J]. Lipids in Health & Disease, 2017, 16(1): 95. doi: 10.1186/s12944-017-0469-7.
    [60] Patel C A, Divakar K, Santani D, et al. Remedial prospective of Hippophae rhamnoides Linn. (seabuckthorn)[J]. Isrn Pharmacology, 2015, 2012(2): 436857. doi: 10.5402/2012/436857.
    [61] Wysocki J, Nowicka-Falkowska K. Przegląd preparatów pochodzenia roślinnego stosowanych w stanach dysfunkcji błony śluzowej jamy ustnej i gardła[J]. Polski Przegląd Otorynolaryngologiczny, 2013, 2(3): 146−158. doi: 10.1016/j.ppotor.2013.08.004.
    [62] Ito H, Asmussen S, Traber D L, et al. Healing efficacy of seabuckthorn (Hippophae rhamnoides L.) seed oil in an ovine burn wound model.[J]. Burns, 2014, 40(3): 511−519 . doi: 10.1016/j.burns.2013.08.011.
    [63] Xu X Y, Pan S Y, Xie B J, et al. The anti-oxidative effect of sea buckthorn seed procyanidins in vitro[J]. Food Science, 2005, 26(2): 216−218. doi: 10.1007/s11769-005-0030-x.
    [64] Enkhtaivan G, John K M M, Pandurangan M, et al. Extreme effects of seabuckthorn extracts on influenza viruses and human cancer cells and correlation between flavonol glycosides and biological activities of extracts[J]. Saudi Journal of Biological Sciences, 2016, 24(7): 1646−1656. doi: 10.1016/j.sjbs.2016.01.004.
    [65] Zadernowski R, Nowak-Polakowska H, Lossow B, et al. Seabuckthorn lipids[J]. Journal of Food Lipids, 1997, 4(3): 165−172. doi: 10.1111/j.1745-4522.1997.tb00090.x.
    [66] Ul’Chenko N T, Zhmyrko T G, Glushenkova A I, et al. Lipids of Hippophae rhamnoides, pericarp[J]. Chemistry of Natural Compounds, 1995, 31(5): 565−567. doi: 10.1007/BF01164880.
    [67] Kralova J, Jurasek M, Krcova L, et al. Heterocyclic sterol probes for live monitoring of sterol trafficking and lysosomal storage disorders[J]. Scientific Reports, 2018, 8: 14428. doi: 10.1038/s41598-018-32776-6.
    [68] Jones P, Macdougall D E, Ntanios F, et al. Dietary phytosterols as cholesterol-lowering agents in humans[J]. Canadian Journal of Physiology and Pharmacology, 1997, 75(3): 217−227. doi: 10.1139/y97-011.
    [69] Reading C L, Stickney D R, Floresriveros J, et al. A synthetic anti-inflammatory sterol improves insulin sensitivity in insulin-resistant obese impaired glucose tolerance subjects[J]. Obesity, 2013, 21(9): 343−349. doi: 10.1002/oby.20207.
    [70] Yang B, Karlsson R M, Oksman P H, et al. Phytosterols in sea buckthorn (Hippophae rhamnoides L.) berries: identification and effects of different origins and harvesting times.[J]. Journal of Agricultural & Food Chemistry, 2001, 49(11): 5620−5629. doi: 10.1021/jf010813m.
    [71] Tiitinen K, Hakala M, Kallio H. Headspace volatiles from frozen berries of sea buckthorn (Hippophae rhamnoides L.) varieties[J]. European Food Research & Technology, 2006, 223(4): 455−460. doi: 10.1007/s00217-005-0224-6.
  • 加载中
图(1) / 表(3)
计量
  • 文章访问数:  620
  • HTML全文浏览量:  176
  • PDF下载量:  48
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-28
  • 修回日期:  2020-09-13
  • 网络出版日期:  2020-12-24
  • 刊出日期:  2021-02-05

目录

    /

    返回文章
    返回