高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

永定河北京段河流形态模拟与弹性修复策略研究

吴明豪 李豪 肖萌 刘志成

吴明豪, 李豪, 肖萌, 刘志成. 永定河北京段河流形态模拟与弹性修复策略研究[J]. 北京林业大学学报, 2021, 43(7): 128-139. doi: 10.12171/j.1000-1522.20200240
引用本文: 吴明豪, 李豪, 肖萌, 刘志成. 永定河北京段河流形态模拟与弹性修复策略研究[J]. 北京林业大学学报, 2021, 43(7): 128-139. doi: 10.12171/j.1000-1522.20200240
Wu Minghao, Li Hao, Xiao Meng, Liu Zhicheng. River morphology simulation and resilient restoration strategies of Yongding River in Beijing[J]. Journal of Beijing Forestry University, 2021, 43(7): 128-139. doi: 10.12171/j.1000-1522.20200240
Citation: Wu Minghao, Li Hao, Xiao Meng, Liu Zhicheng. River morphology simulation and resilient restoration strategies of Yongding River in Beijing[J]. Journal of Beijing Forestry University, 2021, 43(7): 128-139. doi: 10.12171/j.1000-1522.20200240

永定河北京段河流形态模拟与弹性修复策略研究

doi: 10.12171/j.1000-1522.20200240
基金项目: 国家重大科技专项独立课题“永定河(北京段)河流廊道生态修复技术与示范”(2018ZX07101005)
详细信息
    作者简介:

    吴明豪,博士生。主要研究方向:风景园林规划与设计、城市河流景观、城市河流生态修复。Email:wmh_bjfu@163.com 地址:100083北京市海淀区清华东路35号北京林业大学园林学院

    责任作者:

    刘志成,教授,博士生导师。主要研究方向:风景园林规划与设计。Email:780256337@qq.com 地址:同上

  • 中图分类号: X171.4

River morphology simulation and resilient restoration strategies of Yongding River in Beijing

  • 摘要:   目的  自20世纪80年代断流以来,永定河下游河道被侵占、破坏严重,2019年和2020年永定河实施生态补水工作。本文选取永定河宛平湖至黄良铁路间河段,模拟不同生态流量和洪水脉冲流量设定下河流形态特征,目的是将补水流量变化与河流形态变化联系,为河流生态修复提供科学支撑。  方法  (1)运用Tennant法计算永定河下游生态流量,并选取3种不同等级的生态流量作为后续模拟输入;(2)使用CAESAR-Lisflood 模型模拟3种生态流量和4种洪水脉冲流量下的形态特征。  结果  (1)模拟得到3种生态流量下河道内年平均水面面积为439.29 ~ 462.74 hm2,水面高度在40 ~ 52 m之间,最大流速为1.49 ~ 2.24 m/s。河道内侵蚀区域面积为52.18 ~ 77.94 hm2,沉积区域为61.70 ~ 101.39 hm2。4种洪水脉冲流量下,河道内年平均水面面积为637.58 ~ 769.25 hm2,水面高度在42 ~ 55 m之间,最大流速在3.92 ~ 5.85 m/s之间。(2)根据不同河段的形态特征,河道内侵蚀/沉积区域范围和5年一遇洪水淹没范围,提出不同河段修复策略,并确定河道内弹性空间范围。  结论  在生态补水工作的促进下,研究河段以及整个永定河北京段断流河段的修复应以自然修复为主,人工修复为辅。在生态修复过程中需要预留充足的河流空间,允许河道形态变化,发挥河道自我修复能力。通过长期的、不间断的人工监测和策略调整,逐渐恢复断流区河流生态系统功能及自然河流景观。

     

  • 图  1  研究区区位及现状

    Figure  1.  Location of the study area in Beijing

    图  2  3种情景下7月份水面范围与水深分布

    Figure  2.  Water depth distribution under three scenarios in July

    图  3  3种情景下研究河段平均水面高度分布

    Figure  3.  Average water surface height distribution under three scenarios

    图  4  3种情景下研究河段7月份流速分布

    Figure  4.  Velocity distribution and Max. velocity under three scenarios

    图  5  3种情景下地形变化的区域

    Figure  5.  Topographical change distribution in the three scenarios

    图  6  不同期洪水脉冲流量下水面范围及水深分布

    Figure  6.  Water depth distribution under different pulse flow discharges

    图  7  不同期洪水脉冲流量下研究河段平均水面高度分布

    Figure  7.  Average water surface height distribution under different pulse flow discharges

    图  8  不同洪水脉冲流量下流速分布

    Figure  8.  Velocity distribution under different pulse flow discharges

    图  9  修复前各河段剖面

    Figure  9.  Cross sections of each reach before restoration

    图  10  各河段生态恢复策略

    Figure  10.  Ecological restoration for different river reaches

    表  1  Tennant法中河流水生栖息地状态与年平均流量关系

    Table  1.   Ecological flow of the study area relations between aquatic habitat condition and mean annual flow described by the Tennant method for river

    水生栖息地状态
    Aquatic habitat condition for river
    4—9月年平均
    流量百分比
    Percentage of mean annual flow from
    April to September/%
    10月—次年3月年
    平均流量百分比
    Percentage of mean annual flow
    from October to March/%
    脉冲/最大
    Flushing flow/Max.
    200 200
    最佳范围
    Optimum range
    60 ~ 100 60 ~ 100
    极好 Outstanding 60 40
    好 Excellent 50 30
    较好 Good 40 20
    一般 Fair 30 10
    较差 Poor 10 10
    严重退化
    Severe degradation
    < 10 < 10
    下载: 导出CSV

    表  2  研究区生态流量计算结果

    Table  2.   Ecological flow of the study area

    栖息地状态
    Aquatic habitat condition
    各月份生态流量值 Monthly ecological flow/(m3·s−1)总量/亿m3
    Total discharge/
    108 m3
    1月
    Jan.
    2月
    Feb.
    3月
    Mar.
    4月
    Apr.
    5月
    May
    6月
    Jun.
    7月
    Jul.
    8月
    Aug.
    9月
    Sep.
    10月
    Oct.
    11月
    Nov.
    12月
    Dec.
    极好 Outstanding 7.04 7.82 28.24 23.80 8.97 17.12 78.85 56.36 31.07 13.78 10.23 8.03 7.72
    好 Excellent 5.28 5.87 21.18 19.83 7.48 14.27 65.71 46.97 25.90 10.33 7.67 6.02 6.27
    较好 Good 3.52 3.91 14.12 15.86 5.98 11.42 52.56 37.57 20.72 6.89 5.11 4.01 4.81
    一般 Fair 1.76 1.96 7.06 11.90 4.49 8.56 39.42 28.18 15.54 3.44 2.56 2.01 3.36
    较差 Poor 1.76 1.96 7.06 3.97 1.50 2.85 13.14 9.39 5.18 3.44 2.56 2.01 1.45
    月平均流量(1920—1951年)
    Mean monthly flow (1920−1951)
    17.59 19.56 70.61 39.66 14.95 28.54 131.41 93.93 51.79 34.44 25.57 20.07 14.53
    下载: 导出CSV

    表  3  模拟流量输入设定

    Table  3.   Flow discharge inputs for simulations

    模拟情景 Simulation scenario流量设定 Flow discharge input
    长期模拟
    Lomg-term modeling
    好状态对应流量 Discharge of excellent condition 丰水期50%,枯水期30% 50% in wet season, 30% in dry season
    一般状态对应流量 Discharge of fair condition 丰水期30%,枯水期10% 30% in wet season, 10% in dry season
    较差状态对应流量 Discharge of poor condition 丰水期10%,枯水期10% 10% in wet season, 10% in dry season
    短期模拟
    Short-term modeling
    1年一遇 1-year return period flood 130 m3/s
    2年一遇 2-year return period flood 190 m3/s
    3年一遇 3-year return period flood 380 m3/s
    5年一遇 5-year return period flood 820 m3/s
    下载: 导出CSV

    表  4  3种情景下研究区水面面积

    Table  4.   Water surface area under the three scenarios

    水面面积/hm2
    Water surface area/ha
    S1
    (好 Excellent)
    S2
    (一般 Fair)
    S3
    (较差 Poor)
    全年平均水面面积
    Annual average water
    surface area
    439.35 439.29 462.74
    最大水面面积
    Max. water surface area
    531.70 518.92 501.82
    最小水面面积
    Min. water surface area
    404.37 414.20 442.06
    差值 Difference 127.33 104.72 59.76
    下载: 导出CSV

    表  5  3种情景下河流动态变化过程中发生侵蚀、沉积的范围      hm2

    Table  5.   Erosion and deposition areas in the three scenarios ha

    项目
    Item
    S1
    (好 Excellent)
    S2
    (一般Fair)
    S3
    (较差 Poor)
    侵蚀区域 Erosion area77.9465.9152.18
    沉积区域 Deposition area101.3986.5261.70
    下载: 导出CSV

    表  6  不同洪水脉冲流量下研究区水面面积分布统计

    Table  6.   Wetted area under different pulse flow discharges

    项目
    Item
    1年一遇
    1-year return period
    2年一遇
    2-year return period
    3年一遇
    3-year return period
    5年一遇
    5-year return period
    水面面积/hm2 Water surface area/ha637.58651.58705.38769.25
    下载: 导出CSV

    表  7  流速及护岸材质类型

    Table  7.   Channel velocity and suggested bank materials

    流速 Flow velocity/(m·s−1)护岸类型 Riverbank type备注 Note
    < 0.5 自然状态 Natural bank 种植各类湿生植物均可 Planted with riparian vegetation
    1 草坪、芦苇等 Grasses and reeds, etc 覆盖率70%以上 > 70% coverage
    2 草坪及灌木 Grasses and shrubs 耐水湿灌木 Riparian shrubs
    3 生态袋等柔性材料 Biodegradable geotextiles 生态袋、抛石等 Geotextile erosion control bags or stone
    4 石笼、竹笼等 Stone or bamboo cages, etc 可种植灌木 Resprouting shrubs
    > 5 硬质护岸 Concrete revetments 混凝土坡框较好 Concrete frame
    注:此表引自参考文献[38]。Note: this table is cited from reference [38].
    下载: 导出CSV
  • [1] Belletti B, Nardi L, Rinaldi M, et al. Assessing restoration effects on river hydromorphology using the process-based morphological quality index in eight European river reaches[J]. Environmental Management, 2018, 61: 69−84.
    [2] 王文君, 黄道明. 国内外河流生态修复研究进展[J]. 水生态学杂志, 2012, 33 (4):142−146.

    Wang W J, Huang D M. Research progress of river restoration research at home and abroad[J]. Journal of Hydroecology, 2012, 33 (4): 142−146.
    [3] Sear D A. River restoration and geomorphology[J]. Aquatic Conservation: Marine and Freshwater Ecosystems, 1994, 4: 169−177. doi: 10.1002/aqc.3270040207
    [4] Karr J R. Defining and measuring river health[J]. Freshwater Biology, 1999, 41(2): 221−234. doi: 10.1046/j.1365-2427.1999.00427.x
    [5] Vietz G J, Finlayson B L. Geomorphological effects of flow alteration on rivers[M]//Horne A C, Webb J A, Stewardson M J, et al. Water for the environment: from policy and science to implementation and management. New York: Academic Press, 2017: 83−100.
    [6] Poff N L, Allan J D, Bain M B, et al. The natural flow regime[J]. BioScience, 1997, 47: 769−784. doi: 10.2307/1313099
    [7] Molnar P, Burlando P, Wolfgang R. Integrated catchment assessment of riverine landscape dynamics[J]. Aquatic Sciences, 2002, 64: 129−140. doi: 10.1007/s00027-002-8061-1
    [8] Poff N L, Richter B D, Arthington A H, et al. The ecological limits of hydrologic alteration (ELOHA): a new framework for developing regional environmental flow standards[J]. Freshwater Biology, 2010, 55(1): 147−170. doi: 10.1111/j.1365-2427.2009.02204.x
    [9] Lytle D H, Poff N L. Adaptation to natural flow regimes[J]. Trends in Ecology and Evolution, 2004, 19: 94−100. doi: 10.1016/j.tree.2003.10.002
    [10] Richter B D, Thomas G A. Restoring environmental flows by modifying dam operations[J]. Ecology and Society, 2007, 12(1): 12. doi: 10.5751/ES-02014-120112
    [11] Arthington A H, Naiman R J, McClain M E, et al. Preserving the biodiversity and ecological services of rivers: new challenges and research opportunities[J]. Freshwater Biology, 2010, 55(1): 1−16. doi: 10.1111/j.1365-2427.2009.02340.x
    [12] 张君伟, 万超, 杜志国, 等. 永定河生态用水保障机制研究[J]. 北京水务, 2020(5):1−4.

    Zhang J W, Wan C, Du Z G, et al. Study on the protection mechanism of ecological water usage of Yongding River[J]. Beijing Water, 2020(5): 1−4.
    [13] 董哲仁, 孙东亚, 王俊娜, 等. 河流生态学相关交叉学科进展[J]. 水利水电技术, 2009, 40(8):36−43. doi: 10.3969/j.issn.1000-0860.2009.08.010

    Dong Z R, Sun D Y, Wang J N, et al. Progresses of interdisciplines to river ecology[J]. Water Resources and Hydropower Engineering, 2009, 40(8): 36−43. doi: 10.3969/j.issn.1000-0860.2009.08.010
    [14] 董哲仁, 张晶, 赵进勇. 环境流理论进展述评[J]. 水利学报, 2017, 48(6):670−677.

    Dong Z R, Zhang J, Zhao J Y. Comments upon progress of environmental flows assessments[J]. Journal of Hydraulic Engineering, 2017, 48(6): 670−677.
    [15] 杨志峰, 崔保山, 孙涛, 等. 湿地生态需水机理、模型和配置[M]. 北京: 科学出版社, 2012.

    Yang Z F, Cui B S, Sun T, et al. Mechanism, model and allocation of ecological water requirement for wetlands[M]. Beijing: Science Press, 2012.
    [16] Tharme R E. A global perspective on environmental flow assessment: emerging trends in the development and application of environmental flow methodologies for rivers[J]. River Research and Applications, 2003, 19(5−6): 397−441. doi: 10.1002/rra.736
    [17] Tennant D L. Instream flow regimens for fish, wildlife, recreation and related environmental resources[J]. Fisheries, 1976, 1(4): 6−10. doi: 10.1577/1548-8446(1976)001<0006:IFRFFW>2.0.CO;2
    [18] Mosley M P. Flow requirements for recreation and wildlife in New Zealand rivers: a review[J]. Journal of Hydrology, 1983, 22(2): 152−174.
    [19] 吕孙云, 许银山, 兰岚, 等. 基于优化-模拟技术的生态库容研究[J]. 水科学进展, 2013, 24(3):402−409.

    Lü S Y, Xu Y S, Lan L, et al. Study of ecological storage based on optimization simulation technique[J]. Advances in Water Science, 2013, 24(3): 402−409.
    [20] 雍婷, 许银山, 梅亚东. 基于生态流量要求的调度图优化及生态库容研究[J]. 水力发电学报, 2013, 32(1):89−95.

    Yong T, Xu Y S, Mei Y D. Study on optimization of operation curve and ecological storage based on ecological flow demand[J]. Journal of Hydroelectric Engineering, 2013, 32(1): 89−95.
    [21] 张士锋, 刘晓菲, 李瑞, 等. 永定河北京段生态需水量研究[J/OL]. 水资源研究, 2016(2): 108−119 [2020−03−03]. http://qikan.cqvip.com/Qikan/Article/Detail?id=668952103.

    Zhang S F, Liu X F, Li R, et al. Study on environmental flow in Beijing section of Yongding River [J/OL]. Journal of Water Resources Research, 2016 (2): 108−119 [2020−03−03]. http://qikan.cqvip.com/Qikan/Article/Detail?id=668952103.
    [22] 顾斌杰, 王富世, 宋磊, 等. 永定河官厅山峡生态需水量计算及配置方案研究[J]. 北京水务, 2017(2):12−18. doi: 10.3969/j.issn.1673-4637.2017.02.004

    Gu B J, Wang F S, Song L, et al. Calculation and configuration of ecological water requirements for Yongding River Guanting Gorge[J]. Beijing Water, 2017(2): 12−18. doi: 10.3969/j.issn.1673-4637.2017.02.004
    [23] Li C W, Kang L. A new modified Tennant method with spatial-temporal variability[J]. Water Resource Management, 2014, 28: 4911−4926. doi: 10.1007/s11269-014-0746-4
    [24] 董哲仁, 张晶, 赵进勇. 生态流量的科学内涵[J]. 中国水利, 2020(15):15−19. doi: 10.3969/j.issn.1000-1123.2020.15.007

    Dong Z R, Zhang J, Zhao J Y. Scientific connotation of ecological flow[J]. China Water Resources, 2020(15): 15−19. doi: 10.3969/j.issn.1000-1123.2020.15.007
    [25] 中央人民政府水利部水文局. 华北区水文资料海河流域永定河水系水位、气象(1912—1949年)[R]. 北京: 中央人民政府水利部水文局, 1954.

    Ministry of Water Resources Hydrographic Office of Central People’s Government. Water level and weather hydrological data in 1912−1949 of Yongding River System in Haihe River Basin[R]. Beijing: Ministry of Water Resource Hydrographic office of Central People’s Government, 1954.
    [26] 中央人民政府水利部水文局. 华北区水文资料海河流域永定河水系流量、含沙量(1918—1949)[R]. 北京: 中央人民政府水利部水文局, 1954.

    Ministry of Water Resources Hydrographic Office of Central People’s Government. Flow and sediment concentration data in 1918−1949 of Yongding River System in Haihe River Basin[R]. Beijing: Ministry of Water Resource Hydrographic Office of Central People’s Government, 1954.
    [27] Junk W J, Bayley P B, Sparks R E. The flood pulse concept in river-floodplain systems[J]. Canadian Journal of Fisheries and Aquatic Sciences, 1989, 106: 110−127.
    [28] Death R G, Fuller I C, Macklin M G. Resetting the river template: the potential for climate-related extreme floods to transform river geomorphology and ecology[J]. Freshwater Biology, 2015, 60(12): 2477−2496. doi: 10.1111/fwb.12639
    [29] Talbot C J, Bennett E M, Cassell K, et al. The impact of flooding on aquatic ecosystem services[J]. Biogeochemistry, 2018, 141: 439−461. doi: 10.1007/s10533-018-0449-7
    [30] 潘安君. 永定河“以水开路、用水引路”生态补水探索[J]. 北京水务, 2020(3):1−3.

    Pan A J. Ecological water replenishment in Yongding River[J]. Beijing Water, 2020(3): 1−3.
    [31] Coulthard T J, Hicks D M, van de Wiel M J. Cellular modelling of river catchments and reaches: advantages, limitations and prospects[J]. Geomorphology, 2007, 90: 192−207. doi: 10.1016/j.geomorph.2006.10.030
    [32] Coulthard T J, Neal J C, Bates P D, et al. Integrating the LISFLOOD-FP 2D hydrodynamic model with the CAESAR model implications for modelling landscape evolution[J]. Earth Surface Processes and Landform, 2013, 38(15): 1897−1906. doi: 10.1002/esp.3478
    [33] Coulthard T J, van de Wiel M J. Quantifying fluvial non linearity and finding self organized criticality? Insights from simulations of river basin evolution[J]. Geomorphology, 2007, 91(3−4): 216−235. doi: 10.1016/j.geomorph.2007.04.011
    [34] 谢军, 汪明, 刘凯. 震后极端降雨下流域产沙及物质运移规律模拟: 以四川省洪溪河流域为例[J]. 水土保持研究, 2019, 26(1):1−7.

    Xie J, Wang M, Liu K. Material migration patterns of basin after earthquake under extreme rainfall: a case study on Hongxi Basin of Sichuan Province[J]. Research of Soil and Water Conservation, 2019, 26(1): 1−7.
    [35] Coulthard T J, Macklin M G, Kirkby M J. A cellular model of Holocene upland river basin and alluvial fan evolution[J]. Earth Surface Processes and Landforms, 2002, 27: 269−288. doi: 10.1002/esp.318
    [36] van de Wiel M J, Coulthard T J, Macklin M G, et al. Embedding reach-scale fluvial dynamics within the CAESAR cellular automaton landscape evolution model[J]. Geomorphology, 2007, 90: 283−301. doi: 10.1016/j.geomorph.2006.10.024
    [37] Beechie T J, Sear D A, Olden J D, et al. Process-based principles for restoring river ecosystems[J]. BioScience, 2010, 60(3): 209−222. doi: 10.1525/bio.2010.60.3.7
    [38] 刘毅, 朱晨东, 李其军. 生态型河流护岸工程指南[Z]. 日本河边整备中心(北京水利协会内部资料), 2003: 31.

    Liu Y, Zhu C D, Li Q J. Guidelines for ecological riverbank engineering[Z]. Japan River Restoration Center (internal files of Beijing Hydraulic Engineering Society), 2003: 31.
  • 加载中
图(10) / 表(7)
计量
  • 文章访问数:  302
  • HTML全文浏览量:  120
  • PDF下载量:  46
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-04
  • 修回日期:  2021-03-24
  • 网络出版日期:  2021-06-24
  • 刊出日期:  2021-07-25

目录

    /

    返回文章
    返回