高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于Rothermel的红松人工林地表可燃物蔓延速率及参数修正

耿道通 宁吉彬 李兆国 于宏洲 邸雪颖 杨光

耿道通, 宁吉彬, 李兆国, 于宏洲, 邸雪颖, 杨光. 基于Rothermel的红松人工林地表可燃物蔓延速率及参数修正[J]. 北京林业大学学报. doi: 10.12171/j.1000-1522.20200247
引用本文: 耿道通, 宁吉彬, 李兆国, 于宏洲, 邸雪颖, 杨光. 基于Rothermel的红松人工林地表可燃物蔓延速率及参数修正[J]. 北京林业大学学报. doi: 10.12171/j.1000-1522.20200247
Geng Daotong, Ning Jibin, Li Zhaoguo, Yu Hongzhou, Di Xueying, Yang Guang. Combustion spreading rate and parameter modification of surface combustible fuel in Pinus koraiensis plantation based on Rothermel[J]. Journal of Beijing Forestry University. doi: 10.12171/j.1000-1522.20200247
Citation: Geng Daotong, Ning Jibin, Li Zhaoguo, Yu Hongzhou, Di Xueying, Yang Guang. Combustion spreading rate and parameter modification of surface combustible fuel in Pinus koraiensis plantation based on Rothermel[J]. Journal of Beijing Forestry University. doi: 10.12171/j.1000-1522.20200247

基于Rothermel的红松人工林地表可燃物蔓延速率及参数修正

doi: 10.12171/j.1000-1522.20200247
基金项目: “十三五”国家重点研发计划(2018YFD0600205),国家自然科学基金项目(31870644)。
详细信息
    作者简介:

    耿道通。主要研究方向:林火生态与管理。Email:708841308@qq.com 地址:150040黑龙江哈尔滨市和兴路26号东北林业大学林学院

    责任作者:

    杨光,教授,博士生导师。主要研究方向:林火生态与管理。Email:lx_yg@163.com 地址:同上

  • 中图分类号: S762

Combustion spreading rate and parameter modification of surface combustible fuel in Pinus koraiensis plantation based on Rothermel

  • 摘要:   目的  该研究以室内模拟野外真实条件下的燃烧试验为手段,测定不同坡度和含水率条件下东北红松人工林地表可燃物蔓延速率,与基于Rothermel模型预测蔓延速率对比,并对Rothermel模型进行修正,以提高Rothermel模型预测红松人工林地表可燃物蔓延速率的适用性。  方法  以红松人工林地表可燃物为试验材料,在实验室内构建不同含水率和坡度的可燃物床层结构,平地无风条件下进行30次点烧试验,5°、10°、15°和20°条件下分别进行15次点烧试验。根据热电偶记录的温度时间数据及位置数据计算燃烧蔓延速率,在平地条件下对Rothermel模型中相关可燃物的参数进行拟合,得到最优模型,在此基础上对Rothermel模型坡度参数修正。  结果  在各试验条件下,红松人工林地表火蔓延速率最大值为0.631 m/min,最小值为0.114 m/min;直接使用Rothermel模型预测0° ~ 20°坡度条件下红松人工林地表火燃烧蔓延速率平均绝对误差为0.059 m/min,范围为0.003 ~ 0.241 m/min,平均相对误差为27.4%,范围为2.4% ~ 152.6%;在使用平地无风条件下点烧试验数据重新修正Rothermel模型的可燃物特征参数βop的基础上,基于5° ~ 20°条件下点烧试验数据修正坡度参数,修正参数后的Rothermel模型平均绝对误差平均值降低了0.024 m/min,为0.035 m/min,范围为0.003 ~ 0.102 m/min,平均相对误差降低了10.4%,为17.0%,范围为1.8% ~ 65.5%;修正参数后模型预测值与实测值的R2为0.913 5。  结论  在0° ~ 20°坡度条件下不能直接使用Rothermel模型对红松人工林地表可燃物燃烧蔓延速率进行预测,需要对模型中的可燃物特征参数和坡度参数进行修正,拟合参数后模型预测误差显著降低,预测精度显著提升,可以对我国0° ~ 20°坡度条件下红松人工林地表火蔓延速率进行预测。

     

  • 图  1  火蔓延实测及Rothermel模型预测蔓延速率

    Figure  1.  Measured spreading rate and Rothermel model predicted spreading rate

    图  2  基于Rothermel模型及拟合参数后Rothermel模型预测平均绝对误差

    Figure  2.  Predicting MAE of Rothermel model based on prediction error of Rothermel model and fitting parameters

    图  3  基于Rothermel模型及拟合参数后Rothermel模型预测平均相对误差

    Figure  3.  Predicting MRE of Rothermel model based on prediction error of Rothermel model and fitting parameters

    表  1  样地基本信息

    Table  1.   Basic information of sample plots

    样地编号
    Sample plot No.
    平均胸径
    Average DBH/cm
    平均树高
    Average tree height/m
    郁闭度
    Canopy density
    可燃物载量/(t·hm−2)
    Fuel load/(t·ha−1)
    可燃物含水率
    Fuel moisture/%
    122.713.70.67.811.9
    226.920.30.78.215.4
    318.224.30.88.222.3
    下载: 导出CSV

    表  2  可燃物实际含水率

    Table  2.   Actual fuel moisture content

    预设理论含水率
    Fuel theorial moisture content/%
    实际含水率 Actual fuel moisture content/%
    平均值
    Mean value
    标准差
    Standard deviation
    最小值
    Minimum value
    最大值
    Maximum value
    百分位数
    Percentile
    25%50%75%
    54.980.184.465.354.934.995.05
    109.950.189.8110.499.839.989.99
    1514.980.0114.9115.2814.9314.9615.03
    2019.910.0819.7120.0719.8919.9119.97
    2524.950.0424.8824.9924.9224.9724.98
    下载: 导出CSV

    表  3  Rothermel模型输入参数

    Table  3.   Input parameters of Rothermel model

    输入参数 Input parameter符号 Symbol实测值 Measured value
    可燃物低热值 Fuel particle low heat content/(kJ·kg−1) h 22 478
    灭绝含水率 Moisture content of extinction/% Mx 30
    表面积体积比 Fuel particle surface-area-to-volume ratio/(m−1) $ \sigma $ 6 873
    烘干颗粒密度 Ovendry particle density/(kg·m−3) ρp 374.8
    可燃物颗粒总矿质含量 Fuel particle total mineral content St 0.055 5
    可燃物有效矿质含量 Fuel particle effective mineral content/% Se 0.01
    下载: 导出CSV

    表  4  红松人工林地表可燃物点烧蔓延速率基本特征

    Table  4.   Basic characteristics of the spreading rate of surface combustibles in Pinus koraiensis plantations

    坡度
    Slope/(°)
    实测蔓延速率
    Measured spreading
    rate/(m·min−1)
    模型预测速率
    Predicting rate of
    model/(m·min−1)
    平均绝对误差
    Mean absolute error
    (MAE)/(m·min−1)
    平均相对误差
    Mean relative error
    (MRE)/%
    点烧次数
    Burning time
    00.1530.1540.0117.630
    50.1860.2270.05219.915
    100.2060.2290.02913.315
    150.2890.3320.07629.915
    200.3190.4670.13366.315
    下载: 导出CSV

    表  5  平地无风条件下修正参数后火蔓延速率误差

    Table  5.   No slope and no wind corrected the error of fire spreading rate after parameter correction

    可燃物特征参数
    Fuel feature parameter
    相对误差
    Relative error/%
    绝对误差范围
    Absolute error range/(m·min−1)
    MAE/(m·min−1)R2拟合损失
    Loss of fit
    未修正 Uncorrected 7.6 0.009 6 ~ 0.080 8 0.036 9 0.938 1
    Γ'max 7.6 0.009 7 ~ 0.080 7 0.036 9 0.938 1 0.001 8
    βop 5.2 0.000 9 ~ 0.077 0 0.022 7 0.971 3 0.000 9
    A 7.6 0.009 7 ~ 0.080 7 0.037 0 0.938 2 0.001 8
    ζ 9.7 0.003 2 ~ 0.096 7 0.048 5 0.883 0 0.003 4
    ε 7.7 0.011 0 ~ 0.079 8 0.037 4 0.938 1 0.001 5
    Γ'maxβopAξε 12.2 0.012 1 ~ 0.153 7 0.062 7 0.968 9 0.000 9
    注:Γ'max. 最大反应速率;βop. 最适压缩比;A. 参数;ζ. 传播通量;ε. 有效加热系数。Notes: Γ'max, maximum reaction velocity; βop, optimum packing ratio; A, parameter; ξ, propagating flux ratio; ε, effective heating number.
    下载: 导出CSV

    表  6  拟合βop后模型预测点烧蔓延速率

    Table  6.   Model predicting the spreading rate of ignition after fitting βop

    坡度
    Slope/(°)
    实测蔓延速率
    Measured spreading rate/(m·min−1)
    模型预测速率
    Model predicting rate/(m·min−1)
    MAE/(m·min−1)MRE/%
    00.1530.1520.0065.2
    50.1860.1690.02111.1
    100.2060.2200.01111.3
    150.2890.3170.06927.8
    200.3190.4700.13363.2
    下载: 导出CSV

    表  7  拟合坡度参数后模型预测蔓延速率及误差

    Table  7.   Model predicting the spreading rate and error after fitting the slope parameters

    坡度
    Slope/(°)
    实测蔓延速率
    Measured spreading rate/(m·min−1)
    模型预测速率
    Model predicting rate/(m·min−1)
    MAE/(m·min−1)MRE/%
    00.1530.1520.0065.2
    50.1860.1870.0159.4
    100.2060.2060.0118.8
    150.2890.3220.07020.5
    200.3190.3560.07433.2
    下载: 导出CSV
  • [1] 李佳. 凉山州森林火灾防控对策研究[J]. 森林防火, 2019(3):9−14.

    Li J. Study on countermeasures of forest fire prevention and control in Liangshan Prefecture[J]. Forest Fire Prevention, 2019(3): 9−14.
    [2] 杨光, 舒立福, 邸雪颖. 气候变化背景下黑龙江大兴安岭林区夏季火险变化趋势[J]. 应用生态学报, 2012, 23(11):3157−3163.

    Yang G, Shu L F, Di X Y. Change trends of summer fire danger in Great Xing’an Mountains forest region of Heilongjiang Province, Notheast China under climate change[J]. Chinese Journal of Applied Ecology, 2012, 23(11): 3157−3163.
    [3] Simeoni A, Santoni P A, Balbi J H. A strategy to elaborate forest fire spread models for management tools including a computer time-saving algorithm[J]. International Journal of Modelling and Simulation, 2002, 22(4): 213−224.
    [4] Koo E, Pagni P, Woycheese J, et al. A simple physical model for forest fire spread rate[J]. Fire Safety Science, 2005, 8(8): 851−862.
    [5] 陶奇, 谢小冬, 张林鹤, 等. 点火源引燃的上坡火蔓延实验研究[J]. 火灾科学, 2018, 27(2):92−99.

    Tao Q, Xie X D, Zhang L H, et al. Experimental research on upslope fire spread with point ignition[J]. Fire Safety Science, 2018, 27(2): 92−99.
    [6] Viegas D X. On the existence of a steady state regime for and wind driven fires[J]. International Journal of Wildland Fire, 2004, 13(1): 101−107.
    [7] Weise D R, Biging G S. A qualitative comparison of fire spread model incorporating wind and slope effects[J]. Forest Science, 1997, 43(2): 170−180.
    [8] Baines P G. Physical mechanisms for the propagation of surface fires[J]. Mathematical and Computer Modelling, 1990, 13(12): 83−94.
    [9] Liu N A, Wu J M, Zhu J P, et al. Effect of slope on spread of a liner flame front over a pine needle fuel bed: experiments and modeling[J]. International Journal of Wildland Fire, 2014, 23(8): 1087−1096.
    [10] 路长, 朱霁平, 邵占杰, 等. 峡谷地形中森林地表火蔓延实验研究[J]. 火灾科学, 2003, 12(1):19−22.

    Lu C, Zhu J P, Shao Z J, et al. Study of forest fire spread in valley topography[J]. Fire Safety Science, 2003, 12(1): 19−22.
    [11] 邵占杰, 林其钊, 路长. 基于燃料床的小坡度地表火研究模型蔓延[J]. 燃料科学与技术, 2003, 9(3):219−223.

    Shao Z J, Lin Q Z, Lu C. Study on model of spread across a fuel bed in small slope[J]. Journal of Combustion Science and Technology, 2003, 9(3): 219−223.
    [12] 姚树人. 由三起森林火灾事故引发的思考[J]. 森林防火, 2003(2):33−35.

    Yao S R. Thinking caused by three forest fire accidents[J]. Forest Fire Prevention, 2003(2): 33−35.
    [13] Mendes-Lopes J M, Ventura J M, Amaral J M. Flame characteristics, temperature-time curves, and rate of spread in fires propagating in a bed of pinus pinaster needles[J]. International Journal of Wildland Fire, 2003, 12(1): 67−84.
    [14] Dupuy J L, Marcechal J. Slope effect on laboratory fire spread: contribution of radiation and convection to fuel bed preheating[J]. International Journal of Wildland Fire, 2011, 20(2): 289−307.
    [15] Silvani X, Morandini F, Dupuy J L. Effects of slope on fire spread observed through video images and multiple-point thermal measurements measurements[J]. Experimental Thermal and Fluid Science, 2012, 41(9): 99−111.
    [16] Balbi J H, Chatelon F J, Morvan D, et al. A convective-radiative propagation model for wildland fires[J]. International Journal of Wildland Fire, 2020, 29(9): 723−738.
    [17] Houssami M E, Thomas J C, Lamorlette A, et al. Experimental and numerical studies characterizing the burning dynamics of wildland fuels[J]. Combustion & Flame, 2016, 168(6): 113−126.
    [18] Frangieh N, Morvan D, Meradji S, et al. Numerical simulation of grassland fires behavior using an implicit physical multiphase model[J]. Fire Safety Journal, 2018, 102(12): 37−47.
    [19] Morandini F, Silvani X, Dupuy J L, et al. Fire spread across a sloping fuel bed: flame dynamics and heat transfers[J]. Combustion & Flame, 2018, 190(4): 158−170.
    [20] Noble I, Gill A, Bary G. McArthur,s fire-danger meters expressed as equations[J]. Australian Journal of Ecology, 1980, 5(2): 201−203.
    [21] 王正非. 山火初始蔓延速度测算法[J]. 山地研究, 1983, 1(2):42−51.

    Wang Z F. The mesurement method of the wildfire initial spread rate[J]. Journal of Mountain Research, 1983, 1(2): 42−51.
    [22] Rothermel R C. A mathematical model for predicting fire spread in wildland fuels[M]. Orden: Usda Forest Service General Technical Report, 1972.
    [23] Rossa C G, Fernandes P M. On the fire-spread rate influence of some fuel bed parameters derived from Rothermel's model thermal energy balance[J]. Sumarski List, 2018, 142(1-2): 77−80.
    [24] 张吉利, 刘礴霏, 褚腾飞, 等. 广义Rothermel模型预测平地无风条件下红松-蒙古栎林地表混合可燃物的火行为[J]. 应用生态学报, 2012, 23(6):1495−1502.

    Zhang J L, Liu B F, Zhu T F, et al. Fire behavior of ground surface fuels in Pinus koraiensis and Quercus mongolica mixed forest under no wind and zero slope condition: a prediction with extended Rothermel model[J]. Chinese Journal of Applied Ecology, 2012, 23(6): 1495−1502.
    [25] 满子源, 孙龙, 胡海清, 等. 南方8种森林地表死可燃物在平地无风时的燃烧蔓延速率与预测模型[J]. 林业科学, 2019, 55(7):197−204.

    Man Z Y, Sun L, Hu H Q, et al. Prediction model of the spread rate of eight typical surface dead fuel in southern china under windless and flat land[J]. Scientia Silvae Sinicae, 2019, 55(7): 197−204.
    [26] Woolford D G, Martell D L, Mcfayden C B, et al. The development and implementation of a human-caused wildland fire occurrence prediction system for the province of Ontario, Canada[J]. Canadlan Journal of Forest Research, 2021, 51(2): 303-325.
    [27] 张运林. 蒙古栎和红松凋落物含水率动态变化影响因素及预测模型研究[D]. 哈尔滨: 东北林业大学, 2019.

    Zhang Y L. Study on influencing factors and prediction model of dynamic change of litter moisture content of Mongolion oak and Pinus koraiensis[D]. Harbin: Northeast Forestry University, 2019.
    [28] 谢小东. 上坡地表火蔓延的实验和理论研究[D]. 合肥: 中国科学技术大学, 2014.

    Xie X D. Experimental and theoretical research on upslope surface fire spread[D]. Hefei: University of Science and Technology of China, 2014.
    [29] 王晓红, 张吉利, 金森. 林火蔓延模拟的研究进展[J]. 中南林业科技大学学报, 2013, 33(10):75−84.

    Wang X H, Zhang J L, Jin S. Research progress of forest fire spreading simulation[J]. Journal of Central South University of Forestry & Technology, 2013, 33(10): 75−84.
    [30] Dupuy J L, Marcechal J, Portier D, et al. The effects of slope and bed width on laboratory fire behaviour[J]. International Journal of Wildland Fire, 2011, 20(2): 272−288.
    [31] Sandberg D V, Riccardi C L, Schaaf M D. Reformulation of Rothermel’s wildland fire behaviour model for heterogeneous fuelbeds[J]. Revue Canadienne De Recherche Forestière, 2007, 37(12): 2438−2455.
    [32] 胡海清. 林火生态与管理[M]. 北京: 中国林业出版社, 2005.

    Hu H Q. Forest fire ecology and management[M]. Beijing: China Forestry Publishing House, 2005.
  • 加载中
图(3) / 表(7)
计量
  • 文章访问数:  92
  • HTML全文浏览量:  23
  • PDF下载量:  29
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-10
  • 修回日期:  2020-09-11
  • 网络出版日期:  2021-09-26

目录

    /

    返回文章
    返回