高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

林下植被和凋落物对我国寒温带天然林土壤CO2通量的短期影响

高明磊 满秀玲 段北星

高明磊, 满秀玲, 段北星. 林下植被和凋落物对我国寒温带天然林土壤CO2通量的短期影响[J]. 北京林业大学学报, 2021, 43(3): 55-65. doi: 10.12171/j.1000-1522.20200249
引用本文: 高明磊, 满秀玲, 段北星. 林下植被和凋落物对我国寒温带天然林土壤CO2通量的短期影响[J]. 北京林业大学学报, 2021, 43(3): 55-65. doi: 10.12171/j.1000-1522.20200249
Gao Minglei, Man Xiuling, Duan Beixing. Short-term effects of understory vegetation and litter on soil CO2 flux of natural forests in cold temperate zone of China[J]. Journal of Beijing Forestry University, 2021, 43(3): 55-65. doi: 10.12171/j.1000-1522.20200249
Citation: Gao Minglei, Man Xiuling, Duan Beixing. Short-term effects of understory vegetation and litter on soil CO2 flux of natural forests in cold temperate zone of China[J]. Journal of Beijing Forestry University, 2021, 43(3): 55-65. doi: 10.12171/j.1000-1522.20200249

林下植被和凋落物对我国寒温带天然林土壤CO2通量的短期影响

doi: 10.12171/j.1000-1522.20200249
基金项目: 国家自然科学基金项目(31770488)
详细信息
    作者简介:

    高明磊。主要研究方向:土壤温室气体。Email:gaoml233@qq.com 地址:150040黑龙江省哈尔滨市香坊区和兴路26号东北林业大学林学院

    责任作者:

    满秀玲,教授,博士生导师。主要研究方向:水土保持。Email:mannefu@163.com 地址:同上

  • 中图分类号: S714.5;S718.51+6

Short-term effects of understory vegetation and litter on soil CO2 flux of natural forests in cold temperate zone of China

  • 摘要:   目的  为研究林下植被和凋落物对我国寒温带天然林土壤CO2通量的影响,对不同处理下CO2通量排放特征进行分析探究,为大兴安岭地区森林生态系统的经营管理和土壤温室气体研究提供参考。  方法  在2019年5—9月采用静态箱−气相色谱法对大兴安岭北部4种主要林型(白桦林、山杨林、樟子松林和兴安落叶松林)土壤CO2通量排放特征进行原位监测研究。  结果  4种林型不同处理后的土壤CO2通量都呈现相似的单峰曲线变化趋势,峰值出现在7月或8月。去除凋落物会提高阔叶林土壤呼吸,降低针叶林土壤呼吸,但变化幅度较小,没有达到显著水平(P > 0.05)。与自然状态相比,去除林下植被后,白桦林、山杨林和兴安落叶松林的CO2通量均值分别升高了27.57%、15.84%和24.13%,达到显著水平(P < 0.05),但樟子松林则下降了0.68%(P > 0.05)。去除林下植被和凋落物状态下,白桦林、山杨林和兴安落叶松林土壤CO2通量均值升高了20.05% ~ 25.34%,但樟子松林则下降了12.36%,且去除林下植被和凋落物的阔叶林的平均通量显著大于针叶林(P < 0.05)。  结论  凋落物和林下植被的存在与否会对土壤CO2通量产生不同影响,且影响程度因林型而异,科学合理的林下管理对调控森林生态系统CO2排放和生态环境保护都有着重大的作用。

     

  • 图  1  4种林型及其处理的温湿度季节动态

    Figure  1.  Seasonal dynamics of temperature and humidity of four forest types and their treatments

    图  2  4种处理不同林型的CO2通量季节动态

    Figure  2.  Seasonal dynamics of CO2 fluxes of four treatments with different forest types

    图  3  4种林型不同处理的CO2通量季节动态

    Figure  3.  Seasonal dynamics of CO2 fluxes of four forest types under varied treatments

    表  1  4种林型样地基本情况

    Table  1.   Basic situation of four forest type sample plots

    林型
    Forest type
    海拔
    Altitude/m
    坡向
    Slope aspect
    坡度
    Gradient/(°)
    平均胸径
    Mean
    DBH/cm
    平均树高
    Average tree
    height/m
    郁闭度
    Canopy
    density
    主要林下植被
    Major understory
    vegetation
    白桦林 Betula platyphylla forest 378 NE 6 11.5 13.1 0.9 1、3、4、6
    山杨林 Populus davidiana forest 385 NE 7 16.2 16.5 0.7 6、7、8
    樟子松林 Pinus sylvestris var. mongolica forest 290 NE 5 27.3 21.6 0.6 1、3、5
    兴安落叶松林 Larix gmelinii forest 305 NE 6 14.1 19.2 0.8 1、2、3、4
    注:1. 兴安杜鹃;2. 杜香;3. 越桔;4. 笃斯越桔;5. 羽节蕨;6. 红花鹿蹄草;7. 舞鹤草;8. 东方草莓;NE. 东北向。Notes: 1, Rhododendron dauricum; 2, Ledum palustre; 3, Vaccinium vitis-idaea; 4, Vaccinium uliginosum; 5, Gymnocarpium jessoense; 6, Pyrola incarnata; 7, Maianthemum bifolium; 8, Fragaria orientails; NE, northeast dtrection.
    下载: 导出CSV

    表  2  4种林型土壤基本理化性质

    Table  2.   Soil basic physical and chemical properties of four forest types

    林型
    Forest type
    土层深度
    Soil layer depth/cm
    pH土壤密度
    Soil density/(g·cm−3)
    有机碳
    Soil organic carbon/(g·kg−1)
    全氮
    Total nitrogen/(g·kg−1)
    白桦林
    Betula platyphylla forest
    0 ~ 5 5.34 0.69 70.99 1.47
    5 ~ 10 5.89 1.01 29.45 1.08
    山杨林
    Populus davidiana forest
    0 ~ 5 5.21 0.78 57.76 1.78
    5 ~ 10 5.45 0.91 34.15 1.22
    樟子松林
    Pinus sylvestris var. mongolica forest
    0 ~ 5 5.66 0.81 46.71 2.24
    5 ~ 10 5.71 0.99 20.11 1.02
    兴安落叶松林
    Larix gmelinii forest
    0 ~ 5 4.92 1.02 40.34 2.52
    5 ~ 10 5.11 1.42 11.52 0.91
    下载: 导出CSV

    表  3  4种林型不同处理CO2通量与环境因子相关分析

    Table  3.   Correlation analysis of CO2 flux and environmental factors in four forest types with different treatments

    林型
    Forest type
    处理
    Treatment
    土壤温度 Soil temperature土壤湿度 Soil moisture空气温度
    Air temperature
    5 cm10 cm5 cm10 cm
    白桦林
    Betula platyphylla forest
    CK 0.800** 0.749** 0.190 −0.019 0.303
    DL 0.655** 0.604* 0.312 0.451 0.626**
    DP 0.808** 0.865** −0.588* −0.540* 0.425
    DD 0.800** 0.749** 0.190 −0.019 0.303
    山杨林
    Populus davidiana forest
    CK 0.771** 0.735** −0.254 −0.215 0.383
    DL 0.442 0.384 0.161 0.288 0.507
    DP 0.733** 0.755** −0.264 −0.202 0.195
    DD 0.753** 0.734** −0.173 −0.106 0.535*
    樟子松林
    Pinus sylvestris var. mongolica forest
    CK 0.550** 0.642** −0.241 −0.137 −0.042
    DL 0.788* 0.758* −0.114 −0.238 −0.067
    DP 0.816** 0.852** −0.370 −0.468 0.098
    DD 0.819** 0.863** −0.232 −0.400 −0.040
    兴安落叶松林
    Larix gmelinii forest
    CK 0.611* 0.486 0.534 0.602* 0.640**
    DL 0.676* 0.655* 0.358 0.206 0.759**
    DP 0.655** 0.718** −0.002 −0.022 0.289
    DD 0.457 0.561* −0.317 −0.397 0.220
    注:*代表P < 0.05,**代表P < 0.01。CK为自然状态;DL为去除凋落物;DP为去除林下植被;DD为去除林下植被和凋落物。Notes: * represents P < 0.05; ** represents P < 0.01; CK, natural state; DL, removing litter; DP, removing understory vegetation; DD, removing understory vegetation and litter.
    下载: 导出CSV
  • [1] Dalal R C, Allen D E. Greenhouse gas fluxes from natural ecosystems[J]. Australian Journal of Botany, 2008, 56(5): 369−407. doi: 10.1071/BT07128
    [2] Bond-Lamberty B, Thomson A. Temperature-associated increases in the global soil respiration record[J]. Nature, 2010, 464: 579−582. doi: 10.1038/nature08930
    [3] Berger T W, Inselsbacher E, Boltenstern S Z. Carbon dioxide emissions of soil under pure and mixed stands of beech and spruce, affected by decomposing foliage litter mixtures[J]. Soil Biol Biochem, 2010, 42: 986−997. doi: 10.1016/j.soilbio.2010.02.020
    [4] Post W, Emanuel W, Zinke P, et al. Soil carbon pools and world life zones[J]. Nature, 1982, 298: 156−159. doi: 10.1038/298156a0
    [5] 吴亚丛. 林下植被清除对樟树人工林有机碳库的影响[D]. 北京: 中国林业科学研究院, 2014.

    Wu Y C. Effects of understory removal on organic carbon pool in Cinnamomum camphora plantation[D]. Beijing: Chinese Academy of Forestry, 2014.
    [6] 李媛良, 汪思龙, 颜绍馗. 杉木人工林剔除林下植被对凋落层养分循环的短期影响[J]. 应用生态学报, 2011, 22(10):2560−2566.

    Li Y L, Wang S L, Yan S K. Short-term effects of understory vegetation removal on nutrient cycling in litter layer of Chinese fir plantation[J]. Chinese Journal of Applied Ecology, 2011, 22(10): 2560−2566.
    [7] 贺同鑫, 李艳鹏, 张方月, 等. 林下植被剔除对杉木林土壤呼吸和微生物群落结构的影响[J]. 植物生态学报, 2015, 39(8):797−806. doi: 10.17521/cjpe.2015.0076

    He T X, Li Y P, Zhang F Y, et al. Effects of understory removal on soil respiration and microbial community composition structure in a Chinese fir plantation[J]. Chinese Journal of Plant Ecology, 2015, 39(8): 797−806. doi: 10.17521/cjpe.2015.0076
    [8] Raich J W, Potter C S, Bhagawati D. Interannual variability in global soil respiration, 1980–1994[J]. Global Change Biology, 2010, 8(8): 800−812.
    [9] 段北星, 满秀玲, 宋浩, 等. 大兴安岭北部不同类型兴安落叶松林土壤呼吸及其组分特征[J]. 北京林业大学学报, 2018, 40(2):40−50.

    Duan B X, Man X L, Song H, et al. Soil respiration and its component characteristics under different types of Larix gmelinii forests in the north of Daxing’an Mountains of northeastern China[J]. Journal of Beijing Forestry University, 2018, 40(2): 40−50.
    [10] Gong C, Song C, Zhang D, et al. Litter manipulation strongly affects CO2 emissions and temperature sensitivity in a temperate freshwater marsh of northeastern China[J]. Ecological Indicators, 2019, 97: 410−418. doi: 10.1016/j.ecolind.2018.10.021
    [11] Leitner S, Sae-Tun O, Kranzinger L, et al. Contribution of litter layer to soil greenhouse gas emissions in a temperate beech forest[J]. Plant & Soil, 2016, 403(1−2): 455−469.
    [12] 李思思, 贺康宁, 田赟, 等. 青海高寒区5种典型林分土壤呼吸季节变化及其影响因素[J]. 北京林业大学学报, 2016, 38(10):95−103.

    Li S S, He K N, Tian Y, et al. Seasonal changes and the driving factors of soil respiration among five typical forest types in the high-elevation-cold region, Qinghai, northwestern China[J]. Journal of Beijing Forestry University, 2016, 38(10): 95−103.
    [13] 陈光水, 杨玉盛, 吕萍萍, 等. 中国森林土壤呼吸模式[J]. 生态学报, 2008, 28(4):1748−1761. doi: 10.3321/j.issn:1000-0933.2008.04.046

    Chen G S, Yang Y S, Lü P P, et al. Respiration model of forest soil in China[J]. Acta Ecologica Sinica, 2008, 28(4): 1748−1761. doi: 10.3321/j.issn:1000-0933.2008.04.046
    [14] 夏秀雪, 高国强, 王东男, 等. 林下植被去除对水曲柳人工林土壤呼吸、微生物和根系动态的短期影响[J]. 生态学杂志, 2017, 36(5):1198−1207.

    Xia X X, Gao G Q, Wang D N, et al. Short-term effect of understory removal on the dynamics of soil respiration, microbial biomass, and root growth in a Fraxinus mandschurica Rupr. plantation[J]. Chinese Journal of Ecology, 2017, 36(5): 1198−1207.
    [15] Sun F H, Yuan J, Lu S. The change and test of climate in Northeast China over the last 100 years[J]. Climatic and Environmental Research, 2006, 11(1): 101−108.
    [16] Wu X, Zang S, Ma D, et al. Emissions of CO2, CH4, and N2O fluxes from forest soil in permafrost region of Daxing’an Mountains, Northeast China[J/OL]. International Journal of Environmental Research and Public Health, 2019, 16(16): 2999 (2019−08−20) [2019−10−22]. https://doi.org/10.3390/ijerph16162999.
    [17] Alexander H D, Mack M C. A canopy shift in interior Alaskan boreal forests: consequences for above- and belowground carbon and nitrogen pools during post-fire succession[J]. Ecosystems, 2016, 19(1): 98−114. doi: 10.1007/s10021-015-9920-7
    [18] Kelly R, Chipman M L, Higuera P E, et al. Recent burning of boreal forests exceeds fire regime limits of the past 10, 000 years[J]. PNAS, 2013, 110(32): 13055−13060. doi: 10.1073/pnas.1305069110
    [19] 冯召营, 孙迎春. 浅谈林下清理在森林防火工作中的作用[J]. 现代园艺, 2019(7):191−192. doi: 10.3969/j.issn.1006-4958.2019.07.104

    Feng Z Y, Sun Y C. Discussion on the role of forest clearing in forest fire prevention[J]. Modern Horticulture, 2019(7): 191−192. doi: 10.3969/j.issn.1006-4958.2019.07.104
    [20] Stokes V J, Willoughby I H. Early weed control can increase long-term growth, yield and carbon sequestration of Sitka spruce stands in Britain[J]. Forestry, 2014, 87(3): 425−436.
    [21] Rey A, Pegoraro E, Tedeschi V, et al. Annual variation in soil respiration and its components in a coppice oak forest in Central Italy[J]. Global Change Biology, 2010, 8(9): 851−866.
    [22] O’Neill K P, Kasischke E S, Richter D D. Environmental controls on soil CO2 flux following fire in black spruce, white spruce, and aspen stands of interior Alaska[J]. Canadian Journal of Forest Research, 2002, 32(9): 1525−1541. doi: 10.1139/x02-077
    [23] Conant R T, Ryan M G, Ågren G I, et al. Temperature and soil organic matter decomposition rates-synthesis of current knowledge and a way forward[J]. Global Change Biology, 2011, 17: 3392−3404. doi: 10.1111/j.1365-2486.2011.02496.x
    [24] Baldria P, Snajdr J, Merhautová V, et al. Responses of the extracellular enzyme activities in hardwood forest to soil temperature and seasonality and the potential effects of climate change[J]. Soil Biology & Biochemistry, 2012, 56: 60−68.
    [25] 马秀枝, 张秋良, 李长生, 等. 寒温带兴安落叶松林土壤温室气体通量的时间变异[J]. 应用生态学报, 2012, 23(8):2149−2156.

    Ma X Z, Zhang Q L, Li C S, et al. Temporal variation of soil greenhouse gases fluxes in a cold-temperate Larix gmelinii forest in Inner Mongolia, China[J]. Chinese Journal of Applied Ecology, 2012, 23(8): 2149−2156.
    [26] 梁东哲, 赵雨森, 辛颖. 大兴安岭重度火烧迹地天然次生林土壤温室气体通量及其影响因子[J]. 应用生态学报, 2019, 30(3):777−784.

    Liang D Z, Zhao Y S, Xin Y. Soil greenhouse gases fluxes and the affecting factors of natural secondary forest from seriously burned area in Greater Khingan Mountains, China[J]. Chinese Journal of Applied Ecology, 2019, 30(3): 777−784.
    [27] 李金博, 朱道光, 伍一宁, 等. 4种寒温带兴安落叶松林土壤CO2, CH4和N2O排放通量特征[J]. 中南林业科技大学学报, 2018, 38(11):95−102.

    Li J B, Zhu D G, Wu Y N, et al. Seasonal variation of emission fluxes of CO2, N2O and CH4 from four typical larch forests in Daxing’anling mountains of China[J]. Journal of Central South University of Forestry & Technology, 2018, 38(11): 95−102.
    [28] 杨庆朋, 徐明, 刘洪升, 等. 土壤呼吸温度敏感性的影响因素和不确定性[J]. 生态学报, 2011, 31(8):2301−2311.

    Yang Q P, Xu M, Liu H S, et al. Impact factors and uncertainties of the temperature sensitivity of soil respiration[J]. Acta Ecologica Sinica, 2011, 31(8): 2301−2311.
    [29] 吴鹏, 崔迎春, 赵文君, 等. 改变凋落物输入对喀斯特森林主要演替群落土壤呼吸的影响[J]. 北京林业大学学报, 2015, 37(9):17−27.

    Wu P, Cui Y C, Zhao W J, et al. Effects of litter exclusion and addition on soil respiration of major forest communities at two successional stages in Maolan karst forest of southwestern China[J]. Journal of Beijing Forestry University, 2015, 37(9): 17−27.
    [30] 彭信浩, 韩海荣, 徐小芳, 等. 间伐和改变凋落物输入对华北落叶松人工林土壤呼吸的影响[J]. 生态学报, 2018, 38(15):5351−5361.

    Peng X H, Han H R, Xu X F, et al. Thinning treatment and litterfall changes influence soil respiration in a Larix principis-rupprechtii plantation[J]. Acta Ecologica Sinica, 2018, 38(15): 5351−5361.
    [31] 段北星, 蔡体久, 宋浩, 等. 寒温带兴安落叶松林凋落物层对土壤呼吸的影响[J]. 生态学报, 2020, 40(4):1357−1366.

    Duan B X, Cai T J, Song H, et al. Effect of soil litterfall on soil respiration in cold-temperate larch forest[J]. Acta Ecologica Sinica, 2020, 40(4): 1357−1366.
    [32] 于舒, 韩海荣, 康峰峰, 等. 去除凋落物对不同林龄油松次生林土壤呼吸的影响[J]. 西北农林科技大学学报(自然科学版), 2016, 44(7):122−130.

    Yu S, Han H R, Kang F F, et al. Effect of litter removal on soil respiration Pinus tabulaeformis natural secondary forests at different ages[J]. Journal of Northwest A&F University (Nat. Sci. Ed), 2016, 44(7): 122−130.
    [33] Hornsby D C, Lockaby B G, Chappelka A H. Influence of microclimate on decomposition in loblolly pine stands: a field microcosm approach[J]. Canadian Journal of Forest Research, 1995, 25(10): 1570−1577. doi: 10.1139/x95-171
    [34] 王文杰, 刘玮, 孙伟, 等. 林床清理对落叶松(Larix gmelinii)人工林土壤呼吸和物理性质的影响[J]. 生态学报, 2008, 28(10):4750−4756. doi: 10.3321/j.issn:1000-0933.2008.10.016

    Wang W J, Liu W, Sun W, et al. Influences of forest floor cleaning on the soil respiration and soil physical property of a larch plantation[J]. Acta Ecologica Sinica, 2008, 28(10): 4750−4756. doi: 10.3321/j.issn:1000-0933.2008.10.016
    [35] Saurette D D, Chang S X, Thomas B R. Land-use conversion effects on CO2 emissions: from agricultural to hybrid poplar plantation[J]. Ecological Research, 2008, 23(3): 623−633. doi: 10.1007/s11284-007-0420-x
    [36] Raich J W, Tufekciogul A. Vegetation and soil respiration: correlations and controls[J]. Biogeochemistry, 2000, 48(1): 71−90. doi: 10.1023/A:1006112000616
    [37] Wang X, Zhao J, Wu J, et al. Impacts of understory species removal and/or addition on soil respiration in a mixed forest plantation with native species in southern China[J]. Forest Ecology and Management, 2011, 261(6): 1053−1060. doi: 10.1016/j.foreco.2010.12.027
    [38] Wu J. Response of soil respiration and ecosystem carbon budget to vegetation removal in Eucalyptus plantations with contrasting ages[J/OL]. Scientific Reports, 2014, 4: 6262 (2014−09−02) [2019−04−17]. https://doi.org/10.1038/srep06262.
    [39] 李炎真, 谢尧, 张晶玲, 等. 氮添加及林下植被去除对沙地樟子松人工林土壤呼吸组分的影响[J]. 生态学杂志, 2019, 38(10):2997−3006.

    Li Y Z, Xie Y, Zhang J L, et al. Effects of nitrogen addition and understory removal on soil respiratory components in a sandyPinus sylvestris var. mongolica plantation[J]. Chinese Journal of Ecology, 2019, 38(10): 2997−3006.
    [40] 赵佳琪, 牟长城, 吴彬, 等. 造林与间伐对东北温带弃耕地土壤温室气体排放的长期影响[J]. 北京林业大学学报, 2017, 39(10):13−23.

    Zhao J Q, Mu C C, Wu B, et al. Long-term effects of afforestation and thinning on greenhouse gas emissions from temperate abandoned-land soil in the Northeast of China[J]. Journal of Beijing Forestry University, 2017, 39(10): 13−23.
    [41] 赵冰清, 王云琦, 王彬, 等. 环境因子对重庆缙云山林地土壤呼吸动态特征的作用[J]. 北京林业大学学报, 2014, 36(3):83−89.

    Zhao B Q, Wang Y Q, Wang B, et al. Role of environmental factors on forest soil respiration characteristics in Jinyun Mountain of Chongqing, southwestern China[J]. Journal of Beijing Forestry University, 2014, 36(3): 83−89.
    [42] 程功, 刘廷玺, 王冠丽, 等. 降雨和凋落物对人工杨树林土壤温室气体通量的影响[J]. 农业环境科学学报, 2019, 38(6):1398−1407. doi: 10.11654/jaes.2018-1252

    Cheng G, Liu T X, Wang G L, et al. Effects of rainfall and litter on soil greenhouse gas fluxes in artificial poplar forest[J]. Journal of Agro-En-vironment Science, 2019, 38(6): 1398−1407. doi: 10.11654/jaes.2018-1252
    [43] 李伟, 刘小飞, 陈光水, 等. 凋落物对中亚热带米槠天然林和人工林土壤呼吸的影响[J]. 林业科学, 2016, 52(11):11−18. doi: 10.11707/j.1001-7488.20161102

    Li W, Liu X F, Chen G S, et al. Effects of litter manipulation on soil respiration in the natural forests and plantations of Castanopsis carlesii in mid-subtropical China[J]. Forestry Science, 2016, 52(11): 11−18. doi: 10.11707/j.1001-7488.20161102
    [44] 杜睿, 黄建辉, 万小伟, 等. 北京地区暖温带森林土壤温室气体排放规律[J]. 环境科学, 2004(2):12−16. doi: 10.3321/j.issn:0250-3301.2004.02.003

    Du R, Huang J H, Wan X W, et al. Regulations of greenhouse gas emission from warm temperate forest soil in Beijing area[J]. Environmental Science, 2004(2): 12−16. doi: 10.3321/j.issn:0250-3301.2004.02.003
  • 加载中
图(3) / 表(3)
计量
  • 文章访问数:  596
  • HTML全文浏览量:  132
  • PDF下载量:  51
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-13
  • 修回日期:  2020-11-19
  • 网络出版日期:  2021-03-04
  • 刊出日期:  2021-04-16

目录

    /

    返回文章
    返回