高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

热处理温度和时间对杉木质量损失和静曲强度的影响

张静 漆楚生 母军

张静, 漆楚生, 母军. 热处理温度和时间对杉木质量损失和静曲强度的影响[J]. 北京林业大学学报, 2020, 42(10): 137-144. doi: 10.12171/j.1000-1522.20200257
引用本文: 张静, 漆楚生, 母军. 热处理温度和时间对杉木质量损失和静曲强度的影响[J]. 北京林业大学学报, 2020, 42(10): 137-144. doi: 10.12171/j.1000-1522.20200257
Zhang Jing, Qi Chusheng, Mu Jun. Effects of thermal treatment temperature and duration on mass loss and rupture modulus of Cunninghamia lanceolata[J]. Journal of Beijing Forestry University, 2020, 42(10): 137-144. doi: 10.12171/j.1000-1522.20200257
Citation: Zhang Jing, Qi Chusheng, Mu Jun. Effects of thermal treatment temperature and duration on mass loss and rupture modulus of Cunninghamia lanceolata[J]. Journal of Beijing Forestry University, 2020, 42(10): 137-144. doi: 10.12171/j.1000-1522.20200257

热处理温度和时间对杉木质量损失和静曲强度的影响

doi: 10.12171/j.1000-1522.20200257
基金项目: 国家自然科学基金项目(3197140272、31870536)
详细信息
    作者简介:

    张静。主要研究方向:木材热加工。Email:873460923@qq.com 地址:100083北京市海淀区清华东路35号北京林业大学材料科学与技术学院

    责任作者:

    漆楚生,博士,副教授。主要研究方向:木质复合材料。Email:qichusheng@bjfu.edu.cn 地址:同上

    母军,博士,教授。主要研究方向:木质生物质材料利用。Email:mujun@bjfu.edu.cn 地址:同上

Effects of thermal treatment temperature and duration on mass loss and rupture modulus of Cunninghamia lanceolata

  • 摘要:   目的  热处理可以改善木材的尺寸稳定性,同时会降低木材质量并影响木材力学性能,有必要探明热处理对木材质量和力学性能的作用机制。  方法  本研究选用人工林杉木薄片作为试验材,在160、180、200、220℃及氮气环境下分别处理1、2、3、4、5、6 h,测试处理后木材的质量损失率(mL)和静曲强度(MOR),采用ATR-FTIR、TGA进行表征,并建立热处理杉木质量损失率和静曲强度的预测模型。  结果  热处理温度低于200 ℃时,温度比时间对杉木质量损失率和力学性能的影响更显著。当热处理温度高于200 ℃时,温度和时间对质量损失率和力学性能均有显著性影响。热处理杉木的质量损失率随热处理温度升高和时间延长呈非线性增加,质量损失率范围在0.2% ~ 17.6%之间,其预测模型为lnmL = 0.8lnt + 9.35lnT – 53.67(t为时间,T为温度),R2为0.99,试验测试值与模型预测值基本一致。杉木的MOR随热处理温度升高和热处理时间延长线性降低,与未处理杉木相比,MOR降低了4.4% ~ 74.8%,其预测模型为MOR = −2.57t – 0.82T + 220.44,R2为0.93,该模型总体预测效果较好。热处理杉木MOR随质量损失率增加呈指数下降,两者关系模型为MOR = 65.4${{\rm{e}}^{ - 20m_{\rm{L}}}}$ + 16.4,R2为0.95,此模型能够预测MOR随质量损失率的非线性变化趋势。  结论  通过试验数据建立了杉木的质量损失率与热处理条件,MOR与热处理条件,质量损失率与MOR之间的经验方程,可预测热处理木材质量损失和MOR的变化趋势,为木材热处理工艺的优化和热处理木材性能预测提供参考和依据。

     

  • 图  1  不同热处理温度和时间下的杉木红外光谱图

    Figure  1.  FTIR spectra of heat-treated Chinese fir wood at different temperatures and times

    图  2  热处理杉木的TG与DTG曲线

    Figure  2.  TG and DTG curves of heat-treated Chinese fir wood

    图  3  热处理时间和温度对杉木质量损失率的影响

    Figure  3.  Effects of heat treating time and temperature on the mass loss rate of Chinese fir wood

    图  4  热处理温度和时间对杉木质量损失率和静曲强度的影响

    Figure  4.  Effects of heat treating conditions on mass loss rate and MOR of Chinese fir wood

    图  5  预测模型与试验数据的比较

    Figure  5.  Comparison of prediction model and test data

    表  1  不同热处理温度和时间条件下杉木的静曲强度

    Table  1.   MOR of Chinese fir wood under different heat treating temperature and time MPa

    时间 Time/h温度 Temperature/℃
    160180200220
    180.1 ± 6.873.9 ± 3.260.1 ± 2.938.1 ± 4.1
    276.2 ± 5.971.3 ± 2.956.7 ± 3.433.2 ± 3.0
    374.2 ± 6.870.3 ± 4.850.4 ± 3.228.3 ± 5.8
    473.3 ± 5.968.4 ± 6.744.5 ± 3.223.5 ± 3.2
    573.3 ± 6.865.9 ± 2.942.5 ± 2.923.5 ± 3.4
    676.2 ± 2.965.9 ± 5.639.6 ± 2.921.1 ± 3.2
    注:对照的静曲强度为(83.8 ± 3.6) MPa。Note: MOR of the control is (83.8 ± 3.6) MPa.
    下载: 导出CSV
  • [1] 王沈南. 热处理温度对杉木木材性质的影响机制研究[D]. 北京: 中国林业科学研究院, 2017.

    Wang S N. Impact of different heat treatment temperatures on the properties of Chinese fir wood[D]. Beijing: Chinese Academy of Forestry, 2017.
    [2] 江京辉, 吕建雄, 周永东, 等. 水蒸气热处理对人工林杉木性质的影响[J]. 木材工业, 2015, 29(2):13−16. doi: 10.3969/j.issn.1001-8654.2015.02.003.

    Jiang J H, Lü J X, Zhou Y D, et al. Influence of heat treatment by steam on wood properties of Chinese fir from plantations[J]. China Wood Industry, 2015, 29(2): 13−16. doi: 10.3969/j.issn.1001-8654.2015.02.003.
    [3] 丁涛, 蔡家斌, 耿君. 欧洲木材热处理产业和标准化[J]. 木材工业, 2015, 29(3):26−30.

    Ding T, Cai J B, Geng J. Review on thermally modified timber industry and standardization in Europe[J]. China Wood Industry, 2015, 29(3): 26−30.
    [4] Chen Y C, Yang T C, Hung K C, et al. Effects of heat treatment on the chemical compositions and thermal decomposition kinetics of Japanese cedar and beech wood[J]. Polymer Degradation and Stability, 2018, 158: 220−227. doi: 10.1016/j.polymdegradstab.2018.11.003
    [5] Esteves B, Pereira H. Wood modification by heat treatment: a review[J]. BioResources, 2008, 4(1): 370−404.
    [6] Zaman A, Alen R, Kotilainen R. Thermal behavior of scots pine (Pinus sylvestris) and silver birch (Betula pendula) at 200−230 ℃[J]. Wood & Fiber Science, 2000, 32(2): 138−143.
    [7] Yalcin M, Sahin H I. Changes in the chemical structure and decay resistance of heat-treated narrow-leaved ash wood[J]. Maderas: Cienciay Tecnologia, 2015, 17(2): 435−446.
    [8] Ozgenc O, Durmaz S, Boyaci I H, et al. Determination of chemical changes in heat-treated wood using ATR-FTIR and FT Raman spectrometry[J]. Spectrochimica Acta Part A-Molecular and Biomolecular Spectroscopy, 2017, 171: 395−400. doi: 10.1016/j.saa.2016.08.026.
    [9] 江京辉, 吕建雄. 高温热处理对木材强度影响的研究进展[J]. 南京林业大学学报(自然科学版), 2012, 36(2):1−6. doi: 10.3969/j.issn.1000-2006.2012.02.001.

    Jiang J H, Lü J X. Research progress in effect of heat treatment on wood strength[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2012, 36(2): 1−6. doi: 10.3969/j.issn.1000-2006.2012.02.001.
    [10] Bekhta P, Niemz P. Effect of high temperature on the change in color, dimensional stability and mechanical properties of spruce wood[J]. Holzforschung, 2003, 57(5): 539−546. doi: 10.1515/HF.2003.080.
    [11] 张乃华, 李康, 李延军, 等. 高温水热处理对马尾松木材物理力学性能的影响[J]. 浙江林业科技, 2017, 37(5):35−41. doi: 10.3969/j.issn.1001-3776.2017.05.006.

    Zhang N H, Li K, Li Y J, et al. Effect of high temperature hydrothermal treatment on physical and mechanical properties of Pinus massoniana wood[J]. Journal of Zhejiang for Science and Technology, 2017, 37(5): 35−41. doi: 10.3969/j.issn.1001-3776.2017.05.006.
    [12] 孙海燕, 苏明垒, 吕建雄, 等. 细胞壁微纤丝角和结晶区对木材物理力学性能影响研究进展[J]. 西北农林科技大学学报(自然科学版), 2019, 47(5):50−58.

    Sun H Y, Su M L, Lü J X, et al. Research progress on effect of microfibril angel and crystalline area incell wall on wood physical and mechanical properties[J]. Journal of Northwest A&F University (Natural Science Edition), 2019, 47(5): 50−58.
    [13] Bergander A, Salmen L. Cell wall properties and their effects on the mechanical properties of fibers[J]. Journal of Materials Science, 2002, 37(1): 151−156. doi: 10.1023/A:1013115925679.
    [14] Malek S, Gibson L J. Multi-scale modelling of elastic properties of balsa[J]. International Journal of Solids and Structures, 2017, 113: 118−131.
    [15] Tiryaki S, Hamzaçebi C. Predicting modulus of rupture (MOR) and modulus of elasticity (MOE) of heat treated woods by artificial neural networks[J]. Measurement, 2014, 49(1): 266−274.
    [16] Čabalová I, Kačík F, Lagaňa R, et al. Effect of thermal treatment on the chemical, physical, and mechanical properties of pedunculate oak (Quercus robur L.) wood[J]. Bioresources, 2018, 13(1): 157−170.
    [17] Mburu F, Stephane D, Bocquet J F, et al. Effect of chemical modifications caused by heat treatment on mechanical properties of Grevillea robusta wood[J]. Polymer Degradation & Stability, 2008, 93(2): 401−405.
    [18] Zhang N, Xu M, Cai L. Improvement of mechanical, humidity resistance and thermal properties of heat-treated rubber wood by impregnation of SiO2 precursor[J]. Scientific Reports, 2019, 9(1): 982. doi: 10.1038/s41598-018-37363-3.
    [19] Shen Y H, Gao Z Z, Hou X F, et al. Spectral and thermal analysis of Eucalyptus wood drying at different temperature and methods[J]. Drying Technology, 2020, 38(3): 313−320. doi: 10.1080/07373937.2019.1566742
    [20] Liang T, Wang L. Thermal treatment of poplar hemicelluloses at 180 to 220 ℃ under nitrogen atmosphere[J]. Bioresources, 2016, 12(1): 1128−1135.
    [21] Okon K E, Lin F, Chen Y, et al. Effect of silicone oil heat treatment on the chemical composition, cellulose crystalline structure and contact angle of Chinese parasol wood[J]. Carbohydrate Polymers, 2017, 164: 179−185. doi: 10.1016/j.carbpol.2017.01.076.
    [22] Popescu C M, Jones D, Krzisnik D, et al. Determination of the effectiveness of a combined thermal/chemical wood modification by the use of FT-IR spectroscopy and chemometric methods [J/OL]. Journal of Molecular Structure, 2020, 1200: 127133 [2020−09−22]. https://doi.org/10.1016/j.molstruc.2019.127133.
    [23] Kubovský I, Kačíková D, Kačík F. Structural changes of oak wood main components caused by thermal modification[J/OL]. Polymers, 2020, 12(2): 485 [2020−09−29]. https://doi:10.3390/polym12020485." target="_blank">10.3390/polym12020485">https://doi:10.3390/polym12020485.
    [24] Herrera-Diaz R, Sepulveda-Villarroel V, Torres-Mella J, et al. Influence of the wood quality and treatment temperature on the physical and mechanical properties of thermally modified radiata pine[J]. European Journal of Wood and Wood Products, 2019, 77(4): 661−671. doi: 10.1007/s00107-019-01424-9.
    [25] Korec R C, Lavri B, Rep G, et al. Thermogravimetry as a possible tool for determining modification degree of thermally treated Norway spruce wood[J]. Journal of Thermal Analysis & Calorimetry, 2009, 98(1): 189−195.
    [26] Okon K E, Lin F, Lin X, et al. Modification of Chinese fir (Cunninghamia lanceolata L.) wood by silicone oil heat treatment with micro-wave pretreatment[J]. European Journal of Wood and Wood Products, 2018, 76(1): 221−228. doi: 10.1007/s00107-017-1165-z.
    [27] Lee S H, Ashaari Z, Lum W C, et al. Chemical, physico-mechanical properties and biological durability of rubberwood particleboards after post heat-treatment in palm oil[J]. Holzforschung, 2018, 72(2): 159−167. doi: 10.1515/hf-2017-0086.
    [28] Fu Z, Zhou Y, Gao X, et al. Changes of water related properties in radiata pine wood due to heat treatment[J/OL]. Construction and Building Materials, 2019, 227: 116692 [2020−09−29]. https://doi.org/10.1016/j.conbuildmat.2019.116692.
    [29] Park Y, Jang S K, Park J H, et al. Changes of major chemical components in larch wood through combined treatment of drying and heat treatment using superheated steam[J]. Journal of Wood Science, 2017, 63(6): 635−643. doi: 10.1007/s10086-017-1657-9
    [30] 梁铁强, 王立娟. N2中热处理对落叶松木材物理性能的影响[J]. 广东化工, 2016, 43(22):22−23. doi: 10.3969/j.issn.1007-1865.2016.22.010

    Liang T Q, Wang L J. The influence of thermal treatment on the physical properties of larch wood under N2 atmosphere[J]. Guangdong Chemical Industry, 2016, 43(22): 22−23. doi: 10.3969/j.issn.1007-1865.2016.22.010
    [31] Popescu C, Navi P, Pena M, et al. Structural changes of wood during hydro-thermal and thermal treatments evaluated through NIR spectroscopy and principal component analysis[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2018, 191: 405−412. doi: 10.1016/j.saa.2017.10.045.
    [32] Hakkou M, Petrissans M, Zoulalian A, et al. Investigation of wood wettability changes during heat treatment on the basis of chemical analysis[J]. Polymer Degradation and Stability, 2005, 89(1): 1−5. doi: 10.1016/j.polymdegradstab.2004.10.017.
    [33] 孔繁旭, 邹超峰, 王艳伟, 等. 热处理对木材化学组分及物理力学性能的影响[J]. 林业机械与木工设备, 2019, 47(1):9−16. doi: 10.3969/j.issn.2095-2953.2019.01.002.

    Kong F X, Zou C F, Wang Y W, et al. Effect of heat treatment on chemical composition and physico-mechanical properties of wood[J]. Forestry Machinery and Wood working Equipment, 2019, 47(1): 9−16. doi: 10.3969/j.issn.2095-2953.2019.01.002.
    [34] Herrera-Diaz R, Sepulveda-Villarroel V, Perez-Pena N, et al. Effect of wood drying and heat modification on some physical and mechanical properties of radiata pine[J]. Drying Technology, 2018, 36(5): 537−544. doi: 10.1080/07373937.2017.1342094.
    [35] Kojima E, Yamasaki M, Imaeda K, et al. Effects of thermal modification on the mechanical properties of the wood cell wall of soft wood: behavior of S2 cellulose microfibrils under tensile loading[J]. Journal of Materials Science, 2020, 55(12): 5038−5047. doi: 10.1007/s10853-020-04346-7.
    [36] 吴再兴, 陈玉和, 黄成建, 等. 热处理对木材力学性能的影响综述[J]. 世界林业研究, 2019, 32(1):62−67.

    Wu Z X, Chen Y H, Huang C J, et al. A review of effects of heat treatment on wood mechanical properties[J]. World Forestry Research, 2019, 32(1): 62−67.
    [37] Won K R, Hong N E, Park H M, et al. Effects of heating temperature and time on the mechanical properties of heat-treated woods[J]. Journal of the Korean Wood Science and Technology, 2015, 43(2): 168−176. doi: 10.5658/WOOD.2015.43.2.168.
    [38] Aydin E, Baysal E, Toker H, et al. Decay resistance, physical, mechanical, and thermal properties of heated oriental beech wood[J]. Wood Research, 2015, 60(6): 913−928.
    [39] 黄荣凤, 吕建雄, 曹永建, 等. 高温热处理对毛白杨木材化学成分含量的影响[J]. 北京林业大学学报, 2010, 32(3):155−160.

    Huang R F, Lü J X, Cao Y J, et al. Impact of heat treatment on chemical composition of Chinese white poplar wood[J]. Journal of Beijing Forestry University, 2010, 32(3): 155−160.
    [40] Sebahattin T, Aydın A. An artificial neural network model for predicting compression strength of heat treated woods and comparison with a multiple linear regression model[J]. Construction and Building Materials, 2014, 62: 102−108. doi: 10.1016/j.conbuildmat.2014.03.041.
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  520
  • HTML全文浏览量:  144
  • PDF下载量:  37
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-24
  • 修回日期:  2020-09-14
  • 网络出版日期:  2020-10-16
  • 刊出日期:  2020-10-25

目录

    /

    返回文章
    返回