Hydrological effects of litter and soil layers of Larix kaempferi plantation in subtropical regions
-
摘要:
目的 研究对比亚热带不同经营模式日本落叶松人工林枯落物层和土壤层水文效应的变化规律及差异性,探讨二者水文性能之间的相关关系,以期为地区森林水文循环和森林健康经营提供科学依据。 方法 以建始县国有长岭岗林场3种典型经营模式日本落叶松人工林(日本落叶松−檫木混交经营模式、日本落叶松−鹅掌楸混交经营模式、日本落叶松纯林经营模式)为研究对象,采用样地观测法、室内浸泡法、环刀法、双环法等对其枯落物层及土壤层水文效应进行了研究,并采用回归分析法和双变量相关性分析法对其二者水文效应进了拟合与分析。 结果 (1)不同经营模式林分枯落物厚度及蓄积量分层变化差异显著(P < 0.05);混交林经营模式半分解层厚度及蓄积量均明显高于未分解层,纯林经营模式则正好相反。(2)不同经营模式林分枯落物持水量、吸水速率随浸泡时间的变化规律基本一致,枯落物持水量与浸泡时间呈对数函数回归关系,枯落物吸水速率与浸泡时间呈幂函数回归关系。(3)不同经营模式林分土壤物理性质及入渗性能整体表现为混交经营模式优于纯林经营模式,且差异性显著(P < 0.05);土壤入渗速率与入渗时间呈幂函数回归关系。(4)不同经营模式林分枯落物层和土壤层水文效应存在一定的相关性,除土壤密度外,土壤水文指标均与枯落物半分解层水文指标呈正相关,与枯落物未分解层水文指标呈负相关;土壤最大持水量、总空隙度、初渗速率、稳渗速率与枯落物厚度、半分解层最大持水量及最大吸水速率关系密切。 结论 综合来看,混交经营模式的枯落物层和土壤层水文性能要优于纯林经营模式,建议在森林经营管理中应充分考虑树种组成、配置方式等因素影响,加快实施针叶纯林的近自然阔叶化改造,以加强地区森林的水文功能和健康经营。 Abstract:Objective The hydrological effects of litter layer and soil layer of Larix kaempferi plantation under different management models in subtropical regions were studied and compared, and the correlation between hydrological performance of the two was explored to provide scientific basis for regional forest hydrological cycle and forest health management. Method Taking three typical management models of Larix kaempferi plantation (Larix kaempferi-Sassafras tzumu mixed management model, Larix kaempferi-Liriodendron chinense mixed management model and Larix kaempferi pure forest management model) in Changlinggang State-Owned Forest Farm of Jianshi County as the research objects, and the hydrological effects of litter layer and soil layer were studied by means of sample plot observation method, indoor immersion method, cutting ring method and double ring method, and the regression analysis and bivariate correlation analysis were used to fit and analyze the hydrological effects. Result (1) There were significant differences in the stratification changes of litter thickness and volume under different management models (P < 0.05); the thickness and volume of semi-decomposed layer in mixed forest management model were significantly higher than those in un-decomposed layer, but the opposite was true in pure forest management mode. (2) The change law of water holding capacity and water absorption rate of litter with soaking time in different management models was basically consistent. There was a logarithmic regression relationship between litter water holding capacity and soaking time, and a power function regression relationship between litter water absorption rate and soaking time. (3) The soil physical properties and infiltration performance of mixed forest were better than that of pure forest, and the difference was significant (P < 0.05); the relationship between soil infiltration rate and infiltration time was power function regression. (4) There was a certain correlation between the hydrological effects of litter layer and soil layer in different management models. Except for soil bulk density, soil hydrological indexes were positively correlated with hydrological indexes of semi-decomposed layer of litter, and negatively correlated with hydrological indexes of un-decomposed layer of litter; maximum soil water holding capacity, total porosity, initial infiltration rate, steady infiltration rate were positively correlated with thickness of litter, maximum water holding capacity and maximum water absorption rate of semi-decomposed layer. Conclusion Generally, the hydrological properties of litter layer and soil layer of mixed management model were better than that of pure forest management model. It is suggested that the influence of tree species composition and configuration mode should be fully considered in forest management, and the near-natural broadleaved transformation of pure coniferous forest should be accelerated to strengthen the hydrological function and healthy management of regional forest. -
Key words:
- management model /
- Larix kaempferi plantation /
- litter layer /
- soil layer /
- hydrological effect
-
表 1 不同混交模式日本落叶松人工林林分概况
Table 1. Stand profiles of Larix kaempferi plantation with different mixed models
经营模式
Management
model林龄/a
Stand age/year海拔
Altitude/m坡度
Slope degree/(°)坡向
Slope aspect密度/(株·hm−2)
Density/(plant·ha−1)平均胸径
Average
DBH/cm平均树高
Average
tree height/m郁闭度
Canopy
densityA 32 1 759 13 ~ 18 东南 Southeast 770 27.5 24.2 0.87 B 32 1 773 14 ~ 20 南 South 840 24.3 20.4 0.85 C 32 1 759 11 ~ 19 南 South 1 050 20.8 19.3 0.90 注:A. 日本落叶松−檫木混交林;B. 日本落叶松−鹅掌楸混交林;C. 日本落叶松纯林。下同。Notes: A, mixed forest of Larix kaempferi and Sassafras tzumu; B, mixed forest of Larix kaempferi and Liriodendron chinense; C, pure Larix kaempferi forest. The same below. 表 2 不同经营模式林分枯落物厚度与蓄积量
Table 2. Litter thickness and volume under different management modes
经营模式
Management
model枯落物厚度 Litter thickness 枯落物蓄积量 Litter volume 半分解层
Semi-decomposed
layer/cm未分解层
Undecomposed
layer/cm总厚度
Total thickness/
cm半分解层/(t·hm−2)
Semi-decomposed
layer/(t·ha−1)占比
Proportion/
%未分解层/(t·hm−2)
Undecomposed
layer/(t·ha−1)占比
Proportion/
%总蓄积量/(t·hm−2)
Total volume/
(t·ha−1)A 2.63 ± 0.09a 1.37 ± 0.10c 4.00 ± 0.21a 6.30 ± 0.34a 75.45 2.05 ± 0.13b 24.55 8.35 ± 0.41a B 2.21 ± 0.11b 1.75 ± 0.12b 3.96 ± 0.18a 4.47 ± −0.28b 62.00 2.74 ± 0.09ab 38.00 7.21 ± 0.32ab C 1.85 ± 0.10c 2.02 ± 0.11a 3.87 ± 0.20a 2.99 ± 0.17c 43.65 3.86 ± 0.19a 56.35 6.85 ± 0.14b 注: 数据为均值 ± 标准差, 同列不同字母表示差异显著(P < 0.05)。下同。Notes: data are mean ± standard deviation. Different letters in the same column indicate significant differences (P < 0.05). Same as below. 表 3 不同经营模式林分枯落物持水量(Q)与浸泡时间(t)的关系
Table 3. Relationship between litter water holding capacity (Q) and soaking time (t) under different management models
经营模式
Management model枯落物层
Litter layer回归方程
Regression equationR2 枯落物层
Litter layer回归方程
Regression equationR2 A 半分解层
Semi-decomposed layer$Q = 3.045\;9\ln t + 5.890\;9$ 0.939 4 未分解层
Undecomposed layer$Q = 2.041\;4\ln t + 2.345\;2$ 0.948 9 B $Q = 2.744\;8\ln t + 4.705\;8$ 0.937 8 $Q = 2.331\;5\ln t + 2.980\;1$ 0.956 4 C $Q = 2.494\;2\ln t + 3.331\;1$ 0.949 4 $Q = 2.538\;6\ln t + 3.899\;4$ 0.962 8 表 4 不同经营模式林分枯落物吸水速率(V)与浸泡时间(t)的关系
Table 4. Relationship between litter water absorption rate (V) and soaking time (t) under different management models
经营模式
Management model枯落物层
Litter layer回归方程
Regression equationR2 枯落物层
Litter layer回归方程
Regression equationR2 A 半分解层
Semi-decomposed layer$V = 5.281\;7{t^{ - 0.607\;7}}$ 0.947 2 未分解层
Undecomposed layer$V = 2.203\;1{t^{ - 0.500\;3}}$ 0.957 5 B $V = 4.169\;5{t^{ - 0.573\;7}}$ 0.937 1 $V = 2.767\;2{t^{ - 0.523\;1}}$ 0.957 3 C $V = 2.916\;5{t^{ - 0.504\;7}}$ 0.918 6 $V = 3.625\;4{t^{ - 0.571\;1}}$ 0.966 4 表 5 不同经营模式林分土壤物理性质
Table 5. Soil physical properties of Larix kaempferi plantation under different management models
经营模式
Management
model土壤密度
Soil bulk density/
(g·cm−3)最大持水量
Maximum moisture
capacity/%毛管持水量
Capillary moisture
capacity/%田间持水量
Field moisture
capacity/%非毛管孔隙度
Non-capillary
porosity/%毛管孔隙度
Capillary porosity/
%总孔隙度
Total porosity/
%A 0.76 ± 0.09b 79.85 ± 2.33a 73.45 ± 1.75a 68.68 ± 1.74a 3.19 ± 0.61a 77.90 ± 2.67a 81.09 ± 1.43a B 0.87 ± 0.11ab 74.372 ± 1.19b 68.22 ± 1.67b 64.08 ± 1.42b 2.11 ± 0.40b 66.49 ± 0.93b 68.60 ± 1.02b C 1.04 ± 0.13a 64.723 ± 1.88c 61.24 ± 1.51c 56.27 ± 1.66c 2.05 ± 0.34b 57.65 ± 1.34c 59.70 ± 1.56c 表 6 不同经营模式林分土壤渗透速率(y)与渗透模型
Table 6. Soil infiltration rate (y) and infiltration model of different management models
经营模式
Management
model初渗速率
Initial infiltration rate/
(mm·min−1)稳渗速率
Steady infiltration rate/
(mm·min−1)稳渗时间
Steady infiltration
time/min回归方程
Regression
equationR2 A 61.57 ± 6.95a 3.37 ± 1.75a 24 $ y=29.529\;0{t}^{-0.594\;6} $ 0.931 3 B 44.67 ± 4.68b 2.59 ± 1.19b 28 $ y=23.349\;1{t}^{-0.595\;6} $ 0.954 4 C 27.50 ± 4.74c 2.06 ± 1.12c 31 $ y=16.401\;8{t}^{-0.554\;8} $ 0.949 2 表 7 不同经营模式林分枯落物与土壤水文效应相关性
Table 7. Correlation between hydrological effect of forest litter and soil under different management modes
指标
Index枯落物厚度
Litter thickness枯落物最大持水量
Maximum water holding capacity
of litter枯落物最大吸水速率
Maximum water absorption rate
of litter半分解层
Semi-decomposed layer未分解层
Undecomposed layer半分解层
Semi-decomposed layer未分解层
Undecomposed layer半分解层
Semi-decomposed layer未分解层
Undecomposed layer土壤密度
Soil bulk density−0.235 0.923** −0.024 0.942** −0.305 0.958** 最大持水量
Maximum water capacity0.742* −0.819** 0.769* −0.342 0.916** −0.416 总孔隙度
Total porosity0.654 −0.901** 0.706* −0.448 0.870** −0.478 初渗速率
Initial infiltration rate0.751* −0.828** 0.785* −0.329 0.922** −0.370 稳渗速率
Steady infiltration rate0.735* −0.794* 0.834** −0.281 0.947** −0.358 注:*表示显著相关(P < 0.05), **表示极显著相关(P < 0.01)。 Notes: * indicates significant correlation (P < 0.05), ** indicates extremely significant correlation (P < 0.01). -
[1] 韩春, 陈宁, 孙杉, 等. 森林生态系统水文调节功能及机制研究进展[J]. 生态学杂志, 2019, 38(7):2191−2199.Han C, Chen N, Sun S, et al. A review on hydrological mediating functions and mechanisms in forest ecosystems[J]. Chinese Journal of Ecology, 2019, 38(7): 2191−2199. [2] 孙欧文, 蔡建国, 吴家森, 等. 浙江省典型森林类型枯落物及林下土壤水文特性[J]. 水土保持研究, 2019, 26(1):118−123.Sun O W, Cai J G, Wu J S, et al. Hydrological characteristics of litter and forest soil of typical forest types in Zhejiang Province[J]. Research of Soil and Water Conservation, 2019, 26(1): 118−123. [3] 刘斌, 鲁绍伟, 李少宁, 等. 北京西山6种天然纯林枯落物及土壤水文效应[J]. 水土保持学报, 2015, 29(4):73−78, 137.Liu B, Lu S W, Li S N, et al. Hydrological effects of litter and soil of six natural forests in Xishan Mountainous area of Beijing[J]. Journal of Soil and Water Conservation, 2015, 29(4): 73−78, 137. [4] 吴迪, 辛学兵, 赵明扬, 等. 北京九龙山不同林分枯落物及土壤水文效应[J]. 林业科学研究, 2014, 27(3):417−422.Wu D, Xin X B, Zhao M Y, et al. Hydrological effects of litters and soil under different forests in Jiulongshan of Beijing[J]. Forest Research, 2014, 27(3): 417−422. [5] 陈继东, 周长亮, 李惠丽. 接坝地区9种典型林分类型枯落物层和土壤层水文效应[J]. 水土保持研究, 2017, 24(6):216−221, 226.Chen J D, Zhou C L, Li H L. Hydrological effects of litter and soils in nine forest types of the Jieba region[J]. Research of Soil and Water Conservation, 2017, 24(6): 216−221, 226. [6] 胡晓聪, 黄乾亮, 金亮. 西双版纳热带山地雨林枯落物及其土壤水文功能[J]. 应用生态学报, 2017, 28(1):55−63.Hu X C, Huang Q L, Jin L. Hydrological functions of the litters and soil of tropical montane rain forest in Xishuangbanna, Yunnan, China.[J]. Chinese Journal of Applied Ecology, 2017, 28(1): 55−63. [7] 鲁绍伟, 陈波, 潘青华, 等. 北京山地不同海拔人工油松林枯落物及其土壤水文效应[J]. 水土保持研究, 2013, 20(6):54−58, 70.Lu S W, Chen B, Pan Q H, et al. Hydrological effects of Forest litters and soil in Pinus tabuliformis plantations at the different altitudes of mountains of Beijing[J]. Research of Soil and Water Conservation, 2013, 20(6): 54−58, 70. [8] 卢振启, 黄秋娴, 杨新兵. 河北雾灵山不同海拔油松人工林枯落物及土壤水文效应研究[J]. 水土保持学报, 2014, 28(1):112−116. doi: 10.3969/j.issn.1009-2242.2014.01.022Lu Z Q, Huang Q X, Yang X B. Research on hydrological effects of forest litters and soil of Pinus tabuliformis plantations in the different altitudes of Wuling Mountains in Hebei[J]. Journal of Soil and Water Conservation, 2014, 28(1): 112−116. doi: 10.3969/j.issn.1009-2242.2014.01.022 [9] 刘芝芹, 黄新会, 涂璟, 等. 云南高原不同林分类型枯落物储量及持水特性[J]. 生态环境学报, 2015, 24(6):919−924.Liu Z Q, Huang X H, Tu J, et al. Litter reserves and water holding characteristics of different species in Yunnan Plateau[J]. Ecology and Environment Sciences, 2015, 24(6): 919−924. [10] 邓继峰, 丁国栋, 吴斌, 等. 宁夏盐池地区3种林分枯落物层和土壤水文效应[J]. 北京林业大学学报, 2014, 36(2):108−114.Deng J F, Ding G D, Wu B, et al. Hydrological effects of forest litter and soil of three kinds of forest stands in Yanchi District, Ningxia of northwestern China[J]. Journal of Beijing Forestry University, 2014, 36(2): 108−114. [11] 刘凯, 贺康宁, 王先棒. 青海高寒区不同密度白桦林枯落物水文效应[J]. 北京林业大学学报, 2018, 40(1):89−97.Liu K, He K N, Wang X B. Hydrological effects of litter of Betula platyphylla forest with different densities in alpine region, Qinghai of northwestern China[J]. Journal of Beijing Forestry University, 2018, 40(1): 89−97. [12] 王玲, 赵广亮, 周红娟, 等. 八达岭林场不同密度油松人工林枯落物水文效应[J]. 生态环境学报, 2019, 28(9):1767−1775.Wang L, Zhao G L, Zhou H J, et al. Hydrological characteristics of litter in a Pinus tabulaeformis plantation with different densities in Badaling Forest Farm[J]. Ecology and Environment Sciences, 2019, 28(9): 1767−1775. [13] 牛勇, 刘洪禄, 张志强. 北京地区典型树种及非生物因子对枯落物水文效应的影响[J]. 农业工程学报, 2015, 31(8):183−189.Niu Y, Liu H L, Zhang Z Q. Effects of typical tree species and abiotic factors on hydrologic characters of forest litter in Beijing[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(8): 183−189. [14] Dabney S M. Cover crop impacts on watershed hydrology[J]. Journal of Soil and Water Conservation, 1998, 53(3): 208−213. [15] González P O, Campo J, Andreu V, et al. Hydrological properties of a Mediterranean soil burned with different fire intensities[J]. Catena, 2006, 68(2): 186−193. [16] 孟好军, 刘贤德, 张宏斌, 等. 祁连山人工林凋落物和土壤水分特性的研究[J]. 中南林业科技大学学报, 2013, 33(2):11−15.Meng H J, Liu X D, Zhang H B, et al. Study on litters and soil moisture characteristics of different plantations in Qilian Mountains[J]. Journal of Central South University of Forestry & Technology, 2013, 33(2): 11−15. [17] 张甜, 董希斌, 唐国华, 等. 大兴安岭不同类型低质林土壤和枯落物的水文性能[J]. 东北林业大学学报, 2017, 45(10):1−5. doi: 10.3969/j.issn.1000-5382.2017.10.001Zhang T, Dong X B, Tang G H, et al. Hydrological properties of soil and litter in different types of low quality forest in Daxing’an Mountains[J]. Journal of Northeast Forestry University, 2017, 45(10): 1−5. doi: 10.3969/j.issn.1000-5382.2017.10.001 [18] 沙玉坤, 程根伟, 李卫朋. 森林水文作用的流域尺度效应及其评价[J]. 山地学报, 2013, 31(5):513−518. doi: 10.3969/j.issn.1008-2786.2013.05.001Sha Y K, Cheng G W, Li W P. The impacts and evaluations of catchment scales on forest hydrology[J]. Journal of Mountain Science, 2013, 31(5): 513−518. doi: 10.3969/j.issn.1008-2786.2013.05.001 [19] 杜超群, 袁慧, 单华平, 等. 湖北省日本落叶松栽培区划[J]. 森林与环境学报, 2019, 39(3):273−279.Du C Q, Yuan H, Shan H P, et al. Classification of the cultivation regions of Larix kaempferi in Hubei Province on the basis of maximum entropy ecological niche models[J]. Journal of Forest and Environment, 2019, 39(3): 273−279. [20] 杨秀艳, 张守攻, 孙晓梅, 等. 北亚热带高山区日本落叶松自由授粉家系遗传测定与二代优树选择[J]. 林业科学, 2010, 46(8):45−50. doi: 10.11707/j.1001-7488.20100807Yang X Y, Zhang S G, Sun X M, et al. Genetic test of open-pollinated Larix kaempferi families and selection for the second generation elite trees in northern sub-tropical alpine area[J]. Scientia Silvae Sinicae, 2010, 46(8): 45−50. doi: 10.11707/j.1001-7488.20100807 [21] 马友平, 张志华, 艾训儒, 等. 日本落叶松生长的经验方程与灰色GM(1,1)模型研究[J]. 数学的实践与认识, 2008, 38(23):86−90.Ma Y P, Zhang Z H, Ai X R, et al. Study on empirical formulas and grey GM(1,1) Model for Japanese larch[J]. Mathematics in Practice and Theory, 2008, 38(23): 86−90. [22] 孙拥康, 汤景明, 臧颢. 鄂西山区日本落叶松林相容性单株生物量模型研究[J]. 西部林业科学, 2019, 48(5):125−130.Sun Y K, Tang J M, Zang H. Compatible individual-tree biomass model of Larix kaempferi plantation in western Hubei mountainous area[J]. Journal of West China Forestry Science, 2019, 48(5): 125−130. [23] 许业洲, 孙晓梅, 宋丛文, 等. 鄂西亚高山日本落叶松人工林雪灾调查[J]. 林业科学, 2008, 44(11):11−17. doi: 10.3321/j.issn:1001-7488.2008.11.003Xu Y Z, Sun X M, Song C W, et al. Damage of sub-alpine Larix kaempferi plantation induced by snow storm in westen Hubei[J]. Scientia Silvae Sinicae, 2008, 44(11): 11−17. doi: 10.3321/j.issn:1001-7488.2008.11.003 [24] 汤景明, 孙拥康, 冯骏, 等. 不同强度间伐对日本落叶松人工林生长及林下植物多样性的影响[J]. 中南林业科技大学学报, 2018, 38(6):90−93, 122.Tang J M, Sun Y K, Feng J, et al. Enfluence of thinning on the growth and the diversity of undergrowth of Larix kaempferi plantation forest[J]. Journal of Central South University of Forestry & Technology, 2018, 38(6): 90−93, 122. [25] 邢晓光, 沈会涛, 马文才, 等. 冀西北山地华北落叶松和白桦林下枯落物水文特征[J]. 水土保持通报, 2016, 36(5):126−130.Xing X G, Shen H T, Ma W C, et al. Hydrological effects of Larix principis-rupprechtii and Betula platyphylla forest litters in northwest mountain of Hebei Province[J]. Bulletin of Soil and Water Conservation, 2016, 36(5): 126−130. [26] 刘宇, 郭建斌, 王彦辉, 等. 宁夏六盘山不同密度华北落叶松人工林枯落物水文效应[J]. 北京林业大学学报, 2016, 38(8):36−44.Liu Y, Guo J B, Wang Y H, et al. Hydrological effects of forest litter of Larix principis-rupprechtii plantations with varying densities in Liupan Mountains of Ningxia, China[J]. Journal of Beijing Forestry University, 2016, 38(8): 36−44. [27] 饶良懿, 朱金兆, 毕华兴. 重庆四面山森林枯落物和土壤水文效应[J]. 北京林业大学学报, 2005,27(1):33−37. doi: 10.3321/j.issn:1000-1522.2005.01.007Rao L Y, Zhu J Z, Bi H X. Hydrological effects of forest litters and soil in the Simian Mountain of Chongqing City[J]. Journal of Beijing Forestry University, 2005,27(1): 33−37. doi: 10.3321/j.issn:1000-1522.2005.01.007 [28] 宣立辉, 康凡, 谷建才, 等. 冀北地区典型林分枯落物层与土壤层的水文效应[J]. 水土保持研究, 2018, 25(4):86−91.Xuan L H, Kang F, Gu J C, et al. Hydrological effects of litter and soil layers in typical stands of north Hebei[J]. Research of Soil and Water Conservation, 2018, 25(4): 86−91. [29] 金雅琴, 李冬林, 孙丽娟, 等. 南京近郊人工林地表枯落物的累积量及持水性[J]. 中国水土保持科学, 2018, 16(5):95−104.Jin Y Q, Li D L, Sun L J, et al. Water-holding characteristics and accumulation of litter in different man-made forests in the suburb of Nanjing[J]. Science of Soil and Water Conservation, 2018, 16(5): 95−104. [30] 周文昌, 郑兰英, 蒋龙福, 等. 南水北调中线工程核心水源区森林凋落物的持水特性[J]. 甘肃农业大学学报, 2018, 53(6):180−186.Zhou W C, Zheng L Y, Jiang L F, et al. Water holding characteristics of litter in central water source area of the middle route of the South-North Water Diversion Project[J]. Journal of Gansu Agricultural University, 2018, 53(6): 180−186. [31] 贾剑波, 刘文娜, 余新晓, 等. 半城子流域3种林地枯落物的持水能力[J]. 中国水土保持科学, 2015, 13(6):26−32. doi: 10.3969/j.issn.1672-3007.2015.06.004Jia J B, Liu W N, Yu X X, et al. Water-holding characteristics of litters in three types of forest in the upper reaches of Banchengzi Basin[J]. Science of Soil and Water Conservation, 2015, 13(6): 26−32. doi: 10.3969/j.issn.1672-3007.2015.06.004 [32] 赵勇, 吴明作, 樊巍, 等. 太行山针、阔叶森林凋落物分解及养分归还比较[J]. 自然资源学报, 2009, 24(9):1616−1624. doi: 10.3321/j.issn:1000-3037.2009.09.011Zhao Y, Wu M Z, Fan W, et al. Comparison of nutrient return and litter decomposition between coniferous and broad-leaved forests in hilly region of Taihang Mountains[J]. Journal of Natural Resources, 2009, 24(9): 1616−1624. doi: 10.3321/j.issn:1000-3037.2009.09.011 [33] 韩春华, 赵雨森, 辛颖, 等. 阿什河上游小流域主要林分枯落物层的持水特性[J]. 林业科学研究, 2012, 25(2):212−217. doi: 10.3969/j.issn.1001-1498.2012.02.017Han C H, Zhao Y S, Xin Y, et al. Water-holding characteristics of litter layers of main forest types in the upstream small watershed of Ashi River[J]. Forest Research, 2012, 25(2): 212−217. doi: 10.3969/j.issn.1001-1498.2012.02.017 [34] 张引, 黄永梅, 周长亮, 等. 冀北山地5个海拔梯度油松林枯落物与土壤水源涵养功能研究[J]. 水土保持研究, 2019, 26(2):126−131.Zhang Y, Huang Y M, Zhou C L, et al. Study on litter and soil water conservation function of Pinus tabulaeformis forests at 5 altitudinal gradients in mountains of northern Hebei[J]. Research of Soil and Water Conservation, 2019, 26(2): 126−131. [35] 郑淼. 华北土石山区不同林分类型枯落物及土壤水文生态效应[J]. 中国水土保持科学, 2020, 18(2):84−91.Zheng M. Litter and soil hydro-ecological effects of different stand types in the rocky mountain area of North China[J]. Science of Soil and Water Conservation, 2020, 18(2): 84−91. [36] 兰亚男, 孙旭, 秦富仓, 等. 阴山北麓不同林分类型枯落物层持水性能研究[J]. 水土保持研究, 2019, 26(6):151−157.Lan Y N, Sun X, Qin F C, et al. Study on the water holding capacity of the litter layer under different forest types in the north slope of Yinshan Mountain[J]. Research of Soil and Water Conservation, 2019, 26(6): 151−157. [37] 王忠禹, 刘国彬, 王兵, 等. 黄土丘陵区典型植物枯落物凋落动态及其持水性[J]. 生态学报, 2019, 39(7):2416−2425.Wang Z Y, Liu G B, Wang B, et al. Litter production and its water holding capability in typical plants communities in the hilly region of the Loess Plateau[J]. Acta Ecologica Sinica, 2019, 39(7): 2416−2425. [38] 涂志华, 范志平, 孙学凯, 等. 大伙房水库流域不同植被类型枯落物层和土壤层水文效应[J]. 水土保持学报, 2019, 33(1):127−133.Tu Z H, Fan Z P, Sun X K, et al. Hydrological effects of litters layer and soil layer in different vegetation types in Dahuofang Watershed[J]. Journal of Soil and Water Conservation, 2019, 33(1): 127−133. [39] 陈超凡, 覃林, 段艺璇, 等. 不同经营模式对蒙古栎次生林叶功能性状和土壤理化性质的影响[J]. 生态学报, 2018, 38(23):8371−8382.Chen C F, Qin L, Duan Y X, et al. Effects of different management models on leaf functional traits and soil physical and chemical properties of natural secondary forest of Quercus mongolica[J]. Acta Ecologica Sinica, 2018, 38(23): 8371−8382. [40] 廖军, 薛建辉, 施建敏. 竹阔混交林的水文效应[J]. 南京林业大学学报(自然科学版), 2002, 45(4):6−10.Liao J, Xue J H, Shi J M. Hydrological effects of mixed forest of Moso bamboo and broad-leaved trees[J]. Journal of Nanjing Forestry University (Natural Science Edition), 2002, 45(4): 6−10. [41] 刘小林, 李惠萍, 郑子龙, 等. 小陇山林区主要林地类型土壤入渗特征[J]. 甘肃农业大学学报, 2016, 51(6):89−94.Liu X L, Li H P, Zheng Z L, et al. Soil infiltration characteristics of main forest lands in Xiaolongshan Region[J]. Journal of Gansu Agricultural University, 2016, 51(6): 89−94. [42] 顾洁. 紫金山次生栎林、马尾松林枯落物与表层土壤的交互作用研究[D]. 南京: 南京林业大学, 2016.Gu J. Study on the interaction of litter and surface soil in secondary oak forest, pine forest of the Zijin Mountain[D]. Nanjing: Nanjing Forestry University, 2016. [43] 贲越, 周一杨, 李彧, 等. 枯落物分解与土壤蓄水能力关系的研究[J]. 安徽农业科学, 2007(5):1416, 1418.Ben Y, Zhou Y Y, Li Y, et al. Study on the relationship between litter decomposition and soil moisture-holding capacity[J]. Journal of Anhui Agricultural Sciences, 2007(5): 1416, 1418. [44] 王佑民. 中国林地枯落物持水保土作用研究概况[J]. 水土保持学报, 2000, 14(4):108−113. doi: 10.3321/j.issn:1009-2242.2000.04.025Wang Y M. Summary of researches on water and soil conservative function of litter in forestland in China[J]. Journal of Soil and Water Conservation, 2000, 14(4): 108−113. doi: 10.3321/j.issn:1009-2242.2000.04.025 [45] 孙龙. 枯落物对土壤分离过程的影响及其季节变化特征[D]. 北京: 中国科学院大学, 2016.Sun L. Soil detachment process and its temporal variation under the influence of plant litter[D]. Beijing: University of Chinese Academy of Sciences, 2016. [46] 何友均, 梁星云, 覃林, 等. 南亚热带人工针叶纯林近自然改造早期对群落特征和土壤性质的影响[J]. 生态学报, 2013, 33(8):2484−2495. doi: 10.5846/stxb201208261204He Y J, Liang X Y, Qin L, et al. Community characteristics and soil properties of coniferous plantation forest monocultures in the early stages after close-to-nature transformation management in southern subtropical China[J]. Acta Ecologica Sinica, 2013, 33(8): 2484−2495. doi: 10.5846/stxb201208261204 [47] 刘士玲, 郑金萍, 范春楠, 等. 我国森林生态系统枯落物现存量研究进展[J]. 世界林业研究, 2017, 30(1):66−71.Liu S L, Zheng J P, Fan C N, et al. Research progress in litter accumulation of forest ecosystem in China[J]. World Forestry Research, 2017, 30(1): 66−71. [48] 余新晓. 森林生态水文研究进展与发展趋势[J]. 应用基础与工程科学学报, 2013, 21(3):391−402. doi: 10.3969/j.issn.1005-0930.2013.03.001Yu X X. A review on forest eco-hydrology research progress and development tendency[J]. Journal of Basic Science and Engineering, 2013, 21(3): 391−402. doi: 10.3969/j.issn.1005-0930.2013.03.001 -