Growth adaptability analysis of BpCCR1 transgenic Betula platyphylla and selection of elite lines
-
摘要:目的 客观评估7年生转BpCCR1白桦在3个试验地点的生长适应性与稳定性,筛选优良转基因株系,为环境释放及生产性试验提供指导。方法 以21个转BpCCR1白桦株系及1个野生型白桦株系(WT)为研究对象,测定其在帽儿山、石道河林场、生态实验林场3个试验地点的树高、胸径及材积生长,用AMMI模型分析参试株系与环境的互作效应、遗传稳定性和生长适应性。结果 方差分析结果显示:树高生长在株系间、地点间以及株系与地点的交互作用上的差异达到极显著水平(P < 0.01)。以各试验点参试株系单株材积均值加上标准差为优良转基因株系选择标准,分别选择出各造林地点的最优株系。帽儿山试验点的入选优良株系是FC18、FC29和FC40,材积分别高于群体均值的72.99%、51.28%和64.39%;石道河林场的入选优良株系是FC7和FC33,材积分别高于群体均值的73.98%和81.51%;生态实验林场的入选优良株系是FC28和FC29,分别高于群体均值的69.89%和73.57%。采用AMMI模型对参试株系的树高性状进行稳定性评价,在帽儿山实验林场和生态实验林场生长稳定性较好的株系是:WT、FC11、FC16、FC19、FC28、FC29、FC30、FC31、C4;在石道河林场生长稳定性好的株系是:FC2、FC7、FC13、FC14、FC18、FC27、FC33、FC40、FC41、C6、C10、C17、C19。根据第一主成分分量IPC1及相对稳定性参数Dg值,对22个参试株系进行稳定性评价,结果显示:FC14、FC29、C19、FC27、FC41、WT、FC13、C4、C10、C6、FC16、FC7、FC28、FC40、C17、FC31、FC18属于高产稳产型株系;FC2、FC11、FC19、FC33属于高产非稳产型株系;FC30属于低产稳产型株系。结论 转BpCCR1正义链及转反义链均能促进白桦树高生长,根据生长性状,选出17个株系作为在帽儿山林场、石道河林场及生态实验林场生长适应性好的高产株系。Abstract:Objective This study aims to conduct a joint analysis of the growth adaptability and stability of the 7-year-old BpCCR1 transgenic birch in 3 test locations, screen high-quality transgenic lines, provide guidance for environmental release and production experiments.Method The tree height, diameter at breast height (DBH) and volume at Maoershan Experimental Forest Farm, Shidaohe Forest Farm and Experimental Forest Farm of northeastern China were measured with 21 BpCCR1 transgenic white birch and 1 wild-type white birch (WT) as the research objects. The AMMI model was used to carry out the interaction effects between the tested lines and the environment, genetic stability and growth adaptability.Result The analysis of variance showed that the differences in height between lines, locations, and interactions between lines and locations were extremely significant (P < 0.01). The best lines for each test location were selected by taking the average volume plus the standard deviation of the tested plants at each test site as the selection criteria for elite transgenic lines. The elite lines selected from the Maoershan Experimental Forest Farm were FC18, FC29, FC40, whose volumes were 72.99%, 51.28%, 64.39% higher than the population average, respectively. The elite lines selected from the Shidaohe Forest Farm were FC7 and FC33, whose volumes were 73.98%, 81.51% higher than the population average, respectively. The elite lines selected from the Ecological Experiment Forest Farm were FC28 and FC29, whose volumes were 69.89% and 73.57% higher than the population average, respectively. The AMMI model was used to evaluate the stability of the height of the tested lines. The lines with better growth stability in the Maoershan Experimental Forest Farm and Ecological Experimental Forest Farm were WT, FC11, FC16, FC19, FC28, FC29 , FC30, FC31, C4. Lines with better growth stability in Shidaohe Forest Farm were FC2, FC7, FC13, FC14, FC18, FC27, FC33, FC40, FC41, C6, C10, C17, C19. 22 test lines were evaluated for stability according to IPC1 and the Dg value. The results showed that FC14, FC29, C19, FC27, FC41, WT, FC13, C4, C10, C6, FC16, FC7, FC28, FC40, C17, FC31, FC18 were high-yielding and stable-yielding lines; FC2, FC11, FC19, and FC33 were high-yielding and unstable-yielding lines; FC30 was a low- yielding and stable-yielding line.Conclusion Both the sense and antisense BpCCR1 transgenes promot tree height of birch. 17 lines were selected based on their growth traits as high-yielding lines with good growth adaptation in the Maoershan Experimental Forest Farm, Shidaohe Forest Farm and Experimental Forest Farm.
-
-
表 1 造林试验地点地理气候因子
Table 1 Geographical climate factors of afforestation test locations
序号
No.试验地点
Test location纬度
Latitude经度
Longitude海拔
Elevation/m年平均温度
Annual average temperature/℃年降水量
Annual precipitation/mm土壤类型
Soil type无霜期
Frost-free period/d1 帽儿山实验林场
Maoershan Experimental Forest Farm45°23′N 127°30′E 477.8 2.4 700.0 暗棕壤
Dark brown soil120 2 石道河林场
Shidaohe Forest Farm42°38′N 126°39′E 514.8 5.5 737.4 暗棕壤
Dark brown soil135 3 生态实验林场
Ecological Experimental Forest Farm41°16′N 119°55′E 279.0 6.5 500.0 暗棕壤
Dark brown soil128 表 2 3个试验地点的各试验株系数量
Table 2 Number of tested lines at each test site
株系
Line帽儿山实验林场
Maoershan
Experimental
Forest Farm石道河林场
Shidaohe
Forest Farm生态实验林场
Ecological
Experimental
Forest FarmWT 21 16 13 C4 5 7 3 C6 3 3 3 C10 9 8 9 C17 5 3 3 C19 4 6 3 FC2 8 6 3 FC7 3 5 3 FC11 3 3 3 FC13 8 7 5 FC14 7 4 3 FC16 6 3 3 FC18 5 3 3 FC19 3 3 3 FC27 3 3 3 FC28 5 3 3 FC29 3 3 3 FC30 3 3 3 FC31 4 3 3 FC33 5 6 4 FC40 6 4 3 FC41 5 5 4 总数 Total 124 107 86 注:WT为野生型,C4、C6、C10、C17、C19为转正义链株系,FC2、FC7、FC11、FC13、FC14、FC16、FC18、FC19、FC27、FC28、FC29、FC30、FC31、FC33、FC40、FC41为转反义链株系。Notes: WT, wild-type; C4, C6, C10, C17; C19, trans sense strand lines; FC2, FC7, FC11, FC13, FC14, FC16, FC18, FC19, FC27, FC28, FC29, FC30, FC31, FC33, FC40, FC41, trans antisense strand lines. 表 3 各试验点参试株系生长性状方差分析
Table 3 ANOVA of growth traits of test lines at each test location
性状
Trait变异来源
Source of variationdf SS MS F P 树高
Tree height总计
Total316 241.929 株系
Line21 23.758 1.131 1.820* 0.017 地点
Location2 9.839 4.920 7.913** < 0.001 株系 × 地点
Line × location42 43.960 1.047 1.683** 0.008 误差
Error251 156.057 0.622 胸径
DBH总计
Total316 380.457 株系
Line21 49.677 2.366 2.227** 0.002 地点
Location2 7.350 3.675 3.459* 0.033 株系 × 地点
Line × location42 50.215 1.196 1.125 0.287 误差
Error251 266.641 1.062 材积
Volume of wood总计
Total316 0.001 株系
Line21 < 0.001 < 0.001 2.128** 0.003 地点
Location2 < 0.001 < 0.001 2.705 0.069 株系 × 地点
Line × location42 < 0.001 < 0.001 1.186 0.214 误差
Error251 0.001 < 0.001 注:**表示在0.01水平上差异显著,*表示在0.05水平上差异显著。下同。Notes: ** indicates a significant difference at the 0.01 level, * indicates a significant difference at the 0.05 level. The same below. 表 4 不同试验地点转基因白桦生长性状的主要遗传参数
Table 4 Main genetic parameters of growth traits of transgenic birch in different test locations
性状
Trait试验地点
Test site均值
Mean标准差
SD变幅
Change range变异系数
Coefficient of variation/%F P 树高
Tree height/m帽儿山林场
Maoershan Experimental Forest Farm4.47 b 0.59 2.10 ~ 6.00 19.72 4.207** < 0.001 石道河林场
Shidaohe Forest Farm4.86 a 0.90 1.50 ~ 6.50 21.90 1.979** 0.006 生态实验林场
Ecological Experimental Forest Farm4.38 b 0.77 2.80 ~ 5.90 17.72 1.988* 0.014 胸径
DBH/cm帽儿山林场
Maoershan Experimental Forest Farm3.87 0.86 1.10 ~ 5.90 30.42 4.012** < 0.001 石道河林场
Shidaohe Forest Farm3.85 1.03 0.80 ~ 6.30 32.04 2.457** 0.001 生态实验林场
Ecological Experimental Forest Farm4.06 1.05 1.70 ~ 6.00 26.62 1.267 0.222 材积
Volume of wood/m3帽儿山林场
Maoershan Experimental Forest Farm0.003 1 0.001 5 0.000 8 ~ 0.008 4 62.48 3.718** < 0.001 石道河林场
Shidaohe Forest Farm0.003 5 0.001 9 0.000 6 ~ 0.010 0 63.81 2.975** < 0.001 生态实验林场
Ecological Experimental Forest Farm0.003 5 0.002 0 0.000 4 ~ 0.008 2 58.81 1.701* 0.046 注:不同处理变量差异采用Duncans multiple-range差异性检验进行分析,不同的小写字母表示处理间差异达到显著水平(P < 0.05)。下同。Notes: Duncan multiple range difference test is used to analyze the differences of different treatment variables. Different small letters indicate that the differences between treatments have reached a significant level (P < 0.05). The same below. 表 5 帽儿山实验林场转基因白桦生长性状及保存率比较
Table 5 Comparison of growth characteristics and preservation rate of transgenic birch in Maoershan Experimental Forest Farm
株系
Line树高
Tree height/mDBH/cm 材积
Volume of wood/m3保存率
Preserving rate/%WT 3.91 ± 0.71de 3.11 ± 0.82 def 0.001 9 ± 0.001 2de 87.50 C4 4.90 ± 0.10abc 4.40 ± 0.60abcde 0.004 0 ± 0.000 9abcde 71.43 C6 3.73 ± 0.49e 3.13 ± 1.11 def 0.001 8 ± 0.001 4de 75.00 C10 3.80 ± 0.46de 3.20 ± 0.44 cdef 0.001 8 ± 0.000 6e 81.82 C17 4.43 ± 0.32abcde 3.13 ± 0.50 def 0.001 9 ± 0.000 4de 83.33 C19 4.13 ± 0.32bcde 3.43 ± 0.32 bcdef 0.002 2 ± 0.000 6cde 80.00 FC2 4.92 ± 0.24abc 4.43 ± 0.55abcd 0.004 1 ± 0.001 0abcde 80.00 FC7 4.30 ± 0.79abcde 3.83 ± 0.59 abcdef 0.002 8 ± 0.001 4bcde 75.00 FC11 4.28 ± 0.67abcde 4.07 ± 0.42 abcdef 0.003 1 ± 0.000 9abcde 100.00 FC13 4.43 ± 0.25abcde 4.10 ± 0.17 abcdef 0.003 2 ± 0.000 4abcde 100.00 FC14 4.47 ± 0.06abcde 3.90 ± 0.26 abcdef 0.002 9 ± 0.000 4bcde 58.33 FC16 4.42 ± 0.58abcde 3.83 ± 0.85 abcdef 0.003 0 ± 0.001 6bcde 75.00 FC18 5.13 ± 0.40a 4.97 ± 0.76a 0.005 4 ± 0.001 9a 100.00 FC19 4.45 ± 0.35abcde 3.20 ± 1.00 cdef 0.002 3 ± 0.001 3cde 40.00 FC27 4.33 ± 0.31abcde 3.00 ± 0.50 f 0.001 8 ± 0.000 7de 100.00 FC28 4.93 ± 0.12abc 4.53 ± 0.29abc 0.004 3 ± 0.000 6abc 100.00 FC29 4.70 ± 0.40abcde 4.87 ± 0.60a 0.004 7 ± 0.001 2ab 100.00 FC30 3.95 ± 1.08cde 3.03 ± 1.36 ef 0.002 0 ± 0.001 5cde 100.00 FC31 5.03 ± 0.45ab 4.40 ± 0.36abcde 0.004 1 ± 0.000 9abcd 100.00 FC33 4.10 ± 0.30bcde 3.43 ± 0.67 bcdef 0.002 1 ± 0.000 6cde 83.33 FC40 5.23 ± 0.61a 4.70 ± 1.06ab 0.005 1 ± 0.002 4ab 100.00 FC41 4.73 ± 0.65abcd 4.37 ± 0.57 abcdef 0.003 9 ± 0.001 5abcde 100.00 平均 Mean 4.47 ± 0.59 3.87 ± 0.86 0.003 1 ± 0.001 5 83.67 表 6 石道河林场转基因白桦生长性状及保存率比较
Table 6 Comparison of growth characteristics and preservation rate of transgenic birch in Shidaohe Forest Farm
株系
Line树高
Tree height/mDBH/cm 材积
Volume of wood/m3保存率
Preserving rate/%WT 4.86 ± 1.14abcd 4.01 ± 1.47abcde 0.004 0 ± 0.003 1abcd 76.19 C4 4.50 ± 0.36abcde 4.03 ± 0.25abcde 0.003 1 ± 0.000 1bcde 100.00 C6 5.00 ± 0.20abcd 4.20 ± 0.00abcd 0.003 7 ± 0.000 2abcde 66.67 C10 5.05 ± 0.40abcd 3.67 ± 0.59 abcdef 0.003 0 ± 0.001 0bcde 80.00 C17 5.70 ± 0.00a 4.25 ± 0.05abcd 0.004 4 ± 0.000 1abcd 50.00 C19 4.87 ± 0.42abcd 3.43 ± 0.57 abcdef 0.002 6 ± 0.000 9bcde 100.00 FC2 5.17 ± 0.25abcd 4.00 ± 0.98abcde 0.003 7 ± 0.001 7abcde 75.00 FC7 5.57 ± 0.70a 5.07 ± 1.31a 0.006 4 ± 0.003 6a 83.33 FC11 3.85 ± 0.15de 2.55 ± 0.05 ef 0.001 1 ± 0.000 0e 100.00 FC13 5.53 ± 0.35ab 4.57 ± 0.23abc 0.004 9 ± 0.000 6abc 100.00 FC14 5.03 ± 0.12abcd 3.80 ± 0.10 abcdef 0.003 1 ± 0.000 2bcde 40.00 FC16 3.90 ± 1.18cde 3.43 ± 0.84 abcdef 0.001 9 ± 0.000 3de 60.00 FC18 5.17 ± 0.25abcd 4.97 ± 0.15a 0.005 3 ± 0.000 1ab 75.00 FC19 4.03 ± 1.82bcde 2.70 ± 1.85 def 0.002 1 ± 0.002 3cde 60.00 FC27 4.70 ± 0.10abcde 2.95 ± 0.25 cdef 0.001 8 ± 0.000 3de 100.00 FC28 4.65 ± 0.65abcde 3.50 ± 0.10 abcdef 0.002 5 ± 0.000 5bcde 100.00 FC29 5.20 ± 0.80abcd 4.00 ± 0.80abcde 0.003 9 ± 0.001 9abcde 66.67 FC30 3.27 ± 1.98e 2.30 ± 1.91 f 0.001 6 ± 0.002 0de 100.00 FC31 4.40 ± 0.00abcde 3.30 ± 0.10 bcdef 0.002 1 ± 0.000 1cde 100.00 FC33 5.80 ± 0.26a 5.03 ± 0.21a 0.006 1 ± 0.000 5a 100.00 FC40 5.40 ± 0.53abc 4.20 ± 0.70abcd 0.004 2 ± 0.001 7abcd 100.00 FC41 5.30 ± 0.26abcd 4.83 ± 0.42ab 0.005 2 ± 0.001 0ab 100.00 平均 Mean 4.86 ± 0.90 3.85 ± 1.03 0.003 5 ± 0.001 9 80.00 表 7 生态实验林场转基因白桦生长性状及保存率比较
Table 7 Comparison of growth characteristics and preservation rate of transgenic birch in Ecological Experimental Forest Farm
株系
Line树高
Tree height/mDBH/cm 材积
Volume of wood/m3保存率
Preserving rate/%WT 4.45 ± 0.44abcde 4.19 ± 0.69 0.003 4 ± 0.001 3ab 61.90 C4 4.60 ± 0.70abcde 4.15 ± 1.35 0.004 0 ± 0.002 6ab 28.57 C6 3.55 ± 0.55e 3.60 ± 1.10 0.002 3 ± 0.001 5ab 50.00 C10 4.02 ± 0.63bcde 3.73 ± 0.90 0.002 7 ± 0.001 5ab 69.23 C17 3.95 ± 0.95cde 3.95 ± 0.95 0.003 0 ± 0.001 8ab 33.33 C19 4.40 ± 0.10abcde 4.95 ± 0.05 0.004 5 ± 0.000 2ab 25.00 FC2 3.50 ± 0.10e 3.20 ± 0.40 0.001 6 ± 0.000 4ab 25.00 FC7 5.00 ± 0.60abcd 4.00 ± 1.00 0.003 8 ± 0.002 0ab 50.00 FC11 4.93 ± 0.86abcd 4.57 ± 1.97 0.005 1 ± 0.003 6ab 75.00 FC13 4.35 ± 0.73abcde 3.77 ± 0.81 0.002 8 ± 0.001 6ab 62.50 FC14 4.27 ± 1.08abcde 3.80 ± 1.87 0.003 4 ± 0.003 8ab 21.43 FC16 4.35 ± 0.75abcde 4.10 ± 1.30 0.003 7 ± 0.002 4ab 33.33 FC18 3.80 ± 0.90de 3.55 ± 1.85 0.003 0 ± 0.002 6ab 40.00 FC19 5.17 ± 0.64abc 4.20 ± 0.70 0.004 0 ± 0.001 7 b 33.33 FC27 3.85 ± 0.05cde 4.00 ± 0.40 0.002 6 ± 0.000 5ab 66.67 FC28 5.30 ± 0.60ab 5.10 ± 0.70 0.005 9 ± 0.002 1a 50.00 FC29 5.00 ± 0.10abcd 5.45 ± 0.05 0.006 1 ± 0.000 0a 66.67 FC30 4.10 ± 0.30abcde 3.15 ± 0.65 0.001 9 ± 0.000 8 b 66.67 FC31 4.00 ± 0.60abcde 3.50 ± 1.20 0.002 5 ± 0.001 7ab 50.00 FC33 5.37 ± 0.35a 4.52 ± 0.37 0.004 6 ± 0.000 8ab 57.14 FC40 4.10 ± 1.35abcde 3.60 ± 1.45 0.002 9 ± 0.002 7ab 50.00 FC41 4.28 ± 0.58abcde 4.25 ± 0.68 0.003 4 ± 0.001 4ab 80.00 平均 Mean 4.38 ± 0.77 4.06 ± 1.05 0.003 5 ± 0.002 0 48.03 表 8 各试验点参试株系树高AMMI模型分析
Table 8 AMMI model of tree height of test line at each test location
变异来源
Source of variationdf SS 方差分量 Variance component/% MS F P 总计
Total197 122.842 9 0.623 6 处理
Treatment65 66.455 7 1.022 4 2.393** < 0.001 株系
Line21 19.803 9 16.12 0.943 0 2.208** 0.004 地点
Location2 8.676 6 7.06 4.338 3 10.156** < 0.001 株系 × 地点
Line × location42 37.975 1 30.91 0.904 2 2.117** 0.001 PCA1 22 24.168 7 63.64 1.098 6 2.572** 0.001 PCA2 20 13.806 5 36.36 0.690 3 1.616 0.058 残差
Residual error0 0.000 0 0.00 0.000 0 误差
Error132 56.387 2 0.427 2 表 9 各试验点参试株系交互作用主成分轴分量值及稳定性参数
Table 9 Main component axial component values and stability parameters of interactions of test lines at each test location
项目
Item变量
Variable树高平均值
Average tree height/m离差
DeviationIPC1 IPC2 Dg 株系
LineFC14 4.59 0.019 0.120 0.008 0.120 FC29 4.97 0.397 −0.109 0.148 0.184 C19 4.47 −0.103 0.006 0.194 0.195 FC27 4.29 −0.275 0.146 −0.130 0.196 FC41 4.77 0.203 0.220 −0.071 0.231 WT 4.41 −0.164 −0.009 0.335 0.335 FC13 4.77 0.203 0.306 0.173 0.352 C4 4.67 0.097 −0.262 −0.258 0.367 C10 4.29 −0.278 0.250 0.307 0.396 C6 4.09 −0.475 0.419 0.182 0.457 FC16 4.22 −0.348 −0.406 −0.213 0.458 FC7 4.96 0.386 0.065 0.460 0.464 FC28 4.96 0.391 −0.478 −0.020 0.478 FC40 4.91 0.341 0.319 −0.382 0.498 C17 4.69 0.125 0.539 0.088 0.546 FC31 4.48 −0.092 −0.070 −0.544 0.549 FC18 4.70 0.130 0.341 −0.477 0.587 FC30 3.77 −0.798 −0.566 −0.185 0.595 FC2 4.53 −0.042 0.469 −0.451 0.651 FC11 4.35 −0.216 −0.657 0.036 0.658 FC19 4.55 −0.020 −0.676 0.057 0.679 FC33 5.09 0.519 0.028 0.742 0.743 地点
Location帽儿山实验林场
Maoershan Experimental Forest Farm4.47 −0.101 −0.102 1.193 1.197 石道河林场
Shidaohe Forest Farm4.86 −0.191 −1.137 −0.673 1.321 生态实验林场
Ecological Experimental Forest Farm4.38 0.292 1.239 −0.519 1.344 注:Dg为相对稳定性参数。Note: Dg is a relative stability parameter. -
[1] Lacombe E, Hawkins S, Doorsselaere J V, et al. Cinnamoyl CoA reductase, the first committed enzyme of the lignin branch biosynthetic pathway: cloning, expression and phylogenetic relationships[J]. Plant Journal, 2010, 11(3): 429−441.
[2] 胡可, 严雪锋, 栗丹, 等. 沉默CCR和CAD基因培育低木质素含量转基因多年生黑麦草[J]. 草业学报, 2013, 22(5): 72−83. doi: 10.11686/cyxb20130509 Hu K, Yan X F, Li D, et al. Genetic improvement of perennial ryegrass with low lignin content by silencing genes of CCR and CAD[J]. Acta Prataculturae Sinica, 2013, 22(5): 72−83. doi: 10.11686/cyxb20130509
[3] Chen H C, Song J N, Wang J, et al. Systems biology of lignin biosynthesis in Populus trichocarpa: heteromeric 4-coumaric acid: coenzyme a ligase protein complex formation, regulation, and numerical modeling[J]. The Plant Cell, 2014, 26(3): 876−893. doi: 10.1105/tpc.113.119685
[4] 高原, 陈信波, 张志扬. 木质素生物合成途径及其基因调控的研究进展[J]. 生物技术通报, 2007(2): 47−51. doi: 10.3969/j.issn.1002-5464.2007.02.011 Gao Y, Chen X B, Zhang Z Y. Advances in research on lignin biosynthesis and its molecular regulation[J]. Biotechnology Bulletin, 2007(2): 47−51. doi: 10.3969/j.issn.1002-5464.2007.02.011
[5] Ling F, Raphael L, Shimon G, et al. Progressive inhibition by water deficit of cell wall extensibility and growth along the elongation zone of maize roots is related to increased lignin metabolism and progressive stelar accumulation of wall phenolics[J]. Plant Physiology, 2006, 140(2): 603−612. doi: 10.1104/pp.105.073130
[6] 闫志鹏, 仪慧兰, 张艾英, 等. 谷子对黑粉菌侵染的生物学响应[J]. 山西农业科学, 2019, 47(10): 1700−1704. doi: 10.3969/j.issn.1002-2481.2019.10.04 Yan Z P, Yi H L, Zhang A Y, et al. Biological responses of millet plants to Ustilago crameri infection[J]. Journal of Shanxi Agricultural Sciences, 2019, 47(10): 1700−1704. doi: 10.3969/j.issn.1002-2481.2019.10.04
[7] Sabella E, Luvisi A, Aprile A, et al. Xylella fastidiosa induces differential expression of lignification related-genes and lignin accumulation in tolerant olive trees cv. Leccino[J]. Journal of Plant Physiology, 2018, 220: 60−68. doi: 10.1016/j.jplph.2017.10.007
[8] 蔺占兵. 小麦肉桂酰辅酶A还原酶(CCR)基因的分离和功能分析[D]. 北京: 中国科学院(植物研究所), 2003. Lin Z B. Cloning and functional analysis of cinnamoyl: CoA Reductase (CCR) gene from Triticum aestivum L. cv. H4564[D]. Beijing: Institute of Botany, Chinese Academy of Sciences, 2003.
[9] 国增超, 侯静, 郭炜, 等. 簸箕柳材性性状株内纵向变异的趋势分析[J]. 南京林业大学学报(自然科学版), 2014, 38(5): 149−152. Guo Z C, Hou J, Guo W, et al. Variation trends of wood property along stem in Salix suchowensis[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2014, 38(5): 149−152.
[10] Huang H, Wang S, Jiang J, et al. Overexpression of BpAP1 induces early flowering and produces dwarfism in Betula platyphylla × Betula pendula[J]. Physiologia Plantarum, 2014, 151(4): 495−506. doi: 10.1111/ppl.12123
[11] 詹亚光, 王玉成, 王志英, 等. 白桦的遗传转化及转基因植株的抗虫性[J]. 植物生理与分子生物学学报, 2003, 29(5): 380−386. Zhan Y G, Wang Y C, Wang Z Y, et al. Genetic transformation of Betula platyphylla and insect resistance of the transgenic plants[J]. Acta Photophysiologica Sinica, 2003, 29(5): 380−386.
[12] 李园园, 杨光, 韦睿, 等. 转TabZIP基因白桦的获得及耐盐性分析[J]. 南京林业大学学报(自然科学版), 2013, 37(5): 6−12. Li Y Y, Yang G, Wei R, et al. TabZIP transferred Betula platyphylla generation and salt tolerance analysis[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2013, 37(5): 6−12.
[13] Zhang W, Wei R, Chen S, et al. Functional characterization of CCR in birch (Betula platyphylla × Betula pendula) through overexpression and suppression analysis[J]. Physiologia Plantarum, 2014, 154(2): 283−296.
[14] 陈继英, 刘超逸, 王朔, 等. 白桦BpTOPP1基因功能[J]. 东北林业大学学报, 2018, 46(8): 13−19. doi: 10.3969/j.issn.1000-5382.2018.08.003 Chen J Y, Liu C Y, Wang S, et al. A preliminary study on function of BpTOPP1 gene in Betula platyphylla × B. pendula[J]. Journal of Northeast Forestry University, 2018, 46(8): 13−19. doi: 10.3969/j.issn.1000-5382.2018.08.003
[15] 范志勇, 姜晶, 王芳, 等. 转BpCHS基因过量表达白桦叶片和韧皮部色素含量及植株表型分析[J]. 东北林业大学学报, 2018, 46(6): 8−13. doi: 10.3969/j.issn.1000-5382.2018.06.002 Fan Z Y, Jiang J, Wang F, et al. Overexpression of BpCHS confers changes of pigment content in leaves and phloem and other phenotypic traits in transgenic birch[J]. Journal of Northeast Forestry University, 2018, 46(6): 8−13. doi: 10.3969/j.issn.1000-5382.2018.06.002
[16] 韦睿. 白桦木质素BpCCR1基因的克隆及遗传转化[D]. 哈尔滨: 东北林业大学, 2012. Wei R. Gene clone and genetic transformation of cinnamoyl-CoA reductase gene 1 in Betula platyphylla[D]. Harbin: Northeast Forestry University, 2012.
[17] 张闻博. 白桦BpCCR1基因的功能研究[D]. 哈尔滨: 东北林业大学, 2015. Zhang W B. Function analysis of CCR1 in Betula platyphylla × Betula pendula[D]. Harbin: Northeast Forestry University, 2015.
[18] 张嫚嫚, 刘宝光, 顾宸瑞, 等. 转BpCCR1正义链及反义链对7年生盆栽白桦木质素的影响及优良株系选择[J]. 北京林业大学学报, 2019, 41(6): 86−95. Zhang M M, Liu B G, Gu C R, et al. Effects of transgenic sense and antisense of BpCCR1 on 7-year-old potted birch and selection of excellent lines[J]. Journal of Beijing Forestry University, 2019, 41(6): 86−95.
[19] 孟宪宇. 测树学[M]. 北京: 中国林业出版社, 2004. Meng X Y. Forest mensuration [M]. Beijing: China Forestry Publishing House, 2004.
[20] Huixin G, Ranhong L, Yuming Z, et al. Loss of GLK1 transcription factor function reveals new insights in chlorophyll biosynthesis and chloroplast development[J]. Journal of Experimental Botany, 2019, 70(12): 3125−3138. doi: 10.1093/jxb/erz128
[21] Li R, Chen S, Liu G, et al. Characterization and identification of a woody lesion mimic mutant lmd, showing defence response and resistance to Alternaria alternate in birch[J]. Scientific Reports, 2017, 7(1): 11308. doi: 10.1038/s41598-017-11748-2
[22] Baxter H, Poovaiah C, Yee K, et al. Field evaluation of transgenic switchgrass plants overexpressing PvMYB4 for reduced biomass recalcitrance[J]. Bioenergy Research, 2015, 8(3): 910−921. doi: 10.1007/s12155-014-9570-1
[23] 刘桂丰, 杨传平, 蔡智军, 等. 转betA基因小黑杨的耐盐性分析及优良转基因株系的选择[J]. 林业科学, 2006, 42(7): 33−36. Liu G F, Yang C P, Cai Z J, et al. Salt tolerance of betA transgenic Populus simonii × P. nigra and selection for superior transgenic plants[J]. Scientia Silvae Sinicae, 2006, 42(7): 33−36.
[24] 穆怀志, 李志新, 李玉珠, 等. 轻度盐碱地转betA基因小黑杨的生长表现[J]. 东北林业大学学报, 2009, 37(11): 24−25, 28. Mu H Z, Li Z X, Li Y Z, et al. Growth manifestation of transgenic Populus simonii × P. nigra with betA gene on low-grade salinate fields[J]. Journal of Northeast Forestry University, 2009, 37(11): 24−25, 28.
[25] 沈熙环. 油松、华北落叶松良种选育实践与理论[M]. 北京: 科学出版社, 2014. Shen X H. Selection and breeding of Pinus tabuliformis and Larix principis-rupprechtii: practice and pheorty [M]. Beijing: Science Press, 2014.
[26] 李斌, 顾万春, 夏良放, 等. 鹅掌楸种源遗传变异和选择评价[J]. 林业科学研究, 2001, 14(3): 237−243. doi: 10.3321/j.issn:1001-1498.2001.03.001 Li B, Gu W C, Xia L F, et al. Geneti
c variation and provenance selection of chinese tuliptree[J]. Forest Research, 2001, 14(3): 237−243. doi: 10.3321/j.issn:1001-1498.2001.03.001 [27] 李新国, 朱之悌. 林木基因型与地点最佳组合选择的研究[J]. 北京林业大学学报, 1998, 20(3): 15−18. doi: 10.3321/j.issn:1000-1522.1998.03.003 Li X G, Zhu Z T. Selection of better combinations of genotypes and sites of forest trees[J]. Journal of Beijing Forestry University, 1998, 20(3): 15−18. doi: 10.3321/j.issn:1000-1522.1998.03.003
[28] Nagamitsu T, Nagasaka K, Yoshimaru H, et al. Provenance tests for survival and growth of 50-year-old Japanese larch (Larix kaempferi) trees related to climatic conditions in central Japan[J]. Tree Genetics & Genomes, 2014, 10(1): 87−99.
[29] 刘宇, 徐焕文, 尚福强, 等. 3个地点白桦种源试验生长稳定性分析[J]. 北京林业大学学报, 2016, 38(5): 50−57. doi: 10.13332/j.1000-1522.20150463 Liu Y, Xu H W, Shang F Q, et al. Growth stability of Betula platyphylla provenances from three sites[J]. Journal of Beijing Forestry University, 2016, 38(5): 50−57. doi: 10.13332/j.1000-1522.20150463
[30] 谢兆辉. 天然反义转录物及其调控基因的表达机制[J]. 遗传, 2010, 32(2): 32−38. Xie Z H. Natural antisense transcript and its mechanism of gene regulation[J]. Hereditas, 2010, 32(2): 32−38.
[31] Katayama S, Tomaru Y, Kasukawa T, et al. Antisense transcription in the mammalian transcriptome.[J]. Science, 2005, 309: 1564−1566. doi: 10.1126/science.1112009
[32] 毕延震, 黄捷, 姜黎. 天然反义RNA (NATs): 基因表达的重要调控分子[J]. 中国生物化学与分子生物学报, 2010, 26(9): 9−16. Bi Y Z, Huang J, Jiang L. Natural antisense transcripts (NATs): important regulatory molecules upon gene expression[J]. Chinese Journal of Biochemistry and Molecular Biology, 2010, 26(9): 9−16.
-
期刊类型引用(2)
1. 武舒,王洲,张明艳,钟姗辰,王黎,苏晓华,张冰玉. PagHK3a基因敲除对银腺杨抗旱性的影响. 林业科学研究. 2023(05): 1-11 . 百度学术
2. 梁青兰,韩友吉,乔艳辉,谢孔安,李双云,董玉峰,李善文,张升祥. 干旱胁迫对黑杨派无性系生长及生理特性的影响. 北京林业大学学报. 2023(10): 81-89 . 本站查看
其他类型引用(5)